
C H A P T E R 1

Flowchart Techniques

1.1 Programming Aids

Programmers use different kinds of tools or aids which help them
in developing programs faster and better. Such aids are studied
in the following paragraphs. Important aids available to a pro-
grammer are flowcharting and decision tables which help him in
constructing programs very fast and very easily.

1.1.1 Flowcharts

A flowchart is a graphical representation of the sequence of oper-
ations in an information system or program. Program flowcharts
show the sequence of instructions in a single program or
subroutine.

Flowchart uses boxes of different shapes to denote different
types of instructions. The actual instructions are written within
these boxes using clear and concise statements. These boxes are
connected by solid lines having arrow marks to indicate the flow
of operation, that is, the exact sequence in which the instructions
are to be executed. Since a flowchart shows the flow of operations
in pictorial form, any error in the logic of the procedure can be
detected easily. Once the flowchart is ready, the programmer can
forget about the logic and can concentrate only on coding the
operations in each box of the flowchart in terms of the statements
of the programming language. This will normally ensure an
error-free program.

A flowchart is basically the plan to be followed when the pro-
gram is written. It acts like a road map for a programmer and

1

 2 Flowcharting Concepts and Algorithms

guides him in proceeding from the starting point to the final
point while writing a computer program.

For a beginner it is strongly recommended that a flowchart
be drawn first in order to reduce the number of errors and omis-
sions in the program. Moreover, it is a good practice to have a
flowchart along with a computer program as it is very helpful
during the testing of the program and also in incorporating any
modifications in the program.

1.1.2 Flowchart Symbols

Only a few symbols are needed to indicate the necessary opera-
tions in a flowchart. These symbols have been standardized by
the American National Standards Institute (ANSI). These
symbols are shown in Figure 3.1 and their functions are dis-
cussed below.

Terminal

The terminal symbol, as the name implies, is used to indicate the
starting (BEGIN), stopping (END), and pause (HALT) in the pro-
gram logic flow. It is the first symbol and the last symbol in the
program logic. In addition, if the program logic calls for a pause
in the program, that also is indicated with a terminal symbol. A
pause is normally used in the program logic under some error
conditions or in case the forms had to be changed in the comput-
er’s line printer during the processing of that program.

Input/Output

The input/output symbol is used to denote any function of an
input/output device in the program. If there is a program
instruction to input data from a disk, tape, card reader, terminal,
or any other type of input device, that step will be indicated in
the flowchart with an input/output symbol. Similarly, all output
instructions, whether it is output on a printer, magnetic tape,
magnetic disk, terminal screen, or any output device, are indi-
cated in the flowchart with an input/output symbol.

Processing

A processing symbol is used in a flowchart to represent arithme-
tic and data movement instructions. Thus, all arithmetic

Flowchart Techniques 3

Figure 1.1 Flowchart symbols

SYMBOL EXAMPLE

TERMINAL

 BEGIN

 END

INPUT/
OUTPUT

 INPUT
 X,Y

Z

PROCESSING

ENTRY CONNECTOR
1

2

YES
CONDITION

?

NO

DECISION DIAMOND

CONNECTOR

(TRANSFER)

 X,Y
 PRINT

(X+Y)

START ACTION HERE.

STOP ACTION HERE.

TAKE TWO VALUES FROM
AN EXTERNAL SOURCE AND
ASSIGN THEM TO X & Y ON
A TERMINAL/SCREEN

WRITE THE VALUES
CONTAINED IN X & Y ON
A TERMINAL/SCREEN

ADD THE VALUE CONTAINED
IN Y TO THE VALUE
CONTAINED IN X AND
PLACE THE RESULT IN Z

AN ENTRY IN THE FLOW CHART
IS MADE AT THE CONNECTING
POINT MARKED 1

IF CONDITION IS SATISFIED
THEN YES PATH IS TO BE
FOLLOWED OTHERWISE NO
ROUTE IS TO BE TAKEN.

THE ARROWS INDICATE THE
ROUTES FOR SYSTEMATIC
SOLUTION OF THE PROBLEM.

A TRANSFER OF PROBLEM
SOLUTION IS MADE AT THE
CONNECTOR POINT
IN THE FLOW CHART.

2

FLOW LINES

 4 Flowcharting Concepts and Algorithms

processes such as adding, subtracting, multiplying and dividing
are shown by a processing symbol. The logical process of moving
data from one location of the main memory to another is also
denoted by this symbol. When more than one arithmetic and data
movement instructions are to be executed consecutively, they are
normally placed in the same processing box and they are
assumed to be executed in the order of their appearance.

Flow lines

Flowlines with arrowheads are used to indicate the flow of oper-
ation, that is, the exact sequence in which the instructions are to
be executed. The normal flow of flowchart is from top to bottom
and left to right. Arrowheads are required only when the normal
top to bottom flow is not to be followed. However, as a good prac-
tice and in order to avoid confusion, flow lines are usually drawn
with an arrowhead at the point of entry to a symbol. Good
practice also dictates that flow lines should not cross each other
and that such intersections should be avoided whenever possible.

Decision

The decision symbol is used in a flowchart to indicate a point at
which a decision has to be made and a branch to one of two or
more alternative points is possible. Figure 1.2 shows three differ-
ent ways in which a decision symbol can be used. It may be noted
from these examples that the criterion for making the decision
should be indicated clearly within the decision box. Moreover, the
condition upon which each of the possible exit paths will be
executed, should be identified and all the possible paths should
be accounted for. During execution, the appropriate path is fol-
lowed depending upon the result of the decision.

Connector

If a flowchart becomes very long, the flow lines start crisscrossing
at many places that causes confusion and reduces the clarity of
the flowchart. Moreover, there are instances when a flowchart
becomes too long to fit in a single page and the use of flow lines
becomes impossible. Thus, whenever a flowchart becomes too
complex that the number and direction of flow lines is confusing
or it spreads over more than one page, it is useful to utilize the

Flowchart Techniques 5

Figure 1.2 Different decision symbols with different ways of branching

IS

I = 10
No

?

Yes

(a) Two-way branch

0

(c) Multiple-way branch

Other

I = ?

A < B

(b) Three-way branch

A = B

A & B
COMPARE A > B

1 2 3 4 5

 6 Flowcharting Concepts and Algorithms

connector symbol as a substitute for flow lines. This symbol rep-
resents an entry from, or an exit to another part of the flowchart.

A connector symbol is represented by a circle and a letter or
digit is placed within the circle to indicate the link. A pair of
identically labeled connector symbols are commonly used to indi-
cate a continued flow when the use of a line is confusing. So two
connectors with identical labels serve the same function as a long
flow line. That is, they show an exit to some other chart section,
or they indicate an entry from another part of the chart. How is it
possible to determine if a connector is used as an entry or an exit
point? It is very simple: if an arrow enters but does not leave a
connector, it is an exit point and program control is transferred to
the identically labeled connector that does have an outlet. It may
be noted that connectors do not represent any operation and their
use in a flowchart is only for the sake of convenience and clarity.

Example 1.1

Draw a flowchart for adding marks in ten subjects obtained by a
student in an examination. The output should print the percent-
age of marks of the student in the examination.

The flowchart for this problem is given in Figure 1.3
The first symbol is a terminal labeled START. It shows that this
is the starting point or beginning of our flowchart logic. The sec-
ond symbol is an input/output (I/O) symbol that is labeled specif-
ically to show that this step is to read input data. This step will
input the roll number, name, and the marks obtained by the
student from an input device into the main storage of the com-
puter system. The third symbol is a processing symbol which is
suitably labeled to indicate that at this step, the computer will
add the marks obtained by the student in various subjects and
then store the sum in a memory location which has been given
the name TOTAL. The fourth symbol is again a processing sym-
bol. The label inside it clearly indicates that the percentage
marks obtained by a student is calculated at this stage by
dividing TOTAL by 10 and the result is stored in a memory loca-
tion which has been given the name PERCENTAGE. The fifth
symbol is an input/output (I/O) symbol and is labeled WRITE
OUTPUT DATA.

Flowchart Techniques 7

Figure 1.3 Flowchart for calculating percentage of marks

Example 1.2

Draw a flowchart for calculating the average percentage marks of
50 students. Each student appeared in ten subjects. The flow-
chart should show the counting of the number of student who
have appeared in the examination and the calculation should
stop when the number of counts reaches the number 50.

Since all the students have appeared in the same examina-
tion, so the process of calculation and printing the percentage
marks obtained by each student will basically remain the same.
The process of reading the input data, adding the marks of all

START

READ

PERCENTAGE

INPUT
DATA

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

= TOTAL/10

DATA
OUTPUT
WRITE

STOP

 8 Flowcharting Concepts and Algorithms

Figure 1.4 Flowchart for example 1.2

START

READ

PERCENTAGE

INPUT
DATA

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

= TOTAL/10

DATA
OUTPUT
WRITE

STOP

COUNT = 0

ADD 1 TO COUNT

IS

COUNT = 50

?

No

Yes

Flowchart Techniques 9

subjects, calculating the percentage, and then writing the output
data, is to be repeated for all the 50 students. In this situation
where the same logical steps can be repeated, the flow line sym-
bols are used in a flowchart to indicate the repetitive nature of
the logic in the form of a loop.

Figure 1.4 shows a flowchart which uses a decision step to
terminate the algorithm. In this flowchart, another variable
COUNT has been introduced which is initialized to zero outside
the process loop and is incremented by 1 after processing the data
for each student. Thus, the value of COUNT will always be equal
to the number of students whose data has already been pro-
cessed. At the decision step, the value of COUNT is compared
with 50 which is the total number of students who have appeared
for the examination. The steps within the process loop are
repeated until the value of COUNT becomes equal to 50. As soon
as the value of COUNT becomes equal to 50, the instruction at
the decision step causes the control to flow out of the loop and the
processing stops because a terminal symbol labeled STOP is
encountered.

Designing a General Flowchart

The flowchart shown in Figure 1.4 is not a general flowchart for
the Example 1.2 for calculating the percentage of marks of any
number of students appearing in the examination. A good pro-
gram should be general in nature. For example, in this case we
should write a program that need not be modified every time,
even if the total number of students changes.

To overcome these drawbacks, another method can be
adopted to control the loop. In this method, the end of input data
is marked by a trailer record, that is, the last data record in the
input is followed by a record whose main purpose is to indicate
that the end of the input data has been reached. Suppose the first
7 characters of the input record of a student represents his roll
number (ROLLNO). Since 0000000 is never used as a roll num-
ber, a value of 0000000 as the first 7 characters can be used to
represent the trailer record. As each input record is processed,
the ROLLNO can be compared with 0000000 to determine if pro-
cessing is complete. The logic of this process is illustrated in the
flowchart given in Figure 1.5.

 10 Flowcharting Concepts and Algorithms

Figure 1.5 General flowchart for example 1.2

What is Trailer Record?

The concept of a trailer record centers around the notion of
selecting a field (a particular item of data) in the input record
which will be used to indicate the end of data, and then selecting
a trailer value also known as sentinel value which will never
occur as normal data value for that field. The roll number
0000000 is a trailer record for Example 1.2.

START

READ

PERCENTAGE

INPUT
DATA

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

= TOTAL/10

DATA
OUTPUT
WRITE

STOP

IS
ROLL NO=0000000

?

No

Yes

Flowchart Techniques 11

Example 1.3

Extend the flowchart represented in Figure 1.5 to count the
number of students who have scored percentage marks more
than 30. The flowchart should give the result of the students
scoring the percentage marks equal to or more than 30.

Figure 1.6 Flowchart for example 1.3

START

READ

PERCENTAGE

INPUT
DATA

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

= TOTAL/10

DATA
OUTPUT
WRITE

COUNT = 0

ADD 1 TO COUNT

?

ROLL NO.9999999

IS

PERCENTAGE

IS

?

Yes

STOP

WRITE
COUNT

= > 30

Yes

No

No

 12 Flowcharting Concepts and Algorithms

The flowchart in Figure 1.6 is a solution to this problem.
There are two decision symbols in this flowchart. The first deci-
sion symbol checks for a trailer record by comparing ROLLNO
against the value 9999999 to determine if processing is complete.
The second decision symbol is used to check whether the student
has passed or failed by comparing the percentage marks obtained
by him against 30. If the student’s PERCENTAGE is equal to or
more than 30, then he has passed, otherwise he has failed. Note
from the flowchart that the operation WRITE OUTPUT DATA is
performed only if the student has passed. If he has failed, we
directly perform the operation READ INPUT DATA without per-
forming the WRITE operation. This ensures that the output list
provided by the computer will contain the details of only those
students who have passed in the examination.

Another point to be noted in this flowchart is the use of vari-
able COUNT. This variable has been initialized to zero in the
beginning and is increased by 1 every time the operation WRITE
OUTPUT DATA is performed. But we have seen that the opera-
tion WRITE OUTPUT DATA is performed only for the students
who have passed. Hence, the variable COUNT will be increased
by 1 only in the case of those students who have passed. Thus,
the value of COUNT will always be equal to the number of stu-
dents whose data has already been processed and who have been
identified as passed. Finally, when the trailer record is detected,
the operation WRITE COUNT will print out the final value of
COUNT that will be equal to the total number of students who
have passed the examination.

1.1.3 Flowcharting Rules

(a) First formulate the main line of logic, then incorporate the
details.

