
Circuit Analysis II
wwiitthh  MMAATTLLAABB®®  CCoommppuuttiinngg  aanndd

SSiimmuulliinnkk®®//SSiimmPPoowweerrSSyysstteemmss®®  MMooddeelliinngg

Steven T. Karris

Orchard Publications
www.orchardpublications.com

www.ebooko.ir


Circuit Analysis II 
with MATLAB® Computing and

Simulink® / SimPowerSystems® 
Modeling

Steven T. Karris

Orchard Publications, Fremont, California
www.orchardpublications.com

www.ebooko.ir


Circuit Analysis II with MATLAB® Computing and Simulink® / SimPowerSystems® Modeling

Copyright  2009 Orchard Publications. All rights reserved. Printed in USA. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher.

Direct all inquiries to Orchard Publications, 39510 Paseo Padre Parkway, Fremont, California 94538, U.S.A.
URL: http://www.orchardpublications.com

Product and corporate names are trademarks or registered trademarks of the MathWorks, Inc., and Microsoft
Corporation. They are used only for identification and explanation, without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number: 2009930247

ISBN10: 1934404201

ISBN13: 9781934404209

TX  5745064

Disclaimer

The author has made every effort to make this text as complete and accurate as possible, but no warranty is implied.
The author and publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this text.

This book was created electronically using Adobe Framemaker. 

www.ebooko.ir


Preface

This text is written for use in a second course in circuit analysis. It encompasses a spectrum of
subjects ranging from the most abstract to the most practical, and the material can be covered in
one semester or two quarters.The reader of this book should have the traditional undergraduate
knowledge of an introductory circuit analysis material such as Circuit Analysis I with
MATLAB®Computing and Simulink®/ SimPowerSystems®Modeling, ISBN 978-1-934404-17-1.
Another prerequisite would be a basic knowledge of differential equations, and in most cases,
engineering students at this level have taken all required mathematics courses. Appendix H serves
as a review of differential equations with emphasis on engineering related topics and it is
recommended for readers who may need a review of this subject. 

There are several textbooks on the subject that have been used for years. The material of this
book is not new, and this author claims no originality of its content. This book was written to fit
the needs of the average student. Moreover, it is not restricted to computer oriented circuit
analysis. While it is true that there is a great demand for electrical and computer engineers,
especially in the internet field, the demand also exists for power engineers to work in electric
utility companies, and facility engineers to work in the industrial areas. 

Chapter 1 is an introduction to second order circuits and it is essentially a sequel to first order
circuits discussed in the last chapter of Circuit Analysis I with MATLAB®Computing and
Simulink®/ SimPowerSystems®Modeling, ISBN 978-1-934404-17-1. Chapter 2 is devoted to
resonance, and Chapter 3 presents practical methods of expressing signals in terms of the
elementary functions, i.e., unit step, unit ramp, and unit impulse functions. Accordingly, any
signal can be represented in the complex frequency domain using the Laplace transformation.

Chapters 4 and 5 are introductions to the unilateral Laplace transform and Inverse Laplace
transform respectively, while Chapter 6 presents several examples of analyzing electric circuits
using Laplace transformation methods. Chapter 7 is an introduction to state space and state
equations. Chapter 8 begins with the frequency response concept and Bode magnitude and
frequency plots. Chapter 9 is devoted to transformers with an introduction to self and mutual
inductances. Chapter 10 is an introduction to one- and two-terminal devices and presents several
practical examples. Chapters 11 and 12 are introductions to three-phase circuits.

It is not necessary that the reader has previous knowledge of MATLAB®. The material of this
text can be learned without MATLAB. However, this author highly recommends that the reader
studies this material in conjunction with the inexpensive MATLAB Student Version package that
is available at most college and university bookstores. Appendix A of this text provides a practical
introduction to MATLAB, Appendix B is an introduction to Simulink, and Appendix C
introduces SimPowerSystems. The pages where MATLAB scripts, Simulink / SimPowerSystems
models appear are indicated in the Table of Contents.

www.ebooko.ir


The author highly recommends that the reader studies this material in conjunction with the
inexpensive Student Versions of The MathWorks™ Inc., the developers of these outstanding
products, available from:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760 
Phone: 508-647-7000,
www.mathworks.com
info@mathworks.com.

Appendix D is a review of complex numbers, Appendix E is an introduction to matrices,
Appendix F discusses scaling methods, Appendix G introduces the per unit system used
extensively in power systems and in SimPwerSystems examples and demos. As stated above,
Appendix H is a review of differential equations. Appendix I provides instructions for
constructing semilog templates to be used with Bode plots. 

In addition to numerous examples, this text contains several exercises at the end of each
chapter. Detailed solutions of all exercises are provided at the end of each chapter. The
rationale is to encourage the reader to solve all exercises and check his effort for correct
solutions and appropriate steps in obtaining the correct solution. And since this text was
written to serve as a self-study or supplementary textbook, it provides the reader with a
resource to test his knowledge.

The author is indebted to several readers who have brought some errors to our attention.
Additional feedback with other errors, advice, and comments will be most welcomed and
greatly appreciated. 

Orchard Publications
39510 Paseo Padre Parkway
Suite 315
Fremont, California 94538
www.orchardpublications.com
info@orchardpublications.com

www.ebooko.ir


Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling i
Copyright © Orchard Publications

Table of Contents
1        Second Order Circuits 11

1.1 Response of a Second Order Circuit ....................................................................11
1.2 Series RLC Circuit with DC Excitation ...............................................................12

1.2.1 Response of Series RLC Circuits with DC Excitation ...............................13
1.2.2 Response of Series RLC Circuits with AC Excitation .............................111

1.3 Parallel RLC Circuit ...........................................................................................115
1.3.1 Response of Parallel RLC Circuits with DC Excitation ..........................117
1.3.2 Response of Parallel RLC Circuits with AC Excitation..........................126

1.4 Other Second Order Circuits .............................................................................130
1.5 Summary .............................................................................................................136
1.6 Exercises..............................................................................................................138
1.7 Solutions to EndofChapter Exercises .............................................................140

MATLAB Computing: Pages 16,  17, 19,  113, 119,  1through 123,  
125, 126, 128, 129, 132 through 134, 142,
144, 145

Simulink/SimPowerSystems Models: Pages 110, 114, 129, 153

2        Resonance 21

2.1 Series Resonance.................................................................................................. 21
2.2 Quality Factor Q0s in Series Resonance .............................................................. 24
2.3 Parallel Resonance ............................................................................................... 26
2.4 Quality Factor Q0P in Parallel Resonance........................................................... 29
2.5 General Definition of Q....................................................................................... 29
2.6 Energy in L and C at Resonance........................................................................ 210
2.7 Half-Power Frequencies  Bandwidth ............................................................... 211
2.8 A Practical Parallel Resonant Circuit................................................................ 216
2.9 Radio and Television Receivers ......................................................................... 218
2.10 Summary ............................................................................................................ 221
2.11 Exercises ............................................................................................................. 223
2.12 Solutions to EndofChapter Exercises............................................................. 225

MATLAB Computing: Pages 25, 26,  225, 227,  230, 231

Simulink / SimPowerSystems models: Pages 215, 216

3       Elementary Signals 31

3.1 Signals Described in Math Form ...........................................................................31

www.ebooko.ir


  

ii Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

3.2 The Unit Step Function........................................................................................ 32
3.3 The Unit Ramp Function ..................................................................................... 39
3.4 The Delta Function ............................................................................................ 311

3.4.1 The Sampling Property of the Delta Function.......................................... 311
3.4.2 The Sifting Property of the Delta Function .............................................. 312

3.5 Higher Order Delta Functions............................................................................ 313
3.6 Summary ............................................................................................................. 319
3.7 Exercises .............................................................................................................. 320
3.8 Solutions to EndofChapter Exercises.............................................................. 321

Simulink model: Pages 37, 38

4       The Laplace Transformation 41

4.1 Definition of the Laplace Transformation.............................................................. 41
4.2 Properties and Theorems of the Laplace Transform............................................... 42