(b) Maintain a consistent level of detail for a given flowchart.
(c) Do not give every detail on the flowchart. A reader who is

interested in greater details can refer to the program itself.
(d) Words in the flowchart symbols should be common state-

ments and easy to understand.
(e) Be consistent in using names and variables in the flowchart.
(f) Go from left to right and top to bottom in constructing the

flowchart.

Flowchart Techniques 13

(g) Keep the flowchart as simple as possible. The crossing of
flow lines should be avoided as far as possible.

(h) If a new flowcharting page is needed, it is recommended
that the flowchart be broken at an input or output point.
Moreover, properly labeled connectors should be used to link
the portions of the flowchart on different pages.

1.1.4 Advantages of Flowcharts

Conveys Better Meaning

Since a flowchart is a pictorial representation of a program, it is
easier for a programmer to understand and explain the logic of
the program to some other programmer.

Analyses the Problem Effectively

A macro flowchart that charts the main line of logic of a software
system becomes a system model that can be broken down into
detailed parts for study and further analysis of the system.

Effective Joining of a Part of a System

A group of programmers are normally associated with the design
of large software systems. Each programmer is responsible for
designing only a part of the entire system. So initially, if each
programmer draws a flowchart for his part of design, the flow-
charts of all the programmers can be placed together to visualize
the overall system design. Any problem in linking the various
parts of the system can be easily detected at this stage and the
design can be accordingly modified. Flowcharts can thus be used
as working models in the design of new programs and software
systems.

Efficient Coding

Once a flowchart is ready, programmers find it very easy to write
the concerned program because the flowchart acts as a roadmap
for them. It guides them in proceeding from the starting point of
the program to the final point ensuring that no steps are omitted.
The ultimate result is an error free program developed at a
faster rate.

 14 Flowcharting Concepts and Algorithms

Systematic Debugging

Even after taking full care in program design, some errors may
remain in the program because the designer might have never
thought about a particular case. These errors are detected only
when we start executing the program on a computer. Such type of
program errors are called bugs and the process of removing these
errors is known as debugging. A flowchart is very helpful in
detecting, locating, and removing mistakes (bugs) in a program
in a systematic manner.

Systematic Testing

Testing is the process of confirming whether a program will suc-
cessfully do all the jobs for which it has been designed under the
specified constraints. For testing a program, different sets of data
are fed as input to that program to test the different paths in the
program logic.

1.1.5 Limitations of Flowcharts

Takes More Time to Draw

Flowcharts are very time consuming and laborious to draw with
proper symbols and spacing, especially for large complex pro-
grams.

Difficult to Make Changes

Owing to the symbol-string nature of flowcharting, any changes
or modifications in the program logic will usually require a com-
pletely new flowchart. Redrawing a flowchart is tedious and
many companies either do not change them or produce the
flowchart by using a computer program to draw it.

Non-standardization

There are no standards determining the amount of detail that
should be included in a flowchart.

1.1.6 Levels of Flowcharts

A flowchart that outlines the main segments of a program and
shows lesser detail is a macro-flowchart. On the other hand, a

Flowchart Techniques 15

Figure 1.7 Details of the processing block of Figure 1.3 for adding marks in 10
subjects

flowchart with more detail is a micro-flowchart. For example, let
us consider the examination problem that we have already dis-
cussed in Examples 1.3 and 1.4. In all the flowcharts of the
examination problem, there is a processing box having the
instruction "ADD MARKS OF ALL SUBJECTS GIVING
TOTAL". In order to display how the values of TOTAL is calcu-
lated, a detailed flowchart can be drawn as shown in Figure 1.7.
In a similar manner, the input/output (I/O) boxes for the READ
and WRITE operations can also be converted to a detailed flow-
chart.

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

A MICRO

FLOW CHART

I = 1
TOTAL = 0

TOTAL = TOTAL + MARKS (I)

I = I + 1

IS
I > 10

?

YES

NO

PART OF A MACRO

FLOW CHART

 16 Flowcharting Concepts and Algorithms

1.2 Pseudocode or Metacode or PDL

Pseudocode is another program analysis tool that is used for
planning program logic. "Pseudo" means imitation or false and
"Code" refers to the instructions written in a programming lan-
guage. Pseudocode, therefore, is an imitation of actual computer
instructions. These pseudo instructions are phrases written in
ordinary natural language (e.g., English, French, German, etc.).
Instead of using symbols to describe the logic steps of a program,
as in flowcharting, pseudocode uses a structure that resembles
computer instructions. Because it emphasises the design of the
program, pseudocode is also called Program Design Language
(PDL).

Pseudocode is made up of the following basic logic structures
that have been proved to be sufficient for writing any computer
program :

1. Sequence
2. Selection (IF...THEN...ELSE

or IF....THEN)
1. Iteration (DO...WHILE or REPEAT...UNTIL)

1.2.1 Sequence

Sequence logic is used for performing instructions one after
another in sequence. Thus, for sequence logic, pseudocode
instructions are written in the order, or sequence, in which they
are to be performed. The logic flow of pseudocode is from the top
to the bottom. Figure 1.8 shows an example of sequence logic
structure.

1.2.2 Selection

Selection logic, also known as decision logic, is used for making
decisions. It is used for selecting the proper path out of the two or
more alternative paths in the program logic. Selection logic is
depicted as either an IF...THEN...ELSE or IF.....THEN structure.
The flowcharts shown in Figures 1.9 and 1.10 illustrate the logic
of these structures. Their corresponding pseudocode is also given
in these figures.

Flowchart Techniques 17

The IF...THEN...ELSE construct says that if the condition is
true, then do process 1, else (if the condition is not true) do pro-
cess 2. Thus, in this case either process 1 or process 2 will be
executed depending on whether the specified condition is true or
false. However, if we do not want to choose between two pro-
cesses and we simply want to decide if a process is to be per-
formed or not, then the IF...THEN structure is used.

Figure 1.8 Pseudocode for sequence structure

FLOWCHART

PROCESS 1

PROCESS 2

PSEUDOCODE

Process 1

Process 2

 18 Flowcharting Concepts and Algorithms

The IF...THEN structure says that if the condition is true,
then do process 1; and if it is not true, then skip over process 1. In
both the structures, process 1 and process 2 can actually be one
or more processes. They are not limited to a single process. END
IF is used to indicate the end of the decision structures.

Figure 1.9 Pseudocode for If-Then-Else structure

FLOWCHART

PROCESS 1 PROCESS 2

PSEUDOCODE

If Condition

END IF

ROLL NO.9999999

?

IS

THEN process 1
ELSE

process 2

NO

YES

Flowchart Techniques 19

Figure 1.10 Pseudocode for If-Then selection structure

1.2.3 Iteration Logic

Iteration logic is used when one or more instructions may be
executed several times depending on some condition. It uses two
structures called the DO...WHILE and the REPEAT...UNTIL.
They are illustrated by flowcharts in Figure 1.11 and Figure 1.12
respectively. Their corresponding pseudocodes are also given in
these figures. Both DO...WHILE and REPEAT...UNTIL are used
for looping.

FLOWCHART

PROCESS 1

PSEUDOCODE

IF CONDITION

END IF

CONDITION

?

THEN PROCESS1

NO

YES

 20 Flowcharting Concepts and Algorithms

1.2.4 Differences between Do..While and Repeat.. Until
loops

The differences between the two loops are that in the

Figure 1.11 Pseudo-code for Do.. While structure

FLOWCHART

PROCESS 1

PSEUDOCODE

DO WHILE CONDITION

ENDDO

CONDITION

?

PROCESS 1

PROCESS n

NO

YES

PROCESS n

Flowchart Techniques 21

Figure 1.12 Pseudo-code for Repeat..Until structure

DO...WHILE, the looping will continue as long as the condition is
true. The looping stops when the condition is not true. On the
other hand, in case of REPEAT...UNTIL, the looping continues

FLOWCHART

PROCESS n

PROCESS 1

PSEUDOCODE

REPEAT

UNTIL CONDITION

CONDITION

?

PROCESS 1

PROCESS 2

NO

YES

 22 Flowcharting Concepts and Algorithms

until the condition becomes true. That is, the execution of the
statements within the loop is repeated as long as the condition is
not true. In both the DO...WHILE and REPEAT...UNTIL, the
loop must contain a statement that will change the condition that
controls the loop. Also the condition is tested at the top of the loop
in the DO...WHILE loop structure and at the bottom of the loop
in the REPEAT...UNTIL structure. The "ENDDO" marks the end
of a DO...WHILE structure and UNTIL followed by some condi-
tion marks the end of the REPEAT...UNTIL structure.

Example 1.4

The following pseudocode describes the policy of a company to
award the bonus to an employee.

Input
Employee number, pay, position code & years.
IF

position code = 1
THEN

set bonus to 1 week’s pay
ELSE

IF position code = 2
THEN

IF 2 weeks pay > 700
THEN

set bonus to 700
ELSE

set bonus to 2 week’s pay
END IF

ELSE
set Bonus to 1.5 week’s pay

END IF
END IF
IF year greater then 10
THEN

Add 100 to bonus
ELSE

IF years less than 2
THEN

cut bonus to half

Flowchart Techniques 23

ELSE
bonus stays the same

END IF
Print employee number & bonus

Example 1.5

This example illustrates the policy of a bank or a financial insti-
tution for giving a loan to an individual.

Input mortgage amount
IF amount < 25,000
THEN

down payment = 3% of amount
ELSE

payment1 = 3% of 25,000
payment2 = 5% of (amount - 25,000)
down payment = payment1 + payment2

END IF
print down payment

Example 1.6

The following program in pseudocode form illustrates the policy
of a company to give the commission to a sales person.

Input sales
IF sales < 500
THEN

Commission = 2% of sales.
ELSE

IF sales < 5000
THEN
Commission = 5% of sales
ELSE
Commission = 10% of sales

END IF
Print Commission

1.2.5 Advantages of Pseudocodes

Pseudocode has three main advantages:

 24 Flowcharting Concepts and Algorithms

(a) Converting a pseudocode to a programming language is
much more easier as compared to converting a flowchart or a
decision table.

(b) As compared to a flowchart, it is easier to modify the pseu-
docode of a program logic when program modifications are
necessary.

(c) Writing of pseudocode involves much less time and effort
than drawing an equivalent flowchart. Pseudocode is easier
to write than an actual programming language because it
has only a few rules to follow, allowing the programmer to
concentrate on the logic of the program.

1.2.6 Limitations of Pseudocodes

(a) In case of pseudocode, a graphic representation of program
logic is not available.

(b) There are no standard rules to follow in using pseudocode.
Different programmers use their own style of writing pseu-
docode and hence communication problems occur due to lack
of standardization.

(c) For a beginner, it is more difficult to follow the logic or write
the pseudocode, as compared to flowcharting.

1.2.6 Limitations of Pseudocodes

(a) In case of pseudocode, a graphic representation of program
logic is not available.

(b) There are no standard rules to follow in using pseudocode.
Different programmers use their own style of writing pseu-
docode and hence communication problems occur due to lack
of standardization.

(c) For a beginner, it is more difficult to follow the logic or write
the pseudocode, as compared to flowcharting.

1.3 Programming Techniques

You can solve different types of business or scientific problems on
a computer. All you have to do is to analyse the problem, write a
step by step solution and translate it into a language under-
standable by a computer.

Flowchart Techniques 25

1.3.1 Problem Definition

Let us take an example of a problem faced in day- to- day life.
Suppose you want to reach your school computer laboratory at 8
AM. You would lay out a plan to get ready by 7 AM, then take a
bus/rikshaw and reach at the gate of your school. Then climb up
the stairs to arrive in the laboratory. For all these movements,
you will note the time taken for each part. If due to some reason,
you are unable to get ready by 7 AM and you already know that
it takes one hour to reach from house to school laboratory by
bus/rikshaw, then you will take a faster means of transportation.
You may take an autorikshaw or a taxi. Thus, a very simple
problem of reaching the computer laboratory of your school by 8
AM will need several steps for solution. Each step is to be accu-
rately defined/marked so that no guess work is necessary. You
can thus represent the solution of this problem in three steps
shown in Figure 1.11.

In Figure 1.13, steps 1, 2 and 3 appear to be very simple. In
actual practice when you have to give instructions to a student,
who is going for the first time, it may not be so easy. For example,
you have to define the word "READY" precisely so that he knows
exactly what he has to do by 7AM to get READY. Similarly in
step 2, you may have to clearly specify the bus route number, the
bus stop to board the bus, the place to get down from the bus etc.
You may also like to tell that a bus is not to be boarded, if it is
overcrowded. The word "overcrowded" needs to be exactly
defined. Finally, step 3 needs further elaboration about the room
number and floor number; where the computer laboratory is
located and how to reach there.

You can explain all this to a person who does not know any
thing about the computer laboratory, provided you know it cor-
rectly. In the same way, you can solve a problem on a computer,
if you know exactly what it is and how to solve it manually.
We shall solve a few problems using flowchart.

 26 Flowcharting Concepts and Algorithms

Figure 1.13 Step by step solution to reach school computer laboratory (LAB)

Example 1.7

Consider the flowchart shown in Figure 1.14. Give the value of
BONUS under the following conditions:
(a) X = 20, Y = 10
(b) X = 10, Y = 20

Solution

(a) The value of X and Y are 20 and 10 respectively. These val-
ues are inputted in step 2. The value of BONUS is taken as
500 in step 1. Since the values of X = 20 and Y = 10, so in
step 4, X is more than Y.

GET READY

 BY 7 AM
 STEP 1

TAKE A BUS

FOR SCHOOL
 STEP 2

 STEP 3
 REACH

 COMPUTER
LAB BY 8 AM

Flowchart Techniques 27

Therefore the Yes route is to be followed. Hence the new
value of BONUS is the old value of BONUS + 100 i.e. 600.
Hence the value of BONUS written in step 5 is 600.

(b) Here, the value of X=10 & Y=20. Therefore in step 4, the
diamond decision shows that X is less than Y. Therefore,
the No route is followed. The value of BONUS remains 500
only. Hence the result is 500.

Figure 1.14 Bonus calculation

Example 1.8

Here are six types of values for the variables A, B, and C.
(a) A=9, B=5, C=1 (b) A=7, B=3, C=9
(c) A=2, B=9, C=7 (d) A=4, B=8, C=2
(e) A=6, B=3, C=8 (f) A=2, B=3, C=6

1. Using each type of data, with the flowchart shown in Figure
1.15, state the output in each case.

BEGIN

INPUT
 X,Y

 BONUS = 500

IS
 X > Y

?

BONUS BONUS + 100
YES

 NO

PRINT
BONUS

 END

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

 28 Flowcharting Concepts and Algorithms

2. What does the procedure do?
1. What happens, if all the values of A, B and C are the same?

Solution

1.(a) The values of A, B and C are accepted as 9, 5 and 1 respec-
tively. In step 3, the value of A is compared with B. Since 9
is greater than 5, therefore the YES path is followed. Once
again, in step 4, the value of A is compared with C. Here 9
is greater than 1. So the YES path is followed. In step 5,
value of ‘A’ is printed which is 9. Hence the answer is 9.

(b) The values of A, B and C are accepted as 7, 3 and 9 respec-
tively. In step 3 the value of A is compared with B. Since 7
is greater than 3, therefore, the YES path is followed. In
step 4, the value of A is compared with C. Since 7 is less
than 9, therefore the path corresponding to NO is followed.
Hence the value of C which is 9 will be printed.

(c) The values of A, B and C are accepted as 2, 9, and 7 respec-
tively. As understood from steps (a) and (b) above, we find
that in step 5 the value of B will be printed as 9.

(d) The values of A, B and C are accepted as 4, 8 and 2 respec-
tively. In step 5, the value of B will be printed as 8.

(e) The values of A, B and C are accepted as 6, 3 and 8 respec-
tively. The value of C which is 8 will be printed in step 5.

(f) The values of A, B and C are accepted as 2, 3 and 6 respec-
tively. The value of C which is 6 is printed in step 5.

2. It is evident from the flowchart that the values of A, B and
C are compared with each other and the one that contains
the highest numeral value is printed. If A has the highest
value, then A is printed, otherwise, if B has the highest
value, then B is printed or finally the value of C is printed if
it has the highest value.

1. If A, B and C have equal values, then the value of C which
is the same as that of B or A is printed.

Flowchart Techniques 29

Figure 1.15 Calculation of output for different values of A, B and C

Example 1.9

The flowchart in Figure 1.16 uses connector symbols labelled as
1, 2 and 3. Find the output if the input is:

(a) A=10, B=15,
(b) A=20, B=20,
(c) A=4, B=1,
(d) A=10, B=5.

IS
A > B

?

A > C
IS

?
B > C

IS

?

 BEGIN STEP 1

 INPUT
 A,B,C

YESNO

YESNONO YES

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

 PRINT A PRINT C PRINT B PRINT C

ENDENDENDEND

 30 Flowcharting Concepts and Algorithms

Solution

(a) In step 2 of Figure 1.16, the values of A and B are taken to
be 10 and 15 respectively. In step 3, the value of A is not
less than 10, so the path corresponding to NO is followed.

In step 4, the value of B is not less than 20, hence a
path corresponding to NO is followed. In step 5, the value of
(A+B) is assigned to C, i.e. C becomes (10+15) or equal to
25. Finally, in step 6, the value of C which is 25 is printed.

(b) In step 2, the values of A and B are taken as 20 and 20
respectively. Steps 3 to 5 are similar to that followed in part
(a) above. The value of C is now equal to (A+B) which is 40.
Hence 40 is printed.

(c) In step 2, the values of A and B are taken as 4 and 1
respectively. In step 3, the value of A is less than 10. Hence
the YES path is followed. This is connected to the adjacent
figure via the connector 1. Hence the value of A is now the
old value of A + 3, i.e. 7.
Further, the decision diamond puts the question "Is A less
than 10?" The answer is YES. Hence the control is trans-
ferred to the lower figure via connector 2. The new value

of B becomes the old value of B multiplied by 5 which is 1 x
3 = 1. The diamond compares the value of B with 20. Since
B is less than 20, so the control is transferred back at 2 in
this block. The new value of B becomes the old value of B
multiplied by 3.

= 3 × 3
= 9

This new value of B i.e. 9 is again compared in the decision
diamond. Since 9 is less than 20, the control goes to con-
necter 2. B is again multiplied and the current value of B is
3 × 9 = 27. As 27 is not less than 20, so the NO path is
followed.

The value of C = current value of B + 3
= 27 + 3
= 30

The value 30 of C is now transferred to step 6 i.e. PRINT C.
Hence the value 30 is printed.

Flowchart Techniques 31

Figure 1.16 Flowchart for example 1.9

(d) Here A=10 and B=5
In step 3, the value of A is not less than 10, so the NO path
is followed.

A (A+3)

IS
A < 10

?
2

3

1

1

2

 C = 3 * A

Yes

No

B * 3

B < 20

C

No

?

2 B

IS
2

3

Yes

 (B + 3)

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

 BEGIN

 INPUT
 A,B

IS
A < 10

?

?
B < 20

IS

(A + B)C

PRINT C

END

3

Yes

No

No

 32 Flowcharting Concepts and Algorithms

In step 4, the value of B is 5 which is less than 20.
Hence connector 2 takes the control to right hand lower
side flowchart. The current value of B becomes the old
value of B multiplied by 3 which is now 15. This value of B
i.e. 15 is the current value of B. In the decision diamond,
this value of B is compared with 20. Since 15 is less than
20, so the YES path is followed. The control is transferred
back via connector 2. The new value of B is calculated
which will be 15 × 3 i.e. 45. This current value of B is again
compared with 20. As it is not less than 20, so the NO path
is followed.

The value of C = current value of B + 3
= 45 + 3
= 48

Control is transferred to step 6 via connector 3 and the value of C
is printed. Thus the value of C = 48.

1.3.2 Loop

Many jobs that are required to be done with the help of a com-
puter are repetitive in nature. For example, calculation of salary
of different workers in a factory is given by the (No. of hours
worked)× (wage rate). This calculation will be performed by an
accountant for each worker every month. Such types of repetitive
calculations can easily be done using a program that has a loop
built into the solution of the problem .

What is a Loop ?

A loop is defined as a block of processing steps repeated a certain
number of times. An endless loop repeats infinitely and is always
the result of an error.

Figure 1.17 illustrates a flowchart showing the concept of
looping. It shows a flowchart for printing values 1, 2, 3..., 20.

In step 5 of Figure 1.17, the current value of A is compared
with 21. If the current value of A is less than 21, steps 3 and 4 are
repeated. As soon as the current value of A is not less than 21,
the path corresponding to "NO" is followed and the repetition
process stops.

Flowchart Techniques 33

Terms Used in Looping:

Initialisation

Figure 1.17 Concept of looping

It is the preparation required before entering a loop. In Figure
1.17, step 2 initialises the value of A as 1.

Incrementation It is the numerical value added to the variable
each time one goes round the loop. Step 4 in Figure 1.17 shows
the increment of A by 1.

A < 21

 YES

?

IS NO

 BEGIN

(A + 1)A

END

 A = 1

PRINT A

 STEP 1

 STEP 2

 STEP 3

 STEP 4

 STEP 5

 34 Flowcharting Concepts and Algorithms

Figure 1.18 Flowchart for calculating the salary of 100 workers

COUNT > 100
?

IS

 BEGIN

WAGE x HOURSPAY

COUNT = 1

 STEP 1

 STEP 2

 END

 HOURS
NAME, WAGE,
 INPUT

 PRINT
 NAME, PAY

 COUNT + 1COUNT

 STEP 3

 STEP 4

 STEP 5

 STEP 6

 STEP 7

NO

YES

Flowchart Techniques 35

The Loop Variable It is an active variable in a loop. In Figure 1.17,
A is an active variable.

Loop Exit Test There must be some method of leaving the loop
after it has revolved the requisite number of times. In Figure
1.17, step 5 is the decision diamond, where the value of A is com-
pared with 21. As soon as the condition is satisfied, control comes
out of the loop and the process stops.

Example 1.10

Draw a flowchart for calculating the salary of 100 workers in a
factory.

Solution
Figure 1.18 represents the flowchart. In Figure 1.18, step 2 is for
initialisation of the value of COUNT where COUNT is an active
variable. Step 7 is the incrementation. Step 3 is for the EXIT test.
Steps 4 to 6 are the repetitive steps in the loop to input the
NAME, WAGE and HOURS, and then calculate the value of PAY
in step 5 and print the name and pay in step 6.

In step 7, the value of COUNT is increased by 1 and the cur-
rent value of COUNT is compared with 100 in step 1. If it is more
than 100, the process is halted.

Exercise 1.1

Q 1. How many records will be read by the flowcharts, shown in
Figures 1.19 and 1.20.

Q 2. A certain file contains 15 records. Which of the flowcharts
shown in Figures 1.21 and 1.22 read 15 and only 15
records?

Q 3. The formula to compute simple interest I on a loan of
rupees P at an interest rate R for T years is given as

Draw a flowchart to input the values of P, R and T and to
calculate the value of interest I. Also print the values of P,
R, T and I.

I =
PRT
100

 36 Flowcharting Concepts and Algorithms

Q 4. The flowchart shown in Figure 1.23 is drawn to print the
sum of integers 1 to 100. What changes would you make in
this flowchart, if the SUM for the first 100 odd integers is
required? Redraw the flowchart.

Figure 1.19 Reading of records

 BEGIN

 I = 0

 I

READ K

I < 10

 NO

?

IS

END

 YES

 I + 1

Flowchart Techniques 37

Figure 1.20 Reading of records

Q 5. Consider an equation Y=X2+2X+3. Draw a flowchart which
gives a method for calculating the values of Y for different
values of X varying from -4 to +4 in steps of 1 and prints
each value of X and the corresponding value of Y.

 BEGIN

 I = 0

 I

READ K

I < 10

 NO

?

IS

END

 YES

 I + 1

 38 Flowcharting Concepts and Algorithms

Figure 1.21 Counting of records

 BEGIN

 I = 0

 I

 READ

I = 15

 NO

?

IS

END

 YES

RECORD

 I + 1

Flowchart Techniques 39

Figure 1.22 Counting of records

1.3.3 Counting

Counting is an essential technique used in the problem solving
process. It is mainly for repeating a procedure for a certain num-
ber of times or to count the occurrences of specific events or to
generate a sequence of numbers for computational use. Since a

 BEGIN

 I = 0

 I

 READ

I > 15

 NO

?

IS

END

 YES

 I + 1

RECORD

 40 Flowcharting Concepts and Algorithms

Figure 1.23 Calculating sum of integers 1 to 100

computer cannot count by itself, the user has to send the neces-
sary instruction to do so. The counting process is illustrated in
the flowchart shown in Figure 1.24

Here I is a counter which is initialised to a value zero in step
2. In step 3, a NAME is read and stored in the memory of the

 BEGIN

 A

 PRINT SUM

A < 101

 NO

?

IS

END

 YES

 A + 1

 SUM = 0
 A = 1

 SUM + A SUM

Flowchart Techniques 41

Figure 1.24 Counting process

computer. The value of the counter is incremented by 1 in step 4.
In step 5, the NAME is printed from the memory of the computer.
In step 6, a check is made on the value of I. If the current value of
I is less than 5, the cycle is repeated from steps 3 to 5. If the value
of I is equal to or more than 5, the process of reading and printing
NAME stops. Using this type of flowchart we can read and print
the NAME five times.

 BEGIN

 I

 I < 5

 NO

?

IS

END

 YES

 (I + 1)

 I = 0

 READ NAME

PRINT NAME

 STEP 1

 STEP 2

 STEP 3

 STEP 4

 STEP 5

 STEP 6

 STEP 7

 42 Flowcharting Concepts and Algorithms

Example 1.11

Which numbers will be printed by the flowcharts shown in Fig-
ures 1.25 and 1.26 respectively?

Figure 1.25 Flowchart for printing numbers

Solution

(a) In Figure 1.25, the value of I is initialised to zero in step 2.
In step 3, the value is incremented by 1, i.e. it is 1. In step 4

 BEGIN

 I = 0

 I

PRINT I

I > 5

 YES

?

IS

END

 NO

 I + 1

 STEP 1

 STEP 2

 STEP 3

 STEP 4

 STEP 5

 STEP 6

Flowchart Techniques 43

Figure 1.26 Flowchart for printing numbers

I is printed. In step 5, the current value of I is compared
with 5. Since the current value of I is 1 and 1 is not greater
than or equal to 5, the control is transferred to step 3. Steps
3 and 4 are repeated again till the current value of I is 5.
Thus, the values of I that are printed would be 1, 2, 3, 4, 5.