4.2.1 Linearity Property........................................................................................ 42
4.2.2 Time Shifting Property................................................................................. 43
4.2.3 Frequency Shifting Property........................................................................ 43
4.2.4 Scaling Property........................................................................................... 44
4.2.5 Differentiation in Time Domain Property .................................................. 44
4.2.6 Differentiation in Complex Frequency Domain Property........................... 45
4.2.7 Integration in Time Domain Property ........................................................ 46
4.2.8 Integration in Complex Frequency Domain Property ................................ 47
4.2.9 Time Periodicity Property ........................................................................... 48
4.2.10 Initial Value Theorem................................................................................. 49
4.2.11 Final Value Theorem ................................................................................ 410
4.2.12 Convolution in Time Domain Property .................................................... 411
4.2.13 Convolution in Complex Frequency Domain Property ............................ 411

4.3 Laplace Transform of Common Functions of Time.............................................. 412
4.3.1 Laplace Transform of the Unit Step Function ................................. 412
4.3.2 Laplace Transform of the Ramp Function ....................................... 412
4.3.3 Laplace Transform of .................................................................... 414
4.3.4 Laplace Transform of the Delta Function ......................................... 417
4.3.5 Laplace Transform of the Delayed Delta Function ...................... 417
4.3.6 Laplace Transform of .................................................................. 418
4.3.7 Laplace Transform of ............................................................... 418
4.3.8 Laplace Transform of ................................................................. 419
4.3.9 Laplace Transform of ................................................................ 419
4.3.10 Laplace Transform of ......................................................... 420
4.3.11 Laplace Transform of ........................................................ 420

4.4  Laplace Transform of Common Waveforms......................................................... 421

u0 t 
u1 t 

t nu0 t 
 t 

 t a– 
e at– u0 t 

t ne
at–

u0 t 
t u0tsin
cos t u0t

e at– t u0sin t 
e at– cos t u0 t 

www.ebooko.ir


Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling iii
Copyright © Orchard Publications

4.4.1 Laplace Transform of a Pulse .......................................................................422
4.4.2 Laplace Transform of a Linear Segment ......................................................422
4.4.3 Laplace Transform of a Triangular Waveform.............................................423
4.4.4 Laplace Transform of a Rectangular Periodic Waveform............................424
4.4.5 Laplace Transform of a HalfRectified Sine Waveform..............................425

4.5 Using MATLAB for Finding the Laplace Transforms of Time Functions.............426
4.6 Summary .................................................................................................................427
4.7 Exercises .................................................................................................................430

Laplace Transform of a Sawtooth Periodic Waveform .......................................431
Laplace Transform of a FullRectified Sine Waveform ......................................431

4.8 Solutions to EndofChapter Exercises .................................................................432

MATLAB Computing: Page 4-37

Simulink Model: Page 4-38

5       The Inverse Laplace Transformation 51

5.1 The Inverse Laplace Transform Integral ................................................................51
5.2 Partial Fraction Expansion .....................................................................................51

5.2.1 Distinct Poles ...............................................................................................52
5.2.2 Complex Poles..............................................................................................55
5.2.3 Multiple (Repeated) Poles............................................................................58

5.3 Case where F(s) is Improper Rational Function...................................................513
5.4 Alternate Method of Partial Fraction Expansion.................................................514
5.5 Summary ...............................................................................................................518
5.6 Exercises ...............................................................................................................519
5.7 Solutions to EndofChapter Exercises ...............................................................520

MATLAB Computing: Pages 53 through 56, 58, 510
512 through 514, 520

6        Circuit Analysis with Laplace Transforms 61

6.1 Circuit Transformation from Time to Complex Frequency .................................. 61
6.1.1 Resistive Network Transformation............................................................. 61
6.1.2 Inductive Network Transformation............................................................ 61
6.1.3 Capacitive Network Transformation.......................................................... 62

6.2 Complex Impedance Z(s)..................................................................................... 611
6.3 Complex Admittance Y(s) ................................................................................... 613
6.4 Transfer Functions ............................................................................................... 616
6.5 Using the Simulink Transfer Fcn Block............................................................... 620
6.6 Summary .............................................................................................................. 623
6.7 Exercises ............................................................................................................... 624

www.ebooko.ir


  

iv Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

6.8 Solutions to EndofChapter Exercises............................................................... 627

MATLAB Computing: Pages 66, 68, 615, 619 through 621, 
629 through 6-32, 637

Simulink / SimPowerSystems models: Pages 68 through 611, 620 through 622

7       State Variables and State Equations 71

7.1 Expressing Differential Equations in State Equation Form................................... 71
7.2 Solution of Single State Equations ........................................................................ 76
7.3 The State Transition Matrix ................................................................................. 78
7.4 Computation of the State Transition Matrix ...................................................... 710

7.4.1 Distinct Eigenvalues (Real of Complex)................................................... 711
7.4.2 Multiple (Repeated) Eigenvalues.............................................................. 715

7.5 Eigenvectors......................................................................................................... 718
7.6 Circuit Analysis with State Variables.................................................................. 722
7.7 Relationship between State Equations and Laplace Transform.......................... 729
7.8 Summary .............................................................................................................. 737
7.9 Exercises .............................................................................................................. 740
7.10 Solutions to EndofChapter Exercises .............................................................. 742

MATLAB Computing: Pages 74, 76, 78, 712, 713, 715, 717, 721
 730, 744, 745, 746, 748, 750

Simulink models: Pages 79, 710

8       Frequency Response and Bode Plots 81

8.1 Decibel Defined .................................................................................................... 81
8.2 Bandwidth and Frequency Response..................................................................... 83
8.3 Octave and Decade ............................................................................................... 84
8.4 Bode Plot Scales and Asymptotic Approximations............................................... 85
8.5 Construction of Bode Plots when the Zeros and Poles are Real ........................... 86
8.6 Construction of Bode Plots when the Zeros and Poles are Complex.................. 812
8.7 Corrected Amplitude Plots.................................................................................. 824
8.8 Summary .............................................................................................................. 835
8.9 Exercises .............................................................................................................. 837
8.10 Solutions to EndofChapter Exercises .............................................................. 838

MATLAB Computing: Pages 819, 820, 822, 823, 833, 840, 843, 845

9       Self and Mutual Inductances  Transformers 91

9.1 SelfInductance .......................................................................................................91

www.ebooko.ir


Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling v
Copyright © Orchard Publications

9.2 The Nature of Inductance.....................................................................................91
9.3 Lenz’s Law..............................................................................................................93
9.4 Mutually Coupled Coils .........................................................................................93
9.5 Establishing Polarity Markings ............................................................................911
9.6 Energy Stored in a Pair of Mutually Coupled Inductors .....................................914
9.7 Circuits with Linear Transformers.......................................................................919
9.8 Reflected Impedance in Transformers.................................................................924
9.9 The Ideal Transformer.........................................................................................927
9.10 Impedance Matching ...........................................................................................930
9.11 Simplified Transformer Equivalent Circuit .........................................................931
9.12 Thevenin Equivalent Circuit...............................................................................932
9.13 Autotransformer ..................................................................................................936
9.14 Transformers with Multiple Secondary Windings...............................................937
9.15 Transformer Tests................................................................................................937
9.16 Efficiency..............................................................................................................942
9.17 Voltage Regulation ..............................................................................................946
9.18 Transformer Modeling with Simulink / SimPowerSystems .................................949
9.19 Summary ..............................................................................................................957
9.20 Exercises...............................................................................................................962
9.21 Solutions to EndofChapter Exercises ..............................................................965

MATLAB Computing: Page 913, 914, 922, 944

Simulink / SimPowerSystems model: Page 949 through 956

10   One and TwoPort Networks 101

10.1 Introduction and Definitions...............................................................................101
10.2 One-Port Driving-Point and Transfer Admittances........................................... 102
10.3 One-Port Driving-Point and Transfer Impedances .............................................107
10.4 Two-Port Networks ...........................................................................................1011