(b) In Figure 1.26, the value of I is initialised to 1 in step 2. The
number 1 is printed in step 3. In step 4, the value of I is
increased by 1. So the current value of I is 2. In step 5, 2 is
compared with 5. Since 2 is less than 5, so the control is

 BEGIN

 I = 1

 I

PRINT I

I < 5

 NO

?

IS

END

 YES

 I + 1

 STEP 1

 STEP 2

 STEP 3

 STEP 4

 STEP 5

 STEP 6

 44 Flowcharting Concepts and Algorithms

transferred to step 3 and the number 2 is printed. This
cycle repeats and numbers 3 and 4 are printed. When the
current value of I reaches 5, the control is transferred from
step 5 to 6. Thus the numbers printed are 1, 2, 3 and 4.

Exercise 1.2

Q 1. Which numbers will be printed using the flowcharts shown
in Figures 1.27 and 1.28 respectively.

Figure 1.27 Printing of numbers

 BEGIN

 I = 0

 I

PRINT I

I < 5

 NO

?

IS

END

 YES

 I + 1

Flowchart Techniques 45

Q 2. Write a flowchart to print the following sequence of num-
bers.

(a) 20, 19, 18, 17,...., 1.
(b) 2, 4, 6, 8,....., 32.

Q.3 In the flowchart shown in Fig 1.29, the following data is
inputted.

Figure 1.28 Printing of numbers

 BEGIN

 I = 0

 I

 PRINT I

I > 5

 NO

?

IS

END

 YES

 I + 1

 46 Flowcharting Concepts and Algorithms

Figure 1.29 Flowchart for Q. 3 in Exercise 1.2

 BEGIN

 END

SOLD
VALUE OF GOODS

 INPUT

 INPUT
SALES MAN’S
 NAME

VALUE < 500
?

IS

IS
VALUE > 500

?

SALES MAN’S NAME,
VALUE OF GOODS

PRIINT:

SOLD,
WAGE.

WAGE 50 +
10 % OF VALUE

10 % OF VALUE
WAGE 80 +

YES

YES

NO

NO

Flowchart Techniques 47

Input Data
Salesman’s Name Value of goods sold
(a) Mohan 1500
(b) Shyam 2100
(c) Krishna 510
Calculate the value of wage in each case and give the result
of the print statement.

1.3.4 Counting for Controlling a Loop

Sometimes, it is essential to repeat a process for a specific num-
ber of times only. In such a case, there are two standard tech-
niques used. These technique are as follows:

Technique 1

In this technique, we use the following six steps.
1. Initialise a counter to 0, i.e. COUNT = 0. Input value of N

where N stands for the number of times a loop is to be
repeated.

2. Increase the counter by 1. or COUNT = COUNT + 1
3. Test the value of counter and compare the current value

with N. If the current value of the COUNT is greater than
N, then branch off to step 6, otherwise continue.

4. Carryout the sets of instructions (procedure).
5. Go back to step 2.
6. End the loop and continue further programming. These six

steps are shown in Fig 1.30.

Technique 2

1. In this method, the counter is first initialised to zero and
the value of N is inputted.

2. Carry out the sets of instructions of the program.
3. Increase the counter by 1.
4. Test the counter. If COUNT < N then Go to step 2.
5. ELSE END
The above mentioned six steps are represented pictorially by the
flowchart shown in Figure 1.31.

 48 Flowcharting Concepts and Algorithms

Figure 1.30 Flowchart for controlling a loop (Technique 1)

Sometimes, it may be necessary to repeatedly use any of the
above two techniques in order to solve a specific problem. This is
called nested loop. It means that we have the first loop and
within this loop, there is another loop. Solving a problem using
the nested loop technique is very helpful for a multidimensional
array.

 BEGIN

 END

 INPUT N

IS
 COUNT > N

?

 SET OF
INSTRUCTIONS

COUNT = 0

COUNT COUNT + 1

 YES

 STEP 1

 STEP 2

 STEP 3

 STEP 4

 STEP 6

 STEP 5

 NO

Flowchart Techniques 49

Figure 1.31 Flowchart for controlling a loop (Technique 2)

1.4 Procedure for Problem Solving

Though every problem is an entity in itself, there are a few basic
steps that should be understood and followed for effectively solv-
ing a problem using computer techniques. On following these
steps, your problem solving capacity will improve. There are
basically six steps in solving a problem. These are:

 BEGIN

 END

 INPUT N

IS
 COUNT < N

?

 SET OF
INSTRUCTIONS

COUNT = 0

COUNT COUNT + 1

 NO

 YES

 STEP 1

 STEP 2

 STEP 3

 STEPS 4 & 5

 STEP 6

 50 Flowcharting Concepts and Algorithms

1. First, spend sometime in understanding the problem thor-
oughly. In this, you are not required to use a computer.
Instead try to answer and solve the problem manually.

2. Now construct a list of variables that are needed to solve
the problem.

3. Once you have completed step 2, you have to decide the
layout for the output format.

4. Next, select the programming technique which is best
suited to solve the problem and carryout the coding.

5. Test your program. Choose some test data so that each part
of the program is checked for correctness.

6. Finally use the data validation program to guard against
processing of wrong data.

The above six steps are further explained in the following para-
graphs.

1.4.1 Step 1. Understanding the Problem

Read each statement in the problem carefully, so that you can
answer the first question "What is expected by solving the prob-
lem?" Do not start drawing a flowchart straight away. Instead,
read each statement of the problem slowly and carefully,
understanding the keywords. Take a pencil and paper and try to
solve the problem manually for some test data. Let us under-
stand this point by solving the problem, given in Example 1.12.

Example 1.12

Write a flowchart to accept a value M and find the sum of first M
even integers.

Solution

The solution of this problem requires you to draw a flowchart so
that if you input 6 as the value of M, the flowchart should get you
the sum of first 6 even integers. In the first step, you should be
able to answer the following two questions.

"What are the first 6 even integers?"
These are 2, 4, 6, 8, 10, and 12.
"What is their sum?"

Flowchart Techniques 51

The sum is 42. Hence the flowchart is to be so framed that the
sum of first 6 even integers comes out to be 42.

1.4.2 Step 2. Construction of the List of Variables

In this step, you should think in advance the number of variables
and the names of the variables before drawing a flowchart. The
names chosen for variables should be an aid to memory. For
example, in the case of the problem stated in step 1 above, the
variables may be, I, SUM and COUNT as given below.
1. Generate even integers 2, 4, 6,...(I)
2. Total the sum of even integers 2+4+6+... (SUM)
3. Count the number of even integers, i.e. COUNT 1, 2, 3,...

(COUNT)
Thus, it is clear that we need to use the above three variables

and one more variable "M" whose value will be inputted from the
keyboard. Hence the four variables are:

M Which is to be inputted from the keyboard.
I Which is to generate even integers.
COUNT A counter to keep a track of the number of even inte-

gers that have been summed.
SUM An accumulator that contains the current total of the

even integers.

1.4.3 Step 3. Output Design

Sometimes, the ‘output’ format is specified in the problem, but
most of the times, it is not so. If the output format is not specified,
we must keep in mind that the output report should be easily
understandable by a reader. The headings should not cause any
ambiguity in the mind of the reader.

In the problem of Example 1.12 and stated in step 1 above,
the output format could be as follows:

No of integers Total value

6 42

You should keep one point in mind. The programs and prob-
lem solutions are for other people (teachers, supervisors, contrac-

 52 Flowcharting Concepts and Algorithms

tors etc). They will give you credit only if they can understand the
results and analyse them. Hence, the output format should be
attractive, easy to read and self-explanatory.

1.4.4 Step 4. Program Development

You should now draw a flowchart for the procedure that you have
developed in steps 1 to 3 above. Standard symbols should be used
for drawing a flowchart. If a problem is complex, you should
divide it into different parts. Then draw a flowchart for each part
separately and join them together using connectors.

A flowchart for the problem in Example 1.12 and stated in
step 1 can be drawn as shown in Figure 1.32.

When a flowchart is drawn correctly, you can convert it into a
programme using any of the high level languages like BASIC,
COBOL, FORTRAN or PASCAL.

1.4.5 Step 5. Testing the Program

You should give a dry run to a program that translates the flow-
chart of step 4. This means giving some known values to the
variables and checking the result. Test values are so selected that
each arm of the flowchart is tested and consequently the program
is confirmed to be free from logic errors.

1.4.6 Step 6. Validating the Program

It is quite likely that the user of your program may enter values,
which are not expected by the program. Such values should be
rejected by the procedure drawn by you. This is known as valida-
tion of data program. For example, in the problem in Example
1.12 and stated in step 1 above, we may give the limit to the
value of "M" and "M" should be a numerical value. Such types of
checks can be included in our validation program.

1.5 Algorithm

The sequence of instructions for solving a particular problem is
known as algorithm. Constructing an algorithm to solve a given
problem requires a high degree of ingenuity. But once an

Flowchart Techniques 53

algorithm is laid out, it can be used by a person who does not
even know its purpose.

Figure 1.32 Flowchart to Example 1.13

BEGIN

INPUT M

I = 0

SUM = 0

SUM = SUM + I

COUNT = 0

I = I + 2

PRINT
SUM, COUNT

COUNT > M
IS

YES

NO

COUNT
= COUNT + 1

END

 54 Flowcharting Concepts and Algorithms

We shall write an algorithm to solve a quadratic equation
and compute its real roots.

Example 1.13

Compute real roots of a quadratic equation

Solution

Step 1

Read the values of the coefficients of X2, X and constant quantity,
i.e., the value of A, B and C and store them in the memory.

Step 2

If A = 0 and B = 0 then print "No root exists" and stop. Else con-
tinue.

Step 3

If A = 0 and B is not equal to 0, then root X1 = C/B. Write the
value of root and also write "Linear Equation" and stop. Else
continue.

Step 4

Compute (B2 4AC) and set D2 = B2 4AC

Step 5

If D = 0, then compute Root X1 = Root X2 =(B/2A), write values
of Root X1, Root X2 and stop. Else continue.

Step 6
If D < 0, then write "Roots are not real" and stop. Else continue.

Step 7
If D > 0, then calculate
Root X1 = (B + (B2 4AC)/(2A))
Root X2 = (B (B2 4AC)/(2A))

Ax 2 + Bx + C = 0

Flowchart Techniques 55

1.5.1 Characteristics of the Instructions in an Algorithm
Write values of Root X1, Root X2 and stop.
The sequence of instructions must possess the following
characteristics for qualifying as an algorithm :
1. Each and every instruction should be precise and unambig-

uous.
2. Each instruction should be such that it can be performed in

a finite time.
3. One or more instructions should not be repeated indefi-

nitely. This ensures that the algorithm will ultimately ter-
minate.

4. After performing the instructions, that is, after the algo-
rithm terminates, the desired results must be obtained.

Example 1.14

Let us consider another case where there are 50 students in a
class who have appeared in their final examination. Their mark-
sheets have been given. We are required to write an algorithm to
calculate and print the total number of students who have passed
in first division.

Solution

Step 1
Initialize TOTAL, FIRST_DIVISION and TOTAL MARK-
SHEETS_CHECKED to zero.

Step 2
Take the marksheet of the first student.

Step 3
Check the division column of the marksheet to see if it is
FIRST_DIVISION : if no, go to step 5.

Step 4

Add 1 to TOTAL FIRST_DIVISION.

 56 Flowcharting Concepts and Algorithms

Step 5

Add 1 to TOTAL MARKSHEETS_CHECKED.

Step 6

Is TOTAL MARKSHEETS_CHECKED = 50? : if no, go to step 2.

Step 7:

Print TOTAL FIRST_DIVISION.

Step 8:

Stop.

1.6 Programming

If we compare structured programming to building a house, then
structured programming is to build the house after the plan for
the house is drawn. We would like to build a house using stan-
dard bricks, window-frames, doors etc., so that the house so con-
structed is appealing and comfortable. Thus, structured
programming also contains three standard control structure.
These are:

Simple Sequence Simple Selection Simple Repetition

The above three structures are simple to use as they can be
recognised easily. They have one entry and one exit point and
they are free from any programming language used for coding a
solution of a problem. This is discussed in detail in section 1.8.

1.6.1 Modular (Top-Down) Program Design

You must have realised that an effective approach to follow in the
programming analysis stage of program development is to break
down a large problem into a series of smaller and more under-
standable tasks. Thus, the programmer may first develop a
main-control program that is used to outline the major segments,
or modules, that are in turn needed to solve a problem. The
main-control program specifies the order in which each subordi-
nate module in the program will be processed. The programming

Flowchart Techniques 57

analysis stage continues until every module has been reduced to
the point that the programmer is confident that he or she has a
solution method that will solve the task.

When this modular (top-down) program design practice is
used, an instruction in the main-control program branches con-
trol to a subordinate program routine (subroutine) or module.
When the specific processing operation performed by the module
is completed, another branch instruction may transfer program
control to another module or return it to the main-control pro-
gram. Thus, the modules or subroutines are really programs
within a program. Each module typically has only one entry point
and only one exit point. Some of the advantages of using this
construction option are:

(a) Complex programs may be divided into simpler and more
manageable elements.

(b) Simultaneous coding of modules by several programmers is
possible.

(c) A library of modules may be created, and these modules
may be used in other programs as needed.

(d) The location of program errors may be more easily traced to
a particular module, and thus debugging and maintenance
may be simplified.

(e) Effective use can be made of tested subroutines prepared by
software suppliers and furnished to their customers.

1.6.2 Pseudo Code Revisited

Pseudo code is an abbreviated form of expression that makes use
of both the English language and certain programming language
control words such as IF - THEN - ELSE & END - IF.

The user describes in plain English language, the sequence of
steps necessary to solve a particular problem. Sentences are gen-
erally written one per line. Indentation is used in the IF state-
ment to outline which actions are to be taken if a condition is true
and which are to be taken if the condition is not true.

Differences between PseudoCode and Flowchart
Pseudocode differs from the flowchart in the following ways:

 58 Flowcharting Concepts and Algorithms

(a) Pseudocode is self-explanatory and does not require a sepa-
rate documentation. This is so because it is written in plain
English language.

(b) Pseudocode has a structure similar to that of a programme
written in BASIC or PASCAL language. But flowcharts
have a tendency to extend flow lines in all directions and
thus their paths of instructions do not parallel the final
BASIC code.

The following are some examples of flowcharts and their equiva-
lent pseudocode.

Example 1.15
Working with Masala Dosa Mincer

Figure 1.33 Flowchart for Example 1.15

 BEGIN

 TURN
 MINCER ON

 MINCE
 DOSA MASALA

 TURN
 MINCER OFF

 END

Flowchart Techniques 59

Pseudo code

BEGIN

Turn Mincer on

Mince dosa masala

Turn Mincer off.

END

This is a case of simple sequence. The flowchart is given in Figure
1.33

Example 1.16

In this example a flowchart for Drink selection is shown in Figure
1.34

Figure 1.34 Process of selection for example 1.16

 Tea
?

Pour A Cup
 Of

 NO

 Coffee

 YES

 Tea

Pour A Cup
 Of

 60 Flowcharting Concepts and Algorithms

Pseudo Code

IF Tea
Then Pour a cup of Tea
Else Pour a cup of Coffee

Example 1.17

In this example, the flowchart and its equivalent pseudo code for
the process of repetition is shown in Figure 1.35.

Figure 1.35 Process of repetition and its pseudocode using While - End While loop

Example 1.18

Figure 1.36 illustrates the multichoice selection or the CASE
structure. In CASE structure selection can be made out of many
choices using the word CASE. CASE structures are used in eval-
uating situations that can have a number of different results.
CASE in this sense refers to a refinement of a basic
IF-THEN-ELSE type of conditional structure (IF A is true, then

?

 NO

MINCE PASTE

 YES

 PASTE
 NORMAL

FLOW CHART PSEUDO CODE

WHILE paste not Normal

 Mince paste
ENDWHILE

Flowchart Techniques 61

do B), but a CASE structure functions more like a series of nested
IFS (IF A, then do this; if B then do that...). For example if you
have three types of drinks, then the flowchart shown in Figure
1.36 gives a method of selecting any one of them. This can also be
written in pseudocode form using CASE statement.

An equivalent Pseudocode of the flowchart shown in Figure
1.3.6 is given below:

Figure 1.36 Flowchart for case or multichoice selection

CASE drink
Lemon

Pour juice into glass from Lemon jug.
Orange

Pour juice into glass from Orange jug.
Pineapple

Pour juice into glass from Pineapple jug.
END CASE

DRINK
?

Lemon Pineapple

Orange

Pour Juice
Into Glass

From
Lemon Jug

Pour Juice

Orange Jug
From

Into Glass
From

Pineapple Jug

Into Glass
Pour Juice

OFFER DRINK

 62 Flowcharting Concepts and Algorithms

REPEAT - UNTIL LOOP Structure

Example 1.19

In this example REPEAT - UNTIL loop structure is used. This
loop structure is an alternate to While - End While Loop.

Suppose you want to insert a nail in the wall by hitting its

head with a hammer. Then the flowchart representation and its
equivalent pseudo code will be as follows:

Pseudo code for Figure 1.37
REPEAT
Hit head of nail
UNTIL nail fully in

Figure 1.37 Flowchart for repeat-until loop of inserting a nail in the wall

An equivalent of the above flowchart using WHILE - END
WHILE structure will be as follows:

WHILE Nail is not fully in
Hit nail head with hammer
END WHILE
Flowchart for this pseudocode is shown in Figure 1.38.

In

 Hammer

 Yes

 Nail
 Completely

 With
 Hit Nail

?

 No

Flowchart Techniques 63

Figure 1.38 Flowchart for While-End While loop of inserting a nail in the wall

Exercise 1.3

Figure 1.39 Flowchart for Q. N. 1

Q.1 A certain file contains 5 data records. Which of the

In

 Hammer

 Yes

 Nail
 Completely

 With
 Hit Nail

?

 No

 BEGIN

 END

 READ RECORD

IS
 I < 5

?

 NO

 YES

 I 0

 I I + 1

 64 Flowcharting Concepts and Algorithms

Figure 1.40 Flowchart for Q. N. 1

flowcharts shown in Figures 1.39 and 1.40 will read 5 and
only 5 data records?

Q 2. How many records will be read by each of the following
flowcharts? (see Figure 1.41 and 1.42)

Q 3. Consider the flowchart shown in Fig.1.41.
Find out the output if the input values of X,Y and Z are as
follows.

(a) X=7, Y=9, Z=11
(b) X=11, Y=9, Z=7
(c) X=9, Y=11, Z=7

Q 4. Draw a flowchart that interprets the following statements.
(a) If SALES is 10,000 or more then

BONUS= 3% of SALES
(b) If SALES is 10,000 or more then

BONUS=3% of SALES ELSE
BONUS=2% of SALES.

 BEGIN

 END

 READ RECORD

IS
 I > 5

?

 YES

 NO

 I 0

 I I + 1

Flowchart Techniques 65

Figure 1.41 Flowcharts for Q N. 2

Figure 1.42 Flowchart for Q. N. 2

 BEGIN

 END

 READ RECORD

IS
 N > 7

?

 NO

 N 1

N N + 1

 YES

 BEGIN

 END

 READ RECORD

IS
 N > 7

?

 NO

 N 0

N N + 1

 YES

 66 Flowcharting Concepts and Algorithms

Figure 1.43 Flowchart for Q.N.3

Q 5. What is the value of SUM for the flowchart shown in Fig-
ures 1.44 and 1.45.

Q 6. What is an algorithm? Write algorithms for each of the fol-
lowing:

(a) Formatting a disk in your computer.
(b) Finding a book in the library.

 BEGIN

 END

IS
 X < Y

?

 YES

 NO

 INPUT
 X, Y, Z

 YES

 Y < Z
?

IS NO

BONUS =
 1000

BONUS =
 1500 2000

BONUS =

 PRINT
 BONUS

Flowchart Techniques 67

Figure 1.44 Flowchart for Q No. 5

Q 7. The following steps are written to calculate the standard
deviation for any given numbers. Use this algorithm to cal-
culate the standard deviation for the numbers 8, 10, 12, 16,
19:

1. Find the sum of the list of numbers.
2. Divide the sum by the total number of numbers to

obtain the mean.
3. Subtract the mean from each number in the list and

square this result.
4. Calculate the sum of the squares found in step 3.
5. Divide the sum of step 4 by the total number of num-

bers in the original list.
6. Find the square root of the result found in step 5.

This number is known as the standard deviation of the
original list.

 BEGIN

 END

 PRINT
IS

 M > 5
?

 NO

SUM 0

 YES

 M 1

 SUM

SUM SUM +
 1
 M

 M M + 2

 68 Flowcharting Concepts and Algorithms

Figure 1.45 Flowchart for Q No. 5

Q 8. Write an algorithm to compute a sales person’s commission
based on the following table:

Amount Sales Commission (% of sales)

Under Rs. 500 2%
Rs. 500 or more
but under Rs. 5000 5%
Rs. 5000 and above 10%
Q 9. Draw the flowchart for the following pseudocode:

BEGIN
Input mortgage amount
IF amount < 25,000

 BEGIN

 END

 PRINT
IS

 M > N
?

 NO

 M 1

 YES

 SUM 0

 SUM

SUM = SUM +
 1
 M

 M M + 1

 INPUT N

Flowchart Techniques 69

THEN
down payment = 3% of amount

ELSE
payment 1 = 3% of 25,000
payment 2 = 5% of (amount - 25,000)

down payment = payment 1 + payment 2
END IF
print down payment

Q 10. Salesman’s commission is calculated using the following
Pseudocode. Use this for writing a flowchart.
Input sales
IF sales < 500
THEN

Commission = 2% of sales.
ELSE

Commission = 5% of sales.
END IF
Print Commission

Q 11. Convert the flowchart shown in Figure 1.46 into a pseudo-
code for finding the largest of three numbers.

Figure 1.46 Flowchart for Q No. 11

 START

 END

 N1 > N2

 INPUT N1,N2,N3

 N1 > N3 N2 < N3

 PRINT N1 PRINT N3 PRINT N2

NO

NO

NO

YES

YESYES

 70 Flowcharting Concepts and Algorithms

Q 12. The pseudo code for the year and bonus is given below.
Draw a flowchart corresponding to this pseudo code.

INPUT employee number, pay, position code & years.
IF position code = 1
THEN set bonus to 1 week’s pay
ELSE IF position code = 2

THEN
IF 2 weeks pay > 700
THEN

set bonus to 700
ELSE

set bonus to 2 week’s pay
END IF

ELSE
set Bonus to 1.5 week’s pay.

END IF
IF year greater than 10
THEN
Add 100 to bonus

ELSE
IF years less than 2
THEN

cut bonus to half
ELSE

bonus stays the same.
END IF

END IF
Print employee number & bonus.

1.7 Programming Methods

1.7.1 Top-down Design

Top-down design is the technique of breaking down a problem
into the major tasks to be performed. Each of these tasks is then
further broken down into separate subtasks, and so on until each
subtask is sufficiently simple to be written as a self contained
module or procedure. The program then consists of a series of
simple modules.

Flowchart Techniques 71

In top-down design we initially describe the problem we are
working on at the highest, most general level. The description of
the problem at this level will usually be concerned with what
must be done not how it must be done. The description will be
in terms of complex, higher-level operations. We must take all of
the operations at this level and individually break them down
into simpler steps that begin to describe how to accomplish the
tasks. If these simple steps can be represented as acceptable
algorithmic step, we need not refine them any further. If not, we
refine each of these second level operations individually into still
simpler steps. This stepwise refinement continues until each of
the original top-level operations has been described in terms of
acceptable shortest (primitive) statements.

Advantages of Top-down approach
(a) It allows a programmer to remain "on top of" a problem and

view the developing solution in context. The solution always
proceeds from the highest levels down. With other tech-
niques we may find ourselves bogged down with very low-
level decisions at a very early stage. It will be difficult to
make these decisions if it is not clear how they may affect
the remainder of the problem.

(b) It is a very good way to delay decisions on problems whose
solution may not be readily apparent. At each stage in the
development, the individual operation will be refined into a
number of more elementary steps. If we are not sure how to
proceed with step 1 we can still work on step 2.

(c) By dividing the problem into a number of subproblems, we
have made it easier to share problem development. For
example, one person may solve part 2 of the problem and the
other person may solve part one of the problem.

(d) Since debugging time grows so quickly, it will be to our
advantage to debug a large program as a number of smaller
units rather than one big chunk. The top-down development
process specifies a solution in terms of a group of smaller,
individual subtasks. These subtasks thus become the ideal
unit of program testing and debugging.

By testing the program in small pieces, we greatly sim-
plify the debugging process. In addition, we will have the
satisfaction of knowing that everything we have coded so far
is correct. When we add a new piece of code, say "p" to the

 72 Flowcharting Concepts and Algorithms

overall program "P", and an error condition occurs, we can
definitely state that the error must either be in "p" itself or
in the interface between "p" or "P", because "P" has been
previously checked and certified.

(e) Another advantage of the top-down development process is
that it becomes an ideal structure for managing the imple-
mentation of a computer program using teams of program-
mers. A senior programmer can be responsible for the design
of a high-level task and the decomposition into subtasks.
Each of those subtasks can then be "farmed out" to a more
junior programmer who work under the direction of the
senior staff. Since almost all software projects are done by
teams of two or more programmers, this top-down charac-
teristic is very important.

In summary, top-down programming is a program design
technique that analyses a high-level problem in terms of more
elementary subtasks. Through the technique of stepwise refine-
ment we then expand and define each of these separate subtasks
until the problem is solved. Each subtask is tested and verified
before it is expanded further. The advantages of this technique
are:
(a) Increased intellectual manageability and comprehension.
(b) Abstraction of unnecessary lower-level detail.
(c) Delayed decisions on algorithms and data structures until

they are actually needed.
(d) Reduced debugging time.

1.7.2 Bottom-up Design and Implementation

When faced with a large and complex problem, it may be difficult
to see how the whole thing can be done. It may be easier to attack
parts of the problem individually, taking the easier aspects first
and thereby gaining the insight and experience to tackle the
more difficult tasks, and finally to try and bolt them all together
to form the complete solution. This is called a bottom-up
approach. It suffers from the disadvantage that the parts of the
program may not fit together very easily. There may be a lack of
consistency between modules, and considerable re-programming
may have to be done.

Flowchart Techniques 73

1.7.3 Modular Design and Programming

In industry and commerce, the problems that are to be solved
with the help of computers need thousands or even more number
of lines of code. The importance of splitting up the problem into a
series of self-contained modules then becomes obvious. A module
should not exceed about 100 or so lines and should preferably be
short enough to fit on a single page.

Advantages of modular design

(a) Some modules will be standard procedures used again and
again in different programs or parts of the same program.