10.4.1 The y Parameters...................................................................................1011
10.4.2 The z parameters ...................................................................................1017
10.4.3 The h Parameters ..................................................................................1022
10.4.4 The g Parameters...................................................................................1026

10.5 Reciprocal Two-Port Networks .........................................................................1031
10.6 Summary ............................................................................................................1035
10.7 Exercises.............................................................................................................1040
10.8 Solutions to EndofChapter Exercises ............................................................1042

MATLAB Computing: Page 1049

Simulink / SimPowerSystems model: Page 1050

www.ebooko.ir


  

vi Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

11   Balanced ThreePhase Systems 111

11.1 Advantages of ThreePhase Systems ................................................................111
11.2 ThreePhase Connections.................................................................................111
11.3 Transformer Connections in ThreePhase Systems .........................................114
11.4 LinetoLine and LinetoNeutral Voltages and Currents.............................115
11.5 Equivalent Y and  Loads..................................................................................119
11.6 Computation by Reduction to Single Phase....................................................1119
11.7 Three-Phase Power ..........................................................................................1120
11.8 Instantaneous Power in Three-Phase Systems ................................................1122
11.9 Measuring ThreePhase Power .......................................................................1125
11.10 Practical ThreePhase Transformer Connections ..........................................1128
11.11 Transformers Operated in Open Configuration ..........................................1129
11.12 ThreePhase Systems Modeling with Simulink / SimPowerSystems ..............1131
11.13 Summary ..........................................................................................................1136
11.14 Exercises...........................................................................................................1138
11.15 Solutions to EndofChapter Exercises ..........................................................1141

MATLAB Computing: Pages 1146, 1151

Simulink / SimPowerSystems models: Pages 1132, 1143

12   Unbalanced ThreePhase Systems 121

12.1 Unbalanced Loads.............................................................................................. 121
12.2 Voltage Computations ....................................................................................... 123
12.3 PhaseSequence Indicator ................................................................................. 124
 Y Transformation........................................................................................... 127
12.5 Practical and Impractical Connections.............................................................. 128
12.6 Symmetrical Components ................................................................................ 1210
12.7 Cases where ZeroSequence Components are Zero........................................ 1216
12.8 Summary .......................................................................................................... 1220
12.9 Exercises ........................................................................................................... 1222
12.10 Solutions to EndofChapter Exercises........................................................... 1223

MATLAB Computing: Page 1227

Simulink / SimPowerSystems models: Page 1228

A      Introduction to MATLAB A1

A.1 Command Window .............................................................................................. A1
A.2 Roots of Polynomials ............................................................................................ A3
A.3 Polynomial Construction from Known Roots ...................................................... A4
A.4 Evaluation of a Polynomial at Specified Values .................................................. A5

www.ebooko.ir


Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling vii
Copyright © Orchard Publications

A.5 Rational Polynomials ...........................................................................................A8
A.6 Using MATLAB to Make Plots ..........................................................................A9
A.7 Subplots .............................................................................................................A18
A.8 Multiplication, Division and Exponentiation ...................................................A19
A.9 Script and Function Files ..................................................................................A26
A.10 Display Formats .................................................................................................A31

MATLAB Computations: Entire Appendix A

B     Introduction to Simulink B1

B.1 Simulink and its Relation to MATLAB ............................................................... B1
B.2 Simulink Demos ................................................................................................. B20

Simulink Modeling: Entire Appendix B

C     Introduction to SimPowerSystems C1

C.1 Simulation of Electric Circuits with SimPowerSystems ...................................... C1

SimPowerSystems Modeling: Entire Appendix C

D     Review of Complex Numbers D1

D.1 Definition of a Complex Number ........................................................................ D1
D.2 Addition and Subtraction of Complex Numbers ................................................ D2
D.3 Multiplication of Complex Numbers ................................................................... D3
D.4 Division of Complex Numbers ............................................................................ D4
D.5 Exponential and Polar Forms of Complex Numbers ........................................... D4

MATLAB Computing: Pages D6 through D8

Simulink Modeling: Page D7 

E      Matrices and Determinants E1

E.1 Matrix Definition................................................................................................ E1
E.2 Matrix Operations............................................................................................... E2
E.3 Special Forms of Matrices ................................................................................... E6
E.4 Determinants .................................................................................................... E10
E.5 Minors and Cofactors........................................................................................ E12
E.6 Cramer’s Rule.................................................................................................... E17
E.7 Gaussian Elimination Method .......................................................................... E19
E.8 The Adjoint of a Matrix ................................................................................... E21
E.9 Singular and NonSingular Matrices ............................................................... E21
E.10 The Inverse of a Matrix .................................................................................... E22

www.ebooko.ir


  

viii Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

E.11 Solution of Simultaneous Equations with Matrices .......................................... E24
E.12 Exercises ............................................................................................................ E31

MATLAB Computing: Pages E3, E4, E5, E7, E8, E9, E10, E12,
E15, E16, E18, E22, E25, E6, E29

Simulink Modeling: Page E3

Excel Spreadsheet: Page E27

F      Scaling F1

F.1 Magnitude Scaling .................................................................................................. F1
F.2 Frequency Scaling................................................................................................... F1
F.3 Exercises.................................................................................................................. F8
F.4 Solutions to EndofAppendix Exercises............................................................... F9

MATLAB Computing: Pages F3, F5

G     Per Unit System G1

G.1 Per Unit Defined .................................................................................................... G1
G.2 Impedance Transformation from One Base to Another Base ............................... G3

H     Review of Differential Equations H1

H.1 Simple Differential Equations................................................................................H1
H.2 Classification..........................................................................................................H3
H.3 Solutions of Ordinary Differential Equations (ODE)............................................H6
H.4 Solution of the Homogeneous ODE......................................................................H8
H.5 Using the Method of Undetermined Coefficients for the Forced Response .......H10
H.6 Using the Method of Variation of Parameters for the Forced Response.............H20
H.7 Exercises...............................................................................................................H24

MATLAB Computing: Pages H11, H13, H14, H16, H17, H9, H22, H23

I       Constructing Semilog Paper with Excel® and with MATLAB® I1

I.1 Instructions for Constructing Semilog Paper with Excel.......................................... I1
I.4 Instructions for Constructing Semilog Paper with MATLAB.................................. I4

Excel Spreadsheet: Page I1

MATLAB Computing: Page I4

References R1

Index IN1

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 11
Copyright © Orchard Publications

Chapter 1

Second Order Circuits

his chapter discusses the natural, forced and total responses in circuits that contain resis-
tors, inductors and capacitors. These circuits are characterized by linear secondorder dif-
ferential equations whose solutions consist of the natural and the forced responses. We will

consider both DC (constant) and AC (sinusoidal) excitations.

1.1 Response of a Second Order Circuit

A circuit that contains  energy storage devices (inductors and capacitors) is said to be an nth
order circuit, and the differential equation describing the circuit is an nthorder differential equa-
tion. For example, if a circuit contains an inductor and a capacitor, or two capacitors or two
inductors, along with other devices such as resistors, it is said to be a secondorder circuit and the
differential equation that describes it will be a second order differential equation. It is possible,
however, to describe a circuit having two energy storage devices with a set of two firstorder dif-
ferential equations, a circuit which has three energy storage devices with a set of three firstorder
differential equations and so on. These are called state equations and are discussed in Chapter 7.

As we know from previous studies,* the response is found from the differential equation describ-
ing the circuit, and its solution is obtained as follows:

1. We write the differential or integrodifferential (nodal or mesh) equation describing the circuit.
We differentiate, if necessary, to eliminate the integral.

2. We obtain the forced (steadystate) response. Since the excitation in our work here will be
either a constant (DC) or sinusoidal (AC) in nature, we expect the forced response to have
the same form as the excitation. We evaluate the constants of the forced response by substitu-
tion of the assumed forced response into the differential equation and equate terms of the left
side with the right side. The form of the forced response (particular solution), is described in
Appendix H.

3. We obtain the general form of the natural response by setting the right side of the differential
equation equal to zero, in other words, solve the homogeneous differential equation using the
characteristic equation.