(b) Since module is small, it is simpler to understand it as a unit
of code. It is therefore easier to test and debug, especially if
its purpose is clearly defined and documented.

(c) Program maintenance becomes easier because the affected
modules can be quickly identified and changed.

(d) In a very large project, several programmers may be work-
ing on a single program. Using a modular approach, each
programmer can be given a specific set of modules to work
on. This enables the whole program to be finished sooner.

(e) More experienced programmers can be given the more com-
plex modules to write, and the junior programmers can work
on the simpler modules.

(f) Modules can be tested independently, thereby shortening
the time taken to get the whole program working.

(g) If a programmer leaves part way through a project, it is eas-
ier for someone else to take over a set of self contained mod-
ules.

(h) A large project becomes easier to monitor and control.

1.8 Structured Programming

In the 1960s in the USA a number of surveys confirmed what
most data processing managers had believed for a long time
that there is a substantial variation in programmer abilities and
that too much time is spent on debugging programs and on
maintenance activities. The surveys generated much contro-
versy, but the effect they had was dramatic. Suddenly everyone
became concerned with the programmer’s productivity and the

 74 Flowcharting Concepts and Algorithms

way in which he actually programmed. In 1965, Professor Dijk-
stra of Eindhoven University in Holland presented a paper at the
IFIP Congress in New York suggesting that the GOTO statement
should be eliminated from programming languages altogether,
since a program’s quality was inversely proportional to the num-
ber of GOTO statements in it. In the following year, Bohm, and
Jacopini showed that any program with single entry and exit
points could be expressed in terms of three basic constructs:

(a) Sequence or carrying out a process
(b) Iteration or looping
(c) Selection or decision taking

This was the beginning of structured programming. This
dramatically improved the quality of programming and of pro-
grammer productivity. The above three constructs have been
explained in sections 1.2 and 1.6.2.

There is no doubt that structured programming has been
successful, but it does not solve all our problems. Poorly con-
structed system designs can still negate the benefits provided by
structured programming. It was not surprising then that similar
principles were applied to the tasks of analysis and design and a
full range of structured methods came into being.

1.8.1 Why Structured Programming ?

In computer programming, the spaghetti code is the method of
coding that confuses the program flow because of the excessive
use of GOTO or jump statements. Hence one of the major
improvements has been the shift from spaghetti code to TOP-
Down modular design and structured programming methods.
The reason for the evolution to structured programming is the
need for well organized programs that are ultimately easier to :

(a) Design
(b) Read and understand
(c) Modify
(d) Test and Debug
(e) Combine with other programs

Writing programs that are clear for any programmer to read
and understand is a very important consideration, particularly if
there is a change in programming personnel.

Flowchart Techniques 75

1.8.2 Characteristics of Structured Programs

In general terms, structured programming is the development of
computer programs that are well organized. Here is a list of
characteristics of structured programs.
(a) The programs are based on top-down modular design. In

other words, the problem at hand is analysed or broken
down into major components, each of which is again broken
down if necessary. Therefore, the process involves working
from the most general down to the most specific. The design
of the modules is reflected in hierarchy charts such as the
one shown in Figure 1.47.

Figure 1.47 Top-Down modular Design

Driver
module

INPUT pay
Gross

pay
Net OUTPUT

FICAFET NJIT

Title
PRINT

INPUT monthly
Calculate

module
Driver

PRINT
Data Column heads payment

Calculations
for detail
lines Totals

PRINT
Detail
lines

 76 Flowcharting Concepts and Algorithms

(b) Each module has one entry point and one exit point. The
GOTO statement is never used to jump from one module in
the program to another. (Pure structured programs do not
use GOTO). The following program in BASIC is an example
of structured programming:

340 REM * * * * * * * INPUT DATA * * * * * * * * * * *

350 PROMPTS WILL SHOW ON THE SCREEN DATA WILL BE ENTERED
AT KEYBOARD

360 CLS : ′ CLEAR SCREEN

370 OK$ = "N"

380 WHILE OK$ = "N"

390 INPUT "ENTER THE EMPLOYEE NAME"; EMPNAME$

400 INPUT "ENTER THE HOURS WORKED"; HOURS

410 INPUT "ENTER THE RATE PER HOUR"; RATE
420 INPUT "ENTER THE NUMBER OF EXEMPTIONS"; EXMP
430 INPUT "ENTER THE SALARY TO DATE"; SALDATE
440 PRINT: PRINT
450 INPUT "ENTRIES OK (Y OR N)"; OK$
460 WHILE OK$ <> ‘‘Y’’ AND OK$ <> ‘‘N’’
470 INPUT "PLEASE ENTER A ‘Y’ OR AN ‘N’ " ; OK$
480 WEND
490 WEND
500 RETURN

(c) A rule of thumb is that the modules should not be more than
one half page long. If they are longer than this, they should
preferably be split into two or more submodules.

(d) Two-way decision statements are based on IF..THEN,
IF..THEN..ELSE, and nested IF statements.

(e) Loops are not custom designed with the use of the GO TO
statement, but are based on the consistent use of
WHILE..WEND and FOR..NEXT. In WHILE..WEND, the
loop is based on the truth of a condition, and in FOR..NEXT,
on a counting process, and the number of repetitions that
can easily be predicted. (See Figure 1.48)

1.8.3 Other Characteristics of "GOOD" Programs

Readability

The ease with which some one can read a program is based on the

Flowchart Techniques 77

Figure 1.48 GO TO statements are removed

manner in which it has been typed. This includes printing gaps
between the modules.

Documentation

The documentation is greatly improved if the variable choice is
descriptive. This serves as a mnemonic device to aid in remem-
bering the meaning of the variables.

Efficiency

The speed of execution is something to consider, but it is not a
primary concern when using a particular programming language.
In terms of the manipulation of numbers, integers are the fastest,
followed by single precision, with double precision being the
slowest.

1.8.4 Importance of Structured Programming

Structured programming is important for the following reasons:

(a) It is much easier for students to debug structured programs
and for instructors to grade them.

Title
PRINT

INPUT monthly
Calculate

module
Driver

PRINT
Data Column heads payment

Calculations
for detail
lines Totals

PRINT
Detail
lines

GO TO
GO TO

 78 Flowcharting Concepts and Algorithms

(b) Students who learn top-down modular design retain what
they have learned over a much longer period of time.

(c) Students who go on from structured BASIC to PASCAL
and/or structured COBOL are better prepared for these lan-
guages.

1.9 Modularity

One way to improve the structure of a program is to break down
the original problem to be solved into independent tasks (*called
modules in pseudocode and subroutines in BASIC) and then
execute these modules in a predefined sequence. The resulting
design consists of a network of modules.

Breaking down a problem into smaller pieces (modules)
allows you to focus more easily on a particular piece of the prob-
lem without worrying about the overall problem. The tasks
become easier to solve and are more manageable since each
performs a very specific function. Typically, you can code each
module independently of the others and test or debug each mod-
ule separately. Once all modules are working properly, you can
link them together by writing the coordinating code (generally
called the root segment or the main code). The coordinating code
activates the various modules in a predetermined sequence. Con-
sider Figure 1.49, which illustrates these principles. Note that
the resulting program consists of five modules: the coordinating
module and the four modules A, B, C, and D. It is, of course,
conceivable that a particular module itself might be broken down
into other modules.

By breaking down a problem into independent modules, a
programmer in charge of a very complex problem can easily
assign various members of a team the responsibility for develop-
ing one or more modules. Such modules can be run and tested
independently of one another. Making one change in one module
is a very local intervention that does not require an understand-
ing of all other modules. In contrast, making one change in a
nonmodular program held together by myriads of GOTO
statements not only requires an understanding of the whole pro-
gram but can also produce masses of error messages and a lot of
unwanted output.

Another advantage of a modularized design is that you will
find yourself using the GOTO statement less frequently. This in

Flowchart Techniques 79

Figure 1.49 Program Decomposition

itself is very important, since the undisciplined use of the GOTO
statement can often give rise to the ‘‘spaghetti code syndrome’’,
which makes it very difficult for the program reader to remember
where in the program he/she is coming from and where he/she is
going!

In a modular environment, each module can be respecified as
a sequence of smaller modules describing what is to be done at
increasing levels of detail. The technique of expanding a program
plan into several levels of detailed subplans and presenting the
program structure as a hierarchy of tasks is sometimes referred
to as top-down design. A hierarchy chart, sometimes called a
structured diagram, is a useful tool for illustrating module rela-
tionships and hierarchies. Figure 1.50 shows a hierarchy chart
for the problem shown in Figure 1.49

In summary, modularization helps the programmer write
better structured programs that are generally more compact and
thus easier to work with and more readable. A subroutine can
also reduce the code required for writing tasks that are to be per-
formed repeatedly at different places in a program.

Problem

A
B

C

D

Coordinating code

Module B

Module D

Module A

Module C

Carry out A
Carry out B
Carry out C
Carry out DIntial problem

(task) Decomposition into
unrelated subtasks
A,B,C, and D

Independent modules are activated
by the coordinating module.
Each module returns control
to the coordinating module.

Coordinating Module

 80 Flowcharting Concepts and Algorithms

Figure 1.50 A Hierarchy Chart

1.10 Programming Tools

These are the programs specially designed for the benefit of pro-
grammers so that they can formulate the instructions to solve a
problem properly and easily. One of the important tools is editor.
This is explained in the following paragraphs.

1.10.1 Editors

An editor is a piece of software which enables the programmer to
enter and edit a program. The different kinds of editors are as
follows:

(a) Screen editor
(b) Line editor.
(c) Linkage editor
(d) Text editor

Screen editor

A screen editor allows the programmer to position the cursor
anywhere on the screen and insert or delete text.

Line Editor

A line editor allows lines of text to be entered and edited only

Coordinating
Module

A B C D

Flowchart Techniques 81

by entering commands which refer to a particular line or block of
text. This type of editor was used in the days before VDU screens
were common, when the lines typed in were printed out on a
piece of paper as well as being stored in the memory. An example
of a line editor is EDLIN which is supplied with MS-DOS. This
editor is suitable for typing in small amounts of text such as
batch files. Typical commands include:

Line Number Edits the line specified
A Appends the line
D Delete line
I Insert line
L List text
E End editing

Linkage Editor

The linkage editor is a utility program which adapts a program
that has just been assembled or compiled into a particular com-
puter environment. It formally links cross references between
separate program modules, and it links the program to various
libraries containing prewritten subroutines. The output of a
linkage editor is a load module, a program ready to run in the
computer.

Text Editor

A text editor is a software program that creates and manages
text files. Text editors are used to create and edit source lan-
guage programs, data and text files. Unlike word processors, text
editors do not have elaborate formatting and printing features.
For example, there is usually no automatic word wrap or under-
line, bold face and italics printing in text editors.

1.10.2 Other Program Development Aids

Some of the other aids for a programmer may include

(a) An on-line help facility giving information about any com-
mand, standard function or procedure.

(b) Utility programs enabling the user to design input screens
and have the code automatically generated.

 82 Flowcharting Concepts and Algorithms

(c) Separate compilation of modules, allowing the programmer
to build up a precompiled tested code.

(d) An integrated development environment combining a text
editor and a compiler with pull down menus, windows, help
facility and debugger.

(e) Application generators These are the software programs
that generate application programs from a description of the
problem rather than from detailed programming. Applica-
tion generators are one or more levels higher than the pro-
gramming language, whose source code they generate, but
still require the user to input basic mathematical
expressions in order to state complex processing on their
business data. For example, a complicated pricing routine
will require that the pricing algorithms be stated just as
they would be in any programming language.

1.10.3 Types of Program Errors

Once a program has been typed in, different types of errors may
show up. These include:

(a) Syntax/semantic errors
(b) Logic errors
(c) Runtime errors

Syntax/semantic errors

Syntax is a set of rules governing the structure of and relation-
ship between symbols, words and phrases in a language state-
ment. A syntax error occurs when a program cannot understand
the command that has been entered.

Logic errors

Logic refers to a sequence of operations performed by a software
or hardware. Software logic or program logic is the sequence of
instructions in a program. Logic errors are the errors that have
been entered in the instructions created because of the mistake
made by a programmer. Suppose you wanted to do the sum of A
and B and put the result in the variable C. This is accomplished
by typing:

C := A + B

Flowchart Techniques 83

But while typing, the programmer has typed the following
expression:

C := A - B

Such a program will run properly but will give erratic result
because the value of C will not be the sum of A and B but it will
be the difference of A and B which is quite different. Such errors
can only be detected with the help of test data that will give the
input values of A and B and the resultant value that should come
out of the program as a result of the operation performed on A
and B. If the result given by the computer and the result calcu-
lated manually with the help of a calculator are the same, then
you can say that there is no logical error. Otherwise a logic error
may be present in the program.

Runtime error

Runtime errors occur when a program is run on the computer
and the results are not achieved due to some misinterpretation of
a particular instruction. This could be some thing like dividing a
number by zero which results in a very large value of quotient. It
may also be any other instruction which a computer is not able to
understand. To overcome this problem, there is a built-in error
detector in the language interpreter or compiler which will give
the message and that will reflect the reason for the run time
error.

1.10.4 Program Testing

It is the job of the programer to test, as far as possible, that all
parts of the program work correctly. It should be realised that
complete testing is not possible except in the case of the most
trivial program; one can never be completely certain that all
errors have been removed, but sufficient tests can be performed
to give a reasonable measure of confidence in the program.