4. We add the forced and natural responses to form the complete response.

5. Using the initial conditions, we evaluate the constants from the complete response.

* The natural and forced responses for firstorder circuits are discussed in Circuit Analysis I with MATLAB®
Computing and Simulink®/ SimPowerSystems® Modeling, ISBN 9781934404171.

T

n
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1.2 Series RLC Circuit with DC Excitation

Consider the circuit of Figure 1.1 where the initial conditions are , , and

 is the unit step function.* We want to find an expression for the current  for . 

Figure 1.1. Series RLC Circuit
For this circuit

(1.1)

and by differentiation

To find the forced response, we must first specify the nature of the excitation , that is DC or
AC.

If  is DC ( ), the right side of (1.1) will be zero and thus the forced response com-
ponent . If  is AC ( , the right side of (1.1) will be another sinusoid
and therefore . Since in this section we are concerned with DC excitations, the
right side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.1), that is,

(1.2)

whose characteristic equation is

or

from which

* The unit step function and other elementary functions used in science and engineering are discussed in Chapter
3. 
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Series RLC Circuit with DC Excitation

(1.3)

We will use the following notations:

(1.4)

where the subscript  stands for series circuit. Then, we can express (1.3) as

(1.5)
or

(1.6)

Case I: If , the roots  and  are real, negative, and unequal. This results in the over-
damped natural response and has the form

(1.7)

Case II: If , the roots  and  are real, negative, and equal. This results in the critically
damped natural response and has the form

 (1.8)

Case III: If , the roots  and  are complex conjugates. This is known as the under-
damped or oscillatory natural response and has the form

(1.9)

Typical overdamped, critically damped and underdamped responses are shown in Figure 1.2, 1.3,
and 1.4 respectively where it is assumed that .

1.2.1 Response of Series RLC Circuits with DC Excitation

Depending on the circuit constants , , and , the total response of a series  circuit which
is excited by a DC source, may be overdamped, critically damped or underdamped. In this section
we will derive the total response of series  circuits that are excited by DC sources.
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Figure 1.2. Typical overdamped response

Figure 1.3. Typical critically damped response

Figure 1.4. Typical underdamped (oscillatory) response

Example 1.1  

For the circuit of Figure 1.5, , , and the  resistor represents the
resistance of the inductor. Compute and sketch  for .

Solution:
This circuit can be represented by the integrodifferential equation

  (1.10)

Typical Overdamped Response

Time

V
ol

ta
ge

Typical Critically Damped Response

Time

V
ol

ta
ge

Typical Underdamped Response 

Time

V
ol

ta
ge

iL 0  5 A= vC 0  2.5 V= 0.5 
i t  t 0

Ri Ldi
dt
----- 1

C
---- i td

0

t

 vC 0 + + + 15=   t 0
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Figure 1.5. Circuit for Example 1.1

Differentiating and noting that the derivatives of the constants  and  are zero, we obtain
the homogeneous differential equation

or

and by substitution of the known values , , and 

(1.11)

The roots of the characteristic equation of (1.11) are  and . The total
response is just the natural response and for this example it is overdamped. Therefore, from (1.7),

(1.12)

The constants  and  can be evaluated from the initial conditions. Thus from the first initial
condition  and (1.12) we obtain

or
 (1.13)

We need another equation in order to compute the values of  and . This equation will make

use of the second initial condition, that is, . Since , we differ-

entiate (1.12), we evaluate it at , and we equate it with this initial condition. Then,

(1.14)

Also, at ,

+


15u0 t  V
i t 
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100 6 mF

vC 0  15

R di
dt
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dt2
------- i

C
----+ + 0=   

d2i
dt2
------- R

L
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----- i

LC
--------+ + 0=

R L C

d2i
dt2
------- 500di

dt
----- 60000i+ + 0=

s1 200–= s2 300–=

i t  in t  k1e
s1t

k2e
s2t

+ k1e 200– t k2e 300– t+= ==

k1 k2

iL 0  i 0  5 A= =

i 0  k1e0 k2e0+ 5= =

k1 k2+ 5=

k1 k2

vC 0  2.5 V= iC t  i t  C
dvC

dt
---------= =

t 0+=

di
dt
----- 200k– 1e 200– t 300k2– e 300– t   and=    di

dt
-----

t 0+
=

200k– 1 300– k2=

t 0+=
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and solving for  we obtain

(1.15)

Next, equating (1.14) with (1.15) we obtain:

 (1.16)

Simultaneous solution of (1.13) and (1.16) yields  and . By substitution into
(1.12) we find the total response as

(1.17)
Check with MATLAB*:

syms t; %  Define symbolic variable t
%  Must have Symbolic Math Toolbox installed

R=0.5; L=10^(3); C=100*10^(3)/6; %  Circuit constants
y0=115*exp(200*t)110*exp(300*t); %  Let solution i(t)=y0
y1=diff(y0); %  Compute the first derivative of y0, i.e., di/dt
y2=diff(y0,2); %  Compute the second derivative of y0, i.e, di2/dt2

%  Substitute the solution i(t), i.e., equ (1.17) 
%  into differential equation of (1.11) to verify that
%  correct solution was obtained. We must also
% verify that the initial conditions are satisfied.

y=y2+500*y1+60000*y0;
i0=115*exp(200*0)110*exp(300*0);
vC0=R*i0L*(23000*exp(200*0)+33000*exp(300*0))+15;
fprintf(' \n');...
disp('Solution was entered as y0 = '); disp(y0);...
disp('1st derivative of solution is y1 = '); disp(y1);...
disp('2nd derivative of solution is y2 = '); disp(y2);...
disp('Differential equation is satisfied since y = y2+y1+y0 = '); disp(y);...
disp('1st initial condition is satisfied since at t = 0, i0 = '); disp(i0);...
disp('2nd initial condition is also satisfied since vC+vL+vR=15 and vC0 = ');...
disp(vC0);...
fprintf(' \n')

* An introduction to MATLAB is presented in Appendix A.

Ri 0+  Ldi
dt
-----

t 0+
=

vc 0+ + + 15=

di
dt
-----

t 0+
=

di
dt
-----

t 0+
=

15 0.5 5– 2.5–

10 3–
--------------------------------------- 10000= =

200k– 1 300– k2 10000=

k– 1 1.5– k2 50=

k1 115= k2 110–=

i t  in t  115e 200– t 110– e 300– t==
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Solution was entered as y0 = 
115*exp(-200*t)-110*exp(-300*t)
1st derivative of solution is y1 = 
-23000*exp(-200*t)+33000*exp(-300*t)
2nd derivative of solution is y2 = 
4600000*exp(-200*t)-9900000*exp(-300*t)
Differential equation is satisfied since y = y2+y1+y0 = 0
1st initial condition is satisfied since at t = 0, i0 = 5
2nd initial condition is also satisfied since vC+vL+vR=15 and vC0
= 2.5000

We denote the first term as , the second term as , and the total
current  as the difference of these two terms. The response is shown in Figure 1.6.

Figure 1.6. Plot for  of Example 1.1 

In the above example, differentiation eliminated (set equal to zero) the right side of the differen-
tial equation and thus the total response was just the natural response. A different approach how-
ever, may not set the right side equal to zero, and therefore the total response will contain both
the natural and forced components. To illustrate, we will use the following approach.

The capacitor voltage, for all time t, may be expressed as  and as before, the cir-

cuit can be represented by the integrodifferential equation

(1.18)

and since

i1 t  115e 200t–= i2 t  110e 300t–=

i t 
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we rewrite (1.18) as

 (1.19)

We observe that this is a nonhomogeneous differential equation whose solution will have both
the natural and the forced response components. Of course, the solution of (1.19) will give us the
capacitor voltage . This presents no problem since we can obtain the current by differentia-
tion of the expression for .

Substitution of the given values into (1.19) yields

or
(1.20)

The characteristic equation of (1.20) is the same as of that of (1.11) and thus the natural response
is

(1.21)

Since the right side of (1.20) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (1.20) we obtain

or
 (1.22)

The total solution then is the summation of (1.21) and (1.22), that is,

 (1.23)

As before, the constants  and  will be evaluated from the initial conditions. First, using
 and evaluating (1.23) at , we obtain

or
 (1.24)

Also,
(1.25)

i iC C
dvC

dt
---------= =
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---------= =   

dvC
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Next, we differentiate (1.23), we evaluate it at  and equate it with (1.25). Then,

(1.26)

Equating the right sides of (1.25) and (1.26) we obtain

or
 (1.27)

From (1.24) and (1.27), we obtain  and . By substitution into (1.23), we obtain
the total solution as

(1.28)
Check with MATLAB:

syms t %  Define symbolic variable t. Must have Symbolic Math Toolbox installed
y0=22*exp(300*t)34.5*exp(200*t)+15; %  The total solution y(t)
y1=diff(y0) %  The first derivative of y(t)

y1 = -6600*exp(-300*t)+6900*exp(-200*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 = 1980000*exp(-300*t)-1380000*exp(-200*t)

y=y2+500*y1+60000*y0 %  Summation of y and its derivatives

y = 900000

Using the expression for  we can find the current as

  (1.29)

We observe that (1.29) is the same as (1.17). The plot for (1.28) is shown in Figure 1.7.

The same results are obtained with the Simulink/SimPowerSystems* model shown in Figure 1.8.

The waveforms for the current and the voltage across the capacitor are shown in Figure 1.9.

* For an introduction to Simulink SimPowerSystems please refer to Appendices B and C respectively.

t 0=

dvC

dt
--------- 200k1– e 200– t 300k2– e 300– t   and   dvC

dt
---------

t 0=

200k1– 300k2–==
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   k1– 1.5k2– 1.5=

k1 34.5–= k2 22=

vC t  22e 300– t 34.5– e 200– t 15+ u0 t =

vC t 

i iL= iC C
dvC

dt
--------- 100

6
--------- 10 3– 6900e 200t– 6600– e 300t–  115e 200t– 110– e 300t–  A= == =
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Figure 1.7. Plot for  of Example 1.1

Figure 1.8. Simulink/SimPowerSystems model for the circuit in Figure 1.5

Figure 1.9. Waveforms produced by the Simulink/SimPowerSystems model in Figure 1.8

vC t  22e 300– t 34.5– e 200– t 15+ u0 t =
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1.2.2 Response of Series RLC Circuits with AC Excitation
The total response of a series RLC circuit, which is excited by a sinusoidal source, will also consist
of the natural and forced response components. As we found in the previous section, the natural
response can be overdamped, or critically damped, or underdamped. The forced component will
be a sinusoid of the same frequency as that of the excitation, and since it represents the AC
steadystate condition, we can use phasor analysis to find it. The following example illustrates the
procedure.

Example 1.2  

For the circuit in Figure 1.10, , , and the  resistor represents the
resistance of the inductor. Compute and sketch  for .

Figure 1.10. Circuit for Example 1.2
Solution:
This circuit is the same as that in Example 1.1 except that the circuit is excited by a sinusoidal
source; therefore it can be represented by the integrodifferential equation

(1.30)

whose solution consists of the summation of the natural and forced responses. We know its natu-
ral response from the previous example. We begin with

(1.31)

where the constants  and  will be evaluated from the initial conditions after  has been
found. The steady state (or forced) response will have the form  in the
time domain ( ) and the form in the frequency domain ( ).

To find  we will use the phasor analysis relation  where  is the phasor current,  is
the phasor voltage, and  is the impedance of the phasor circuit which, as we know, is 

iL 0  5 A= vC 0  2.5 V= 0.5 
i t  t 0

vS 200 10000tcos u0 t  V=

i t 

0.5  1 mH

100 6 mF
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Ri Ldi
dt
----- 1

C
---- i td

0

t

 vC 0 + + + 200 10000tcos=     t 0

i t  in t  if t + k1 e 200– t k2 e 300– t if t + +==

k1 k2 if t 
if t  k3 10 000t + cos=

t domain– k3  j domain–

if t  I V Z= I V
Z
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(1.32)

The inductive and capacitive reactances are

and

Then,

Also,

and this yields . Then, by substitution into (1.32),

and thus

The total solution is

 (1.33)

As before, the constants  and  are evaluated from the initial conditions. From (1.33) and the
first initial condition  we obtain 

or

or
(1.34)

We need another equation in order to compute the values of  and . This equation will make

use of the second initial condition, that is, . Since , we differ-

entiate (1.33), we evaluate it at , and we equate it with this initial condition. Then,

(1.35)
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and at ,

(1.36)

Also, at 

and solving for we obtain 

(1.37)

Next, equating (1.36) with (1.37) we obtain

or
(1.38)

Simultaneous solution of (1.34) and (1.38) yields  and . Then, by substitution
into (1.31), the total response is

(1.39)

The plot is shown in Figure 1.11 and it was created with the following MATLAB script:

t=0:0.005:0.25; t1=38.*exp(200.*t); t2=42.*exp(300.*t); t3=20.*cos(10000.*t87.5*pi/180);
x=t1+t2+t3; plot(t,t1,t,t2,t,t3,t,x); grid

Figure 1.11. Plot for  of Example 1.2
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The same results are obtained with the Simulink/SimPowerSystems model shown in Figure 1.12.

Figure 1.12. Simulink/SimPowerSystems model for the circuit in Figure 1.10

The waveforms for the current and the voltage across the capacitor are shown in Figures 1.13 and
1.14 respectively. We observe that the steady-state current is consistent with the waveform shown
in Figure 1.11, and the steady state voltage across the capacitor is small since the magnitude of
the capacitive reactance is .

Figure 1.13. Waveform displayed in Scope 1 for the Simulink/SimPowerSystems model in Figure 1.12

XC 6 10 3–   =
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Figure 1.14. Waveform displayed in Scope 2 for the Simulink/SimPowerSystems model in Figure 1.12

1.3 Parallel RLC Circuit

Consider the circuit of Figure 1.10 where the initial conditions are , , and
 is the unit step function. We want to find an expression for the voltage  for . 

Figure 1.15. Parallel RLC circuit
For this circuit

or

By differentiation,
(1.40)

To find the forced response, we must first specify the nature of the excitation , that is DC or AC.

If  is DC ( ), the right side of (1.40) will be zero and thus the forced response com-
ponent . If  is AC ( , the right side of (1.40) will be another sinusoid and
therefore . Since in this section we are concerned with DC excitations, the
right side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.40), that is, 
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diS
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(1.41)

whose characteristic equation is

or

from which

(1.42)

and with the following notations,

(1.43)

where the subscript  stands for parallel circuit, we can express (1.42) as

(1.44)
or

(1.45)

Note:  From (1.4), Page 13, and (1.43), Page 114, we observe that 

As in the series circuit, the natural response  can be overdamped, critically damped, or
underdamped.

Case I: If , the roots  and  are real, negative, and unequal. This results in the over-
damped natural response and has the form

(1.46)

Case II: If , the roots  and  are real, negative, and equal. This results in the criti-
cally damped natural response and has the form

(1.47)

Case III: If , the roots  and  are complex conjugates. This results in the under-
damped or oscillatory natural response and has the form 

C dv2

dt2
-------- Gdv

dt
------ v

L
---+ + 0=

Cs2 Gs 1
L
---+ + 0=

s2 G
C
----s i

LC
--------+ + 0=

s1 s2 G
2C
-------– G2

4C2
--------- 1

LC
--------–=

P
G

2C
-------=

 or Damping
Coefficient

  

   0
1
LC

------------=

Resonant
Frequency

   
P P

2 0
2–=

Beta
Coefficient

   
nP 0

2 P
2–=

Damped Natural
Frequency

                           

p

s1 s2 P– P
2 0

2– P– P   if   P
2 0

2= =

s1 s2 P– 0
2 P

2– P– nP   if   0
2 P

2= =

S P

vn t 

P
2 0

2 s1 s2

vn t  k1e
s1t

k2e
s2t

+=

P
2 0

2= s1 s2

vn t  e
Pt–

k1 k2t+ =

0
2 P

2 s1 s2

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 117
Copyright © Orchard Publications

Parallel RLC Circuit

(1.48)

1.3.1 Response of Parallel RLC Circuits with DC Excitation
Depending on the circuit constants G (or R), L, and C, the natural response of a parallel RLC cir-
cuit may be overdamped, critically damped or underdamped. In this section we will derive the
total response of a parallel RLC circuit which is excited by a DC source for the example which fol-
lows.