The situation is analogous to testing children on multiplica-
tion tables; once a child has answered a certain number of multi-
plication table tests correctly, at some point or other the teacher
assumes that all other tests will be answered correctly and
testing ceases.

 84 Flowcharting Concepts and Algorithms

1.10.5 Designing a Test Plan

Good testing requires the following:

(a) A thorough knowledge and understanding of what the pro-
gram is supposed to do.

(b) Plan out in advance what ought to be tested.
(c) To work out expected results for each of the test cases.
(d) Writing out the test plan.

Since we cannot test everything, each test must be carefully
planned to provide more information about the program. A major
benefit of preparing a comprehensive test plan with expected
results is that it forces the programmer to think carefully about
the program and often errors are spotted even before running the
test.

1.10.6 Methods of Testing

The objectives of testing can be stated in two basic questions:

(a) Does the logic work properly? This means, answering the
following:
(i) Does the program work as intended?
(ii) Can it be made to crash?

(b) Is the necessary logic present? This means answering the
following:
(i) Are there any functions missing?
(ii) Does the program or module do everything specified?

There are two different ways of testing. These are:

(a) Functional testing
(b) Logical or structural testing

1.10.7 Functional Testing

Functional testing is carried out independently of the code used
in the program. It involves looking at the program specification
and creating a set of test data that covers all the inputs and out-
puts and program functions. This type of testing is also known as
"black box testing". For example, to test the program that
calculates check digits we could draw up the following test plan:

Flowchart Techniques 85

Table 1.1 Test Plan for Check Digits

Serial Test for numer- Purpose Expected Actual
Number ical data result result

1 Enter 1234 Test validity of data 1234 Digits 3
2 Enter 8 digits Test extreme case are printed 3

as it is
3 Enter 123W Testing invalid data Data not Error

accepted

From Table 1.1 we will be able to make out whether the software
is testing the data correctly or not. If it is not testing properly,
then we may have to correct the program.

1.10.8 Logical (Structural) Testing

Logical testing (white box testing) is dependent on the code
logic, and derives from the program structure rather than its
function. In other words, we study the program code and try to
test each possible path in the program at least once. The problem
with logical testing is that it will not detect the missing functions.

One method of devising a test plan is to start with a set of
functional test cases, and then add additional tests to exercise
each statement in the program at least once, making sure that
each decision is tested for all outcomes.

1.10.9 Debugging Aids

Once the presence of logic errors has been detected with the help
of test runs, there are various ways of finding where the error or
errors lie. These include the following:
(a) A dry run through the program, building up a trace table

while manually following the program steps.
(b) The inclusion of extra "write" statements to examine the

contents of variables at various points in the program.
(c) The printouts of file contents before and after processing.
(d) An ‘On line debugger’ which allows a programmer to step

through the program line by line and examine the values of
variables at any point in the program.

 86 Flowcharting Concepts and Algorithms

1.10.10 Assembler

A program which translates an assembly language program into
a machine language program is called an assembler. An assem-
bler which runs on a computer for which it produces object codes
(machine codes) is called a self assembler (or resident assembler).
A less powerful and cheaper computer may not have enough soft-
ware and hardware facilities for program development and con-
venient assembly. In such a situation, a faster and powerful
computer can be used for program development. The programs so
developed are to be run on smaller computers. For such program
development a cross assembler is required. A cross assembler is
an assembler that runs on a computer other than that for which
it produces machine codes.

1.10.11 Compiler

A program which translates a high-level language program into a
machine language program is called a compiler. A compiler is
more intelligent than an assembler. It checks all kinds of limits,
ranges, errors etc. But its program execution time is more, and
occupies a larger part of the memory. It has low speed and low
efficiency of memory utilization. If a compiler runs on a computer
for which it produces the object code, then it is known as a self or
resident compiler. If a compiler runs on a computer other than
that for which it produces object code, then it is called a cross-
compiler.

1.10.12 Interpreter

An interpreter is a program which translates one statement of a
high-level language program into machine codes and executes it.
In this way it proceeds further till all the statements of the pro-
gram are translated and executed. On the other hand, a compiler
goes through the entire high-level language program once or
twice and then translates the entire program into machine codes.
A compiler is nearly 5 to 25 times faster than an interpreter. An
interpreter is a smaller program as compared to the compiler. It
occupies less memory space. It can be used in a smaller system
which has limited memory space. The object program produced
by the compiler is permanently saved for future reference. On the

Flowchart Techniques 87

other hand, the object code of the statement produced by an
interpreter is not saved. If an instruction is used next time, it
must be interpreted once again and translated into machine code.
For example, during the repetitive processing of the steps in a
loop, each instruction in the loop must be reinterpreted every
time the loop is executed.

1.10.13 Data Description Language

Data description language(DDL) is a language used to define
data and their relationships to other data. It is used to create
files, databases and data dictionaries.

Hierarchical and network database management packages
are used in large computers such as mainframes or mini comput-
ers. In these systems, large database packages are controlled by
the database administrator whose job is to identify the logical
relationships that exist in an organization’s records. A special
data description language is used to retrieve the stored informa-
tion. Programming skills are needed by those who work with
these software products and DDL helps them to do the job more
efficiently.

1.11 What is Program Maintenance?

User requirements from a specific program do not remain static.
They change frequently in response to such factors as new laws,
new ideas, new products, or new computer facilities. Program
maintenance covers a wide range of activities including correct-
ing coding and design errors, updating documentation and test
data, and upgrading user’s support. In other words, maintenance
may be viewed as enhancement i.e. adding, modifying, or devel-
oping the code to support changes in the specifications.

1.11.1 Why Program Maintenance?

Although software does not wear out like a piece of hardware, it
"ages" and needs to be updated for the following reasons:
(a) Errors are found that were not detected when the system

was tested initially. Even though the system was thoroughly
tested, errors or bugs often appear after the system has been
in use for some time.

 88 Flowcharting Concepts and Algorithms

(b) A new function may have to be added to the system. For
example, the school management had initially asked for the
preparation of monthly report of those students who had not
paid their fee in time. But at a later date, the auditors or the
principal of the school needs a report of those students who
are defaulters in paying their fee for more than three
months so that their names can be struck from the school. In
such a case, the report format will need a change.

(c) Alteration in the original program may cause errors else-
where in the program and detected later. This will require
modifications in the program.

(d) The final reason for program maintenance is that the
requirements of the user change with time. For example,
programs that produce income tax returns have to be modi-
fied almost every year because of changing tax laws.

1.11.2 Problem Areas in Program Maintenance

Two problem areas in program maintenance are:
(a) high cost of software, and
(b) errors caused due to modification in the original program.

High Cost of Software

Major problem with software maintenance is that the program
writing is labour intensive in nature. Human beings who write
programs are likely to make errors. For example the programmer
who was originally assigned the task of solving and coding the
program may not be available to modify this program at a later
date. Therefore, the new person who is given the job of modifica-
tion will have to study and understand the logic of the original
program and then only he can modify the program. This process
may involve more time, money, and there are more chances of
making errors. In such cases, it may be easier and economical to
rewrite a new program rather than amending the old one.

Errors Caused due to Modification in the Original Program

Alteration in the original program, no matter how slight, must be
manually introduced. There is no easy way of making sure that
the modifications made will not cause any errors elsewhere in
any of the subprograms or the main program. Using the old codes

Flowchart Techniques 89

depend mostly on the programmer’s ability to judge what the
code can and cannot do. Hence the program is to be thoroughly
tested after modification before implementation.

1.11.3 Impact of Software Errors

The quality of a software system depends on its design, develop-
ment, testing, and implementation. An important aspect of soft-
ware quality is its reliability. A program is reliable if, when used
in a reasonable manner, it does not produce failures that are
dangerous or costly. Software errors can cause failure of the sys-
tem or produce inaccurate results. Programmers should therefore
strive to design error free programmes. The software errors are
mainly due to design errors or specifications. Hence these are
also to be rechecked before studying the impact caused by the
errors.

1.11.4 The Problem of Software Modification

The basic problems of modifying software can be attributed to
time schedule and the user-need satisfaction. These are as fol-
lows:

Time schedule

Modification of a program may not be feasible within the time
schedule because of several reasons. The reasons may be non-
availability of the right kind of manpower, improper documenta-
tion of the old program or testing data. For such cases, the earlier
version of the software will have to be used till all the errors are
removed in the newer version after it has been tested thoroughly.

User-need Satisfaction

People who are using the program are the final evaluators of the
modification. Hence it should be found out whether these users
are now satisfied with the new version of the software or not.
Further how useful is the new software for them? How enthu-
siastic are they about the friendliness and ease of working with
the new software? Answers to all these questions are to be
evaluated and implemented.

 90 Flowcharting Concepts and Algorithms

1.11.5 Software Life-cycle

Every software has a life cycle, just as a living organism or a new
product. Commercial programs such as payroll, accounts, stock
control and other software share a common life cycle pattern. One
method of doing things may work well for a period of time. This
may last for several years. However, owing to expansion or
changes in the nature of the business, the economic environment,
the need to keep up with new technology or other factors, the
program may seem to be inadequate for future use. At this point
investigations are made, requirements are analyzed, and a new
specifications are proposed and a new program is developed. The
life cycle of the new program thus starts again.

Stages in Software Life cycle

Analysis of the Problem and laying down Specifications The prob-
lem must be first defined and analyzed and the specifications of
input and the output should be prepared. Sometimes a systems
analyst is asked to prepare a feasibility study and the cost bene-
fits. Once these are accepted, the software design starts.

Design and Development The design stage involves a number of
tasks such as designing the output, input, files, database if
applicable, system controls and test plan. Input forms must be
designed, clerical procedures laid down and all aspects of the
design must be documented. In the development stage, there are
two aspects. First the program development and next the equip-
ment acquisition. The senior programmer will rewrite program
specifications to describe what each program in the system will
do and how it will do it. The equipment will be acquired and the
program will be tested on the computer system.

Testing and Debugging The program so developed will be tested
for conforming the specification laid down and the results
achieved. At the same time, if there are any bugs in the system,
these will be removed and programs are re-tested.

Implementation This is the stage when the new software becomes
operational. It is a critical phase of the project, requiring careful
timing, coordination and training of all the user departments.

Maintenance All software need to be maintained. It means, per-
formance monitored, modifications made if required, errors cor-
rected, documents kept up-to-date. If the system needs

Flowchart Techniques 91

major modification then the life-cycle starts again. It means, the
changes are done and the software development is once again
carried out.

Training the User

Since one purpose of the new software system is to change exis-
ting procedures, training is crucial. All individuals have to
understand what is required by the new software system. After
the problems of installation have been resolved and the organi-
zation has adjusted to the changes created by the new software
system, the operational stage begins. That is, the system now
operates on a routine basis. However, this routine does not mean
that it remains unchanged. There is a constant need for mainte-
nance and enhancements. Maintenance is required because pro-
grams inevitably have errors that must be corrected when they
appear. As users work with the new software system, they will
learn more about it and will develop ideas for change and
enhancements. The system continues to evolve throughout its life
cycle.

1.11.6 Documentation and its Importance

Documentation provide a general outline as well a few specific
details of the overall program structure. The documentation of a
program is a continuous process. After successfully completing
the program, we must ensure that documentation is complete
and is in a finished, usable form. This includes both technical
documentation for the programmers who may be working with
and modifying the completed program and user-level documenta-
tion for the users of the program.

A good user documentation is essential if a program is to be a
useful tool. Good technical documentation is essential for main-
taining a program. We may decide at a future date to add fea-
tures to the program, or we may have to find and correct errors in
the program, both of which can be virtually impossible if the
technical documentation is inadequate.

1.11.7 Aim of Program or System Documentation

The aims of documentation are:

 92 Flowcharting Concepts and Algorithms

(a) To help in the design of the system by working to a set of
standards and having available a clear description of the
work done so far. The documentation needs to be kept up-
to-date throughout the project.

(b) Good documentation ensures that everyone involved in the
system (system designers, programmers, and users) fully
understand how their aspect of the system will work. For
example, what data will be inputted and how, and what
information will be available from the system. This allows
any misunderstandings or disagreements to surface before
they become deeply entrenched in the system.

(c) To ensure that the system can be maintained after comple-
tion even though the programmers involved in the original
design or programming of the system may not be available.
It is essential that proper documentation is kept to enable a
newcomer to make necessary corrections, alterations or
enhancements.

1.11.8 Contents of a Document of a System

The following are the parts of a document of the system:

(a) An accurate and up-to-date system specification.
(b) System flowchart(s) or data flow diagrams showing the

inputs to the system, files required, processes to be carried
out, and output from the system.

(c) A description of the purpose of each program within the
system.

(d) Organization, contents and layout of each file used.
(e) Layout and contents of all output prints and displays.
(f) Current version of each program listing.
(g) Test data and expected results.

In addition, the following items of documentation will need to
be prepared.

(a) Clerical Procedure Manual
(b) Operating Instruction
(c) Data Preparation Instruction

Clerical Procedure Manual

This manual details the activities that the clerical staff will
undertake in preparing data for input to the system. For exam-

Flowchart Techniques 93

ple, batching documents and calculating hash totals. It will also
describe what action is to be taken when errors occur for
example, when a validation program reports errors.

Operating Instructions

This document gives the details to the computer operator of how
to run the program. It may include:
(a) Details of the procedure for starting the program.
(b) Details of disks and tapes required.
(c) Special stationery to be used.
(d) The number of copies of each report, and who is to receive

the output.
(e) Backup procedures to be followed.
(f) Recovery procedures in the event of hardware failure.