Example 1.3  

For the circuit of Figure 1.16,  and . Compute and sketch  for . 

Figure 1.16. Circuit for Example 1.3
Solution:
We could write the integrodifferential equation that describes the given circuit, differentiate, and
find the roots of the characteristic equation from the homogeneous differential equation as we did
in the previous section. However, we will skip these steps and begin with

(1.49)

and when steadystate conditions have been reached, we will have , 

and .

To find out whether the natural response is overdamped, critically damped, or oscillatory, we need
to compute the values of  and  using (1.43) and the values of  and  using (1.44) or
(1.45). Then we will use (1.46), or (1.47), or (1.48) as appropriate. For this example,

or
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or  and . Therefore, the natural response is overdamped and from (1.46) we
obtain

(1.50)

and the constants  and  will be evaluated from the initial conditions. 

With the initial condition  and (1.50) we obtain

or
(1.51)

The second equation that is needed for the computation of the values of  and  is found from

the other initial condition, that is, . Since , we differentiate

(1.50), we evaluate it at , and we equate it with this initial condition.Then, 

(1.52)

Also, at 

and solving for  we obtain

(1.53)

Next, equating (1.52) with (1.53) we obtain

or
 (1.54)

Simultaneous solution of (1.51) and (1.54) yields , , and by substitution
into (1.50) we obtain the total response as 

(1.55)

Check with MATLAB:

syms t %  Define symbolic variable t. Must have Symbolic Math Toolbox installed
y0=291*exp(4*t)/6261*exp(16*t)/6; %  Let solution v(t) = y0
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t 0+
=

10 5 32– 2–
1 640

------------------------------- 502= =

4k– 1 16– k2 502=

2k– 1 8– k2 251=

k1 291 6= k2 261– 6=

v t  vn t  291
6

---------e 4– t 261
6

---------– e 16– t== 48.5e 4– t 43.5– e 16– t V=
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y1=diff(y0) % Compute and display first derivative

y1 = -194*exp(-4*t)+696*exp(-16*t)

y2=diff(y0,2) % Compute and display second derivative

y2 = 776*exp(-4*t)-11136*exp(-16*t)

y=y2/640+y1/32+y0/10 % Verify that (1.40) is satisfied

y = 0

The plot is shown in Figure 1.17.

Figure 1.17. Plot for  of Example 1.3

From the plot of Figure 1.17, we observe that  attains its maximum value somewhere in the
interval  and  sec., and the maximum voltage is approximately . If we desire to com-
pute precisely the maximum voltage and the exact time it occurs, we can compute the derivative
of (1.55), set it equal to zero, and solve for . Thus,

(1.56)

Division of (1.56) by  yields

or

or

and

v2 t  43.5– e 16t–=

v1 t  48.5e 4t–=

v t 

Time (sec)

V
ol

ta
ge

 (
V

)

v t 

v t 
0.10 0.12 24 V

t

dv
dt
------

t 0=

1164e 4– t– 4176e 16– t+ 0= =

e 16t–

1164e12t– 4176+ 0=

e12t 348
97

---------=

12t 348
97
--------- 
 ln= 1.2775=
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By substitution into (1.55) 

(1.57)

A useful quantity, especially in electronic circuit analysis, is the settling time, denoted as , and it
is defined as the time required for the voltage to drop to  of its maximum value. Therefore, 
is an indication of the time it takes for  to dampout, meaning to decrease the amplitude of

 to approximately zero. For this example, , and we can find  by sub-
stitution into (1.55). Then,

(1.58)

and we need to solve for the time . To simplify the computation, we neglect the second term on
the right side of (1.58) since this component of the voltage damps out much faster than the other
component. This expression then simplifies to

or

or
(1.59)

Example 1.4  

For the circuit of Figure 1.18,  and , and the resistor is to be adjusted so
that the natural response will be critically damped.Compute and sketch  for . 

Figure 1.18. Circuit for Example 1.4
Solution:

Since the natural response is to be critically damped, we must have  because the L and C
values are the same as in the previous example. Please refer to (1.43), Page 116. We must also
have

or

t tmax
1.2775

12
---------------- 0.106 s= = =

vmax 48.5e 4– x0.106 43.5– e 16– x0.106 23.76 V= =

tS

1% tS

v t 
v t  0.01 23.76 0.2376 V= tS

0.01vmax 0.2376 48.5e 4t– 43.5e 16t––= =

t

0.2376 48.5e
4– ts=

4– tS 0.005 ln 5.32– = =

tS 1.33  s=

iL 0  2 A= vC 0  5 V=

v t  t 0

10u0 t  A

v t  1 640 F
iCiLiR

10 H

0
2 64=

P
G

2C
------- 1

2RC
----------- 0= = = 1

LC
-------- 8= =
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or and thus . The natural response will have the form

(1.60)

Using the initial condition , and evaluating (1.60) at , we obtain

 
or

 (1.61)
and (1.60) simplifies to

 (1.62)

As before, we need to compute the derivative  in order to apply the second initial condition
and find the value of the constant .

We obtain the derivative using MATLAB as follows:

syms t k2; v0=exp(8*t)*(5+k2*t); v1=diff(v0); %  v1 is 1st derivative of v0
%  Must have Symbolic Math Toolbox installed

v1 = -8*exp(-8*t)*(5+k2*t)+exp(-8*t)*k2

Thus,

and
 (1.63)

Also,  or  and

(1.64)

or
(1.65)

Equating (1.63) with (1.65) and solving for  we obtain

or
(1.66)

1
R
---- 8 2

640
--------- 1

40
------= =

R 40 = s1 s2 P– 8–= = =

v t  vn t = e
Pt–

k1 k2t+   or  v t  vn t = e 8t– k1 k2t+ ==

vC 0  5 V= t 0=

v 0  e0 k1 k20+ = 5=

k1 5=

v t  e 8t– 5 k2t+ =

dv dt
k2

dv
dt
------ 8e– 8t– 5 k2t+ = k2e 8t–+

dv
dt
------

t 0=

40–= k2+

iC Cdv
dt
------= dv

dt
------ iC

C
----=

   dv
dt
------

t 0+
=

iC 0+ 
C

--------------- IS iR 0+ – iL 0+ –
C

-------------------------------------------= =

dv
dt
------

t 0=

IS vC 0  R– iL 0 –
C

-------------------------------------------------- 10 5 40– 2–
1 640

------------------------------- 7.875
1 640
---------------- 5040= = = =

k2

40– k2+ 5040=

k2 5080=
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and by substitution into (1.62), we obtain the total solution as 

(1.67)
Check with MATLAB:

syms t; y0=exp(8*t)*(5+5080*t); y1=diff(y0) % Compute 1st derivative
% Must have Symbolic Math Toolbox installed

y1 = -8*exp(-8*t)*(5+5080*t)+5080*exp(-8*t)

y2=diff(y0,2) % Compute 2nd derivative 

y2 = 64*exp(-8*t)*(5+5080*t)-81280*exp(-8*t)

y=y2/640+y1/40+y0/10 % Verify differential equation, see (1.40), Pg 1-15

y = 0

The plot is shown in Figure 1.19.

Figure 1.19. Plot for  of Example 1.4

By inspection of (1.67), we see that at ,  and thus the second initial condition is
satisfied. We can verify that the first initial condition is also satisfied by differentiation of (1.67).
We can also show that  approaches zero as  approaches infinity with L’Hôpital’s rule, i.e., 

(1.68)

Example 1.5  

For the circuit of Figure 1.20,  and . Compute and sketch  for . 

v t  e 8t– 5 5080t+  V=

Time (sec)

V
ol

ta
ge

 (
V

)

v t 

t 0= v t  5 V=

v t  t

v t 
t 
lim e 8t– 5 5080t+ 

t 
lim 5 5080t+ 

e8t
----------------------------

t 
lim

d
dt
----- 5 5080t+ 

d
dt
-----e8t

---------------------------------
t 
lim 5080

8e8t
------------

t 
lim 0= = = = =

iL 0  2 A= vC 0  5 V= v t  t 0
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Figure 1.20. Circuit for Example 1.5
Solution:
This is the same circuit as the that of the two previous examples except that the resistance has
been increased to . For this example,

or

and as before,

Also, . Therefore, the natural response is underdamped with natural frequency 

Since , the total response is just the natural response. Then, from (1.48),

(1.69)

and the constants and  will be evaluated from the initial conditions.

From the initial condition  and (1.69) we obtain

or
(1.70)

To evaluate the constants  and  we differentiate (1.69), we evaluate it at , we write the

equation which describes the circuit at , and we equate these two expressions. Using MAT-
LAB we obtain:

syms t k phi; y0=k*exp(6.4*t)*cos(4.8*t+phi); y1=diff(y0) 
% Must have Symbolic Math Toolbox installed

y1 = -32/5*k*exp(-32/5*t)*cos(24/5*t+phi)
-24/5*k*exp(-32/5*t)*sin(24/5*t+phi)

pretty(y1)

10u0 t  A

v t  50  1 640 F
iCiLiR 10 H

50 

P
G

2C
------- 1

2RC
----------- 1

2 50 1 640
------------------------------------- 6.4= = = =

P
2 40.96=

0
2 1

LC
-------- 1

10 1 640
---------------------------- 64= = =

0
2 P

2

nP 0
2 P

2– 64 40.96– 23.04 4.8= = = =

vf 0=

v t  vn t  ke
Pt–

nPt + cos== ke 6.4t– 4.8t + cos=

k 

vC 0  v 0  5 V= =

v 0  ke0 0 + cos 5= =

k cos 5=

k  t 0=

t 0+=
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- 32/5 k exp(- 32/5 t) cos(24/5 t + phi)
- 24/5 k exp(- 32/5 t) sin(24/5 t + phi)

Thus,
(1.71)

and

By substitution of (1.70), the above expression simplifies to

(1.72)

Also,  or  and

or
(1.73)

Equating (1.72) with (1.73) we obtain

or
(1.74)

The phase angle can be found by dividing (1.74) by (1.70). Then,

or

The value of the constant  is found from (1.70) as

or

and by substitution into (1.69), the total solution is

(1.75)

The plot is shown in Figure 1.21.

dv
dt
------ 6.4ke 6.4t–– 4.8t + cos 4.8ke 6.4t– 4.8t + sin–=

dv
dt
------

t 0=

6.4k– cos 4.8k sin–=

dv
dt
------

t 0=

32– 4.8k sin–=

iC Cdv
dt
------= dv

dt
------ iC

C
----=

dv
dt
------

t 0+
=

iC 0+ 
C

--------------- IS iR 0+ – iL 0+ –
C

-------------------------------------------= =

dv
dt
------

t 0=

IS vC 0  R– iL 0 –
C

-------------------------------------------------- 10 5 50– 2–
1 640

------------------------------- 7.9 640 5056= = = =

32– 4.8k sin– 5056=

k sin 1060–=



k sin
k cos
--------------- tan 1060–

5
--------------- 212–= = =

 212– 1–tan 1.566  rads– 89.73  deg–= = =

k
k 1.566– cos 5=

k 5
1.566– cos

------------------------------ 1042= =

v t  1042e 6.4t– 4.8t 89.73– cos=
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Figure 1.21. Plot for  of Example 1.5

From the plot of Figure 1.21 we observe that the maximum value occurs somewhere between
 and , while the minimum value occurs somewhere between 

and . Values for the maximum and minimum accurate to 3 decimal places are deter-
mined with the MATLAB script below.
fprintf(' \n');
disp('  t         Vc');
disp('-----------------');
t=0.10:0.01:0.20; Vc=zeros(11,2); Vc(:,1)=t'; 
Vc(:,2)=1042.*exp(6.4.*t).*cos(4.8.*t87.5*pi./180);
fprintf('%0.2f\t %8.3f\n',Vc')

  t     Vc
-----------------
0.10  274.736
0.11  278.822
0.12  280.743
0.13  280.748
0.14  279.066
0.15  275.911
0.16  271.478
0.17  265.948
0.18  259.486
0.19  252.242
0.20  244.354

fprintf(' \n');
disp('  t         Vc');
disp('-----------------');

Time (sec)

V
ol

ta
ge

 (
V

)

v t 

t 0.10 sec= t 0.20 sec= t 0.73 sec=

t 0.83 sec=
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t=0.73:0.01:0.83; Vc=zeros(11,2); Vc(:,1)=t'; 
Vc(:,2)=1042.*exp(6.4.*t).*cos(4.8.*t87.5*pi./180);
fprintf('%0.2f\t %8.3f\n',Vc')

  t       Vc
-----------------
0.73   -3.850
0.74   -4.010
0.75   -4.127
0.76   -4.205
0.77   -4.248
0.78   -4.261
0.79   -4.246
0.80   -4.208
0.81   -4.149
0.82   -4.073
0.83   -3.981

The maximum and minimum values and the times at which they occur are listed in the table
below. 

Alternately, we can find the maxima and minima by differentiating the response of (1.75) and set-
ting it equal to zero.

1.3.2 Response of Parallel RLC Circuits with AC Excitation
The total response of a parallel RLC circuit that is excited by a sinusoidal source also consists of
the natural and forced response components. The natural response will be overdamped, critically
damped or underdamped. The forced component will be a sinusoid of the same frequency as that
of the excitation, and since it represents the AC steadystate condition, we can use phasor analy-
sis to find the forced response. We will derive the total response of a parallel RLC circuit which is
excited by an AC source with the following example.

Example 1.6  

For the circuit of Figure 1.22,  and . Compute and sketch  for . 

t (sec) v (V)

Maximum 0.13 280.748

Minimum 0.78 4.261

iL 0  2 A= vC 0  5 V= v t  t 0
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Figure 1.22. Circuit for Example 1.6
Solution:

This is the same circuit as the previous example where the DC source has been replaced by an AC
source. The total response will consist of the natural response  which we already know from
the previous example, and the forced response  which is the AC steadystate response, will be
found by phasor analysis.

The  to j transformation yields

The admittance  is

where

and thus

Now, we find the phasor voltage  as

and  to  transformation yields

The total solution is

(1.76)

Now, we need to evaluate the constants  and .