Data Preparation Instructions

This will contain instructions on data entry, showing if necessary
how each field should be entered. For example, a date field may
be entered in various formats and the correct one needs to be
specified.

In a small system, written perhaps for a single user working
on a micro-computer, these three manuals may be combined into
one User Manual.

1.12 Data Flow Diagrams (DFD)

Data flow diagrams are used to emphasize the logical flow of data
through a system. The basic symbol is a circle or bubble and is
called a ‘transform’ since it identifies a function that transforms
data. Figure 1.51 illustrates a data flow diagram for a small
organization.

Data flow diagrams can be made at different levels. Symbols
are also used to denote logical conditions such as AND or an
exclusive OR. Figure 1.52 shows the logical AND and the exclu-
sive OR symbols used in a data flow diagram concerned with val-
idating input. Both the transaction input and the master file
input are required for the transform VALIDATE INPUT. One of
the inputs by itself is insufficient. As a result of VALIDATE
INPUT, either a rejected transaction or a valid transaction will
be produced. However, both cannot be produced since the output

 94 Flowcharting Concepts and Algorithms

Figure 1.51 Data flow diagram for a small business organization

Figure 1.52 Data flow diagram for validating input data

form the transform is an exclusive OR.
The data flow diagrams shows the inputs and outputs clearly.

A data flow diagram for customer enquiry system is shown in
Figure 1.53. This data flow diagram has the basic elements
namely SOURCE, DATA, STORE and DESTINATION.

1.13 Structure Charts

A flowchart is a blueprint or a logical diagram of the solution of a
problem. As explained earlier, flowcharts use a standard set of

CUSTOMERS

SALESFORCE

FINANCE

Customer
information

CUSTOMERS

MANAGEMENT
DO

EVERYTHING

Reports

Response
Enquiries

Financial

histo
ry

VALIDATE
INPUT

Master file
input

Rejected
transaction

AND OR

+
Accepted

transaction
Transaction
input

*

Flowchart Techniques 95

Figure 1.53 Data Flow Diagram for customer enquiry system

symbols and the actual operation to be performed is written
inside the symbol. The arrow coming out of the symbol indicates
which operations is to be performed next.

There are special types of flowcharts, called structure charts,
that restrict the types of allowable operations and inter connec-
tions in order to produce well organized and readable diagrams.
Structure charts are thus pictorial representation of the design of
a system.

The flowcharting technique is useful primarily for macro-
level or system flowcharts level where we are concerned with the
most general level of operations needed to solve a large problem.
Each element of a system flowchart would typically represent a
fairly large and complex manual, clerical or computer procedure

DATA STORE

DESTINATIONSOURCE

PROCESS

PROCESS

PROCESS

Data
element

Dataflow 1

Dataflow 2

Dataflow 3

Dataflow 4

 96 Flowcharting Concepts and Algorithms

for which an algorithm must be developed and implemented.
These individual procedures could be developed and represented
using an algorithmic language. However in a structured chart,
there is a sequence of process shown along with the hierarchy of
the process. These structure charts are used at the system design
phase. Table 1.2 highlights the differences between data flow
diagram and structure chart.

Table 1.2 Difference between data flow diagram and
structure chart

Sl. No. Data Flow Diagram Structure Chart

(1) In a data flow diagram only the In a structure chart the
process is shown but the sequence in which process is
sequence is not important to be done is also important

(2) In this case, the hierarchy or In this case, hierarchy of the
the ladder in which the process process is important
is to be executed is not impor-
tant

(3) A data flow diagram is nor- A structure chart is nor-
mally made at the system anal- mally made at the system
ysis phase. design phase.

1.13.1 Elements of Structure Chart

Structure charts have three basic elements. These are :

Module
It is a rectangular shape with the process name written in it.
Figure 1.54 shows a module. The box represents a module and
the alphabets such as A, B, C written inside the box are the
names of the processes performed.

Connectors
Connectors connect any two modules with the arrows drawn in
the downward direction. Figure 1.55 shows the arrow which is a
connector.

Flowchart Techniques 97

Figure 1.54 Module

Figure 1.55 Connector

Couple
The carriers of data are called couples. These indicate the data
flow between the modules. Figure 1.56 shows a couple. Couple
can be of two different types.
(a) Data couple
(b) Control couple

Module

A
(Process)

(Process) (Process)
C

Module

B

Connecter

A
(Process)

(Process)
B

(Process)
C

Connector

 98 Flowcharting Concepts and Algorithms

Data Couple and Control Couple

Data couple carries data between two modules and it can have
upward or downward direction. But control couple only carries
information about data couple and does not carry any data. Con-
trol couple is always directed upwards because it shows the mod-
ule which is to be evoked. Figure 1.56 show the two different
types of couple. The arrows with a blank circle at the tail is called
data couple. The arrow with a completely filled circle at the tail
end is called a control couple.

Figure 1.56 Couple (data and control)

How to Draw Structure Chart ?

In order to draw a structure chart, you will need to identify the
inputs, process and the outputs. You should draw different mod-
ules for different processes in a system. This will be more clear
with the help of the example given below.

Example 1.20

Draw the structure chart for calculating the amount of scholar-
ship (a cut in the tuition fee) to be awarded to a student. The
conditions are as follows:
(a) If marks are 90, give 15% cut in the fee
(b) If marks are 85, and < 90, then give 12% cut in the fee

(Process)
A

(Process)
CB

(Process)

Control
Couple

Data
Couple

Couple
Data

≥
≥

Flowchart Techniques 99

(c) For all other cases, no cut in the fee.

Solution

The structure chart is shown in Figure 1.57.

Figure 1.57 Structure chart for example 1.20

Example 1.21

Draw a structure chart for searching a record as roll no. and then
print the record.

Solution

The structure chart for example 1.21 is shown in Figure 1.58. The
diagram is self-explanatory.

Looping in a Structure Chart

Looping means the repetitions of a set of statements in a

Scholar Ship
of Student

Validate Fee
Get Validated

Marks
Compute

Scholarship

Print Name of
Student get
Scholarship

Get Validated
Fee

Get Marks Get Validated
Marks

Compute
15% of Fee

Compute
12% of Fee

Get Fee

Fee
Marks

Valide
Flag

Fe
e

Fee

Valide
Flag M

ar
ks

Marks

Flag
Valide

 100 Flowcharting Concepts and Algorithms

program. In a structure chart, looping is shown by an angle with
the arrow mark. See Figure 1.59.

Figure 1.58 Structure chart for example 1.21

Conditional in Structure Chart

Conditional is a term which describes one action or operation
which takes place only when the condition is true and the other
action or operation which takes place when the condition is false.
Figure 1.59 gives the representation of the condition by a rectan-
gular polygon.

We have used the concepts of looping and conditional in
examples 1.20 and 1.21 as shown in Figure 1.57 and 1.58. (See
the angular arrows and the rectangular polygon).

1.14 Context Analysis Diagram

This type of diagram is made in the system analysis phase and it
gives a graphic representation of the system as a whole. In this

Search the
Record

Get Valid Find
Record

Print the
Record

 Validated
RollNo.

Get Student
RollNo.

RollN
o.

RollNo. Valide
Flag

R
ol

lN
o.

RollNo.

Valide
Flag

Student RollNo.

Flowchart Techniques 101

Figure 1.59 Looping and conditional in structure chart

diagram entire system is shown as a single process. This diagram
identifies the external entities, the inputs and the outputs.

1.15 System Manual

The system manual is a statement of requirements which defines
specifically what is to be accomplished by the proposed computer
system. It is a fairly detailed document. Most of the data needed
for it is collected in the feasibility study. The document serves
both as a summary of the proposed system for internal purposes
and as a statement used in inviting equipment proposals from
vendors of data processing equipment.

On the basis of a preliminary screening, four or five vendors
may be invited to submit proposals. Each vendor is provided
with a copy of the manual of specifications and the rules for sub-
mitting proposals. These may be followed-up by interviews with
vendors to clarify any misunderstandings or uncertainties in the
specifications. When the proposals are ready, the manufacturer’s
representative is usually provided with an opportunity for a

Conditional

Looping

Input Process Output

 102 Flowcharting Concepts and Algorithms

presentation to the study group. This group studies the manual
and decides the selection of equipment and the supplier.

1.16 Source Code

The source code is the language in which a program is written by
the programmer. Source code is translated into object code by
assemblers and compilers, or a line at a time by an interpreter. In
some cases, the source code may be automatically converted into
another dialect or language by a conversion program. The source
code is not executable by the computer directly. It must be con-
verted into machine language first.

1.16.1 Command File

The command file is a machine language program that can be
loaded and executed in the computer. For example in Microsoft
DOS operating system, the Command.Com is one such file which
is used to boot the computer. Command files have a suffix .COM.
These files are designed to work only in specific memory loca-
tions. They contrast with .EXE files, which can be relocated any-
where in memory.

1.17 Input/Output Report Formats

The reports that are generated for the management or for the
working of an organization should be different from the data for-
mat which is entered at the input stage of the processing cycle.
Thus the system analysis shows the relationship between the
individual items on each output and the items available as inputs
to the system.

The output reports and input documents should be docu-
mented in terms of data contents and approximate layout. It is
possible to work back from the output contents, through the
system, to the inputs required. This is done by determining which
output data items are derived by calculation or by logical deduc-
tion. All other items can then be broken down into those which
require fresh input every time, as part of input transaction
documents, and those which can be stored on file because they
are historical or relatively static.

Flowchart Techniques 103

1.18 Data-item Dictionaries

Data-item dictionary is used to define data, including identifiers,
location, and format for storage characteristics. It holds the
name, type range of values, source, and authorization for access
of each data element in the organization’s files and databases. It
also indicates which application program what data, so that
whenever a change in a data structure is contemplated, a list of
the affected programs can be generated. The data dictionary may
be a stand-alone information system used for management and
documentation purposes, or it may be an integral part of data-
base management system where it is used to actually control its
operation. Data integrity and accuracy is better insured in the
latter case. The data-item dictionary will contain the following
type of information:
(a) What tables and columns are included in the present struc-

ture.
(b) The names of the current tables and columns.
(c) The characteristics of each item of data, such as its length

and data type.
(d) Any restrictions on the value of certain columns.
(e) The meaning of any data fields that are not evident.
(f) The relationships between items of data.

1.19 Testing Results

In order to completely test the program logic, the test data must
test each logical function of the program. The test data selected
for testing a program should include:

(a) Normal data which will test the generally used program
paths.

(b) Unusual but valid data, which will test the program paths
used to handle exceptions. Such data might be encountered
occasionally in running the program.

(c) Inappropriate data which will test the error handling capa-
bilities of the program.

 104 Flowcharting Concepts and Algorithms

If a program runs successfully with the test data and pro-
duces correct results, it is normally released for use. However,
even at this stage errors may remain. There are certain errors in
complex systems that remain hidden for months and years
together.

1.20 Review Reports and Management Decisions/Orders

Once the computer run system has become operational, it will
need to be examined to see if it has met its objectives. For exam-
ple, the costs and benefits will be compared with the estimates
produced at the system inception. This particular activity is often
known as "Post Audit"

The new system will also need to be reviewed and maintained
periodically for the following reasons:

(a) To deal with unforeseen problems arising in operation. For
example, programs may need to be modified to deal with
unforeseen circumstances.

(b) To confirm that the planned objectives are being met and to
take action if they are not.

(c) To ensure that the system is able to cope with the changing
requirements of business.

The results of a systems review would be used in future sys-
tems analysis assignments.

1.20.1 Management Decision/Orders

In the event of adverse remarks given by the post audit team in
the functioning of the new computer system, it may be necessary
for the management to take some bold decision or issue orders for
the change/review of the system. For example, if the system is not
able to cope with the load of the work for which it was originally
designed, then it may not be worthwhile to continue with the
automatic new system. Let us take the case of the system
designed for the school fee collection. The system may be required
to meet the immediate collection of the fee. But if the system does
not meet this need as the working of the software is not reliable
or there is some other inherent defect in the system created, then
it will be necessary for the management to look into the new sys-
tem and ask for the review or change of the earlier system.

Flowchart Techniques 105

Test Paper Based on Chapter 1

Time allowed : 3 hr
Max.Marks : 100

Answer all questions

Q 1. Answer the following

(a) What are the advantages and limitation of pseudocodes ?
(b) List the program preparation techniques that are often included

under the term ‘Structured Programming’.

Q 2. What is a Flowchart ? List the flowcharting rules.

Q 3. What are the advantages and limitations of flowcharts ?

Q 4. Differentiate between the following

(a) Pseudocode and Flowchart
(b) Compiler and Interpreter
(c) Top-down and Bottom-up design techniques
(d) Testing and Debugging

Q 5. What do you understand by structured programming ? State the char-
acteristics of structured programs.

Q 6. Write short notes on the following

(a) Data flow diagram (DFD)
(b) Compiler
(c) Trailer Record
(d) Algorithm

Q 7. What is modular concept in programming ? Mention a few essential
requirements of modular programming.

Q 8. What are the two broad types of programming errors ? How are they
detected?

Q 9. What do you understand by documenting a program ? Why is it
necessary ?

Q 10. (a) What is meant by program maintenance ? How can proper pro-
gram design make it easier to maintain programs ?

(b) What are the different ways of debugging and testing a program ?