With the initial condition  (1.76) becomes

iS 20 6400t 90+ usin 0 t  A=

v t  50  1 640 F
iCiL

iR
10 H

iS

vn t 
vf t 

t domain– j domain–

is t  20 6400t 90+ sin 20 6400t Icos 20 0= = =

Y

Y G j C 1
L
--------– 

 + G2 C 1
L
--------– 

  2
+ C 1

L
--------– 

  G
1–

tan= =

  G 1
R
----= 1

50
------=   C 6400 1

640
--------- 10  and  1

L
-------- 1

6400 10
------------------------ 1

64000
---------------= = = =,

Y 1
50
------ 
 

2
10 1

64000
---------------– 

  2
+ 10 1

64000
---------------– 

  1
50
------ 

 1–

tan 10 89.72= =

V

V I
Y
---- 20 0

10 89.72
--------------------------- 2 89.72–= = =

j domain– t domain–

V 2 89.72– vf t  2 6400t 89.72– cos= =

v t  vn t  vf t + ke 6.4t– 4.8t + cos= = 2 6400t 89.72– cos+

k 

vC 0  5 V=
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or
(1.77)

To make use of the second initial condition, we differentiate (1.76) using MATLAB as follows,
and then we evaluate it at . 

syms t k phi; y0=k*exp(-6.4*t)*cos(4.8*t+phi)+2*cos(6400*t-1.5688);  % Must have Sym Math
y1=diff(y0); % Differentiate v(t) of (1.76)

y1 = -32/5*k*exp(-32/5*t)*cos(24/5*t+phi)-24/5*k*exp(-32/
5*t)*sin(24/5*t+phi)-12800*sin(6400*t-1961/1250)

or

and

(1.78)

With (1.77) we obtain

(1.79)

Also,  or  and 

or
(1.80)

Equating (1.79) with (1.80) and solving for  we obtain

or

Then with (1.77) and (1.81),

or

The value of the constant  is found from (1.77), that is,

v 0  vC 0  ke0 cos= = 2 89.72– cos+ 5=

k cos 5

t 0=

dv
dt
------ 6.4ke 6.4t–– 4.8t + cos 4.8ke 6.4t– 4.8t + sin– 12800 6400t 1.5688– sin–=

dv
dt
------

t 0=

6.4k– cos 4.8k sin– 12800 1.5688– sin–=

6.4k– cos 4.8k sin– 12800+=

dv
dt
------

t 0=

32– 4.8k sin– 12800+= 4.8k sin– 12832+

iC Cdv
dt
------= dv

dt
------ iC

C
----=

dv
dt
------

t 0+
=

iC 0+ 
C

--------------- iS 0+  iR 0+ – iL 0+ –
C

------------------------------------------------------= =

dv
dt
------

t 0=

iS 0+  vC 0  R– iL 0 –
C

------------------------------------------------------------- 20 5 50– 2–
1 640

------------------------------- 11456= = =

k

4.8k sin– 12832+ 11456=

k sin 287=

k sin
k cos
--------------- tan 287

5
--------- 57.4= = =

 1.53  rad 89= =

k
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By substitution into (1.76), we obtain the total solution as

(1.81)

With MATLAB we obtain the plot shown in Figure 1.23. The plot was created with the MAT-
LAB script below.

t=0: 0.01: 1; vt=279.4.*exp(-6.4.*t).*cos(4.8.*t+89*pi./180)+2.*cos(6400.*t-89.72.*pi./180);
plot(t,vt); grid

Figure 1.23. Plot for  of Example 1.6

The same results are obtained with the Simulink/SimPowerSystems model shown in Figure 1.24.

Figure 1.24. Simulink/SimPowerSystems model for the circuit in Figure 1.23

The waveform displayed by the Scope block is shown in Figures 1.25, and we observe that it is
consistent with the waveform shown in Figure 1.23.

k 5 89cos  279.4= =

v t  279.4e 6.4t– 4.8t 89+ cos= 2 6400t 89.72– cos+

v t 
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Figure 1.25. Waveform displayed by the Scope block in Figure 1.24 

1.4 Other Second Order Circuits
Second order circuits are not restricted to RLC circuits. They include amplifiers and filter among
others, and since it is beyond the scope of this text to analyze such circuits in detail, we will illus-
trate the transient analysis of a second order active lowpass filter.

Example 1.7  
The circuit of Figure 1.26 a known as a Multiple Feed Back (MFB) active lowpass filter. For this
circuit, the initial conditions are . Compute and sketch  for .

Figure 1.26. Circuit for Example 1.7
Solution:

At node : 
(1.82)

At node :
(1.83)

vC1 vC2 0= = vout t  t 0

vin vout

40 k

200 k

50 k

25 nF

10 nF
R1

C1

v1 v2
+

+

 

vin(t)= (6.25 cos 6280t)u(t) V

R3

R2 C2

V1
v1 vin–

R1
----------------- C1

dv1

dt
-------- v1 vout–

R2
------------------- v1 v2–

R3
----------------+ + + 0   t 0=

V2
v2 v1–

R3
---------------- C2

dvout

dt
------------   =
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We observe that  (virtual ground).

Collecting like terms and rearranging (1.83) and (1.84) we obtain

(1.84)

and
(1.85)

Differentiation of (1.86) yields
(1.86)

and by substitution of given numerical values into (1.85) through (1.87), we obtain

or
(1.87)

(1.88)

(1.89)

Next, substitution of (1.89) and (1.90) into (1.88) yields 

(1.90)

or

and division by  yields

or
(1.91)

v2 0=

1
R1
------ 1

R2
------ 1

R3
------+ + 

  v1 C1
dv1

dt
-------- 1

R2
------vout–+

1
R1
------vin=

v1 R3C2
dvout

dt
------------–    =

dv1

dt
-------- R3C2

dv2
out

dt2
--------------–    =

1
2 10 5
------------------ 1

4 10 4
------------------ 1

5 10 4
------------------+ + 

  v1 25 10 9–
dv1

dt
-------- 1

4 10 4
------------------vout–+ 1

2 10 5
------------------vin=

0.05 10 3– v1 25 10 9–
dv1

dt
-------- 0.25 10 4– vout–+ 0.5 10 5– vin=

v1 5 10 4–
dvout

dt
------------–    =

dv1

dt
-------- 5 10 4– d2vout

dt2
--------------–    =

0.05 10 3– 5 10 4– dvout

dt
------------– 

  25 10 9– 5 10 4––  d2vout

dt2
--------------

0.25 10 4– vout–

+

0.5 10 5– vin=

125– 10 13– d 2vout

dt2
-------------- 0.25 10 7– dvout

dt
------------– 0.25 10 4– vout– 10 4– vin=

125– 10 13–

d 2vout

dt2
--------------- 2 103 dvout

dt
------------ 2 106 vout+ + 1.6 10 5– vin=

d 2vout

dt2
--------------- 2 103 dvout

dt
------------ 2 106 vout+ + 106 6280tcos–=
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We use MATLAB to find the roots of the characteristic equation of (1.92).

syms s; y0=solve('s^2+2*10^3*s+2*10^6')  % Must have Symbolic Math Toolbox installed

y0 =
[-1000+1000*i]
[-1000-1000*i]

that is,

We cannot classify the given circuit as series or parallel and therefore, we should not use the
damping ratio  or . Instead, for the natural response  we will use the general expression

(1.92)
where

Therefore, the natural response is oscillatory and has the form

(1.93)

Since the right side of (1.92) is a sinusoid, the forced response has the form

(1.94)

Of course, for the derivation of the forced response we could use phasor analysis but we must first
derive an expression for the impedance or admittance, since the expressions we used earlier were
for series and parallel circuits only.

The coefficients  and  will be found by substitution of (1.95) into (1.92) and then by equat-
ing like terms. Using MATLAB we obtain:

syms t k3 k4; y0=k3*cos(6280*t)+k4*sin(6280*t); y1=diff(y0)

y1 =
-6280*k3*sin(6280*t)+6280*k4*cos(6280*t)

y2=diff(y0,2)

y2 =
-39438400*k3*cos(6280*t)-39438400*k4*sin(6280*t)

y=y2+2*10^3*y1+2*10^6*y0

y =
-37438400*k3*cos(6280*t)-37438400*k4*sin(6280*t)-
12560000*k3*sin(6280*t)+12560000*k4*cos(6280*t)

Equating like terms with (1.92) we obtain

s1 s2, – j 1000– j1000 1000 1– j1 = = =

S P vn t 

vn t  Ae
s1t

= Be
s2t

+ e  t– k1 tcos k2 tsin+ =

s1 s2, – j 1000– j1000= =

vn t  e 1000t– k1 1000tcos k2 1000tsin+ =

vf t  k3 6280tcos k4 6280tsin+=

k3 k4
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(1.95)

Simultaneous solution of the equations of (1.96) is done with MATLAB.

syms k3 k4
eq1=37438400*k3+12560000*k4+10^6;
eq2=12560000*k337438400*k4+0;
y=solve(eq1,eq2)

y = 
    k3: [1x1 sym]
    k4: [1x1 sym]

y.k3

ans =
    0.0240
y.k4

ans =
   -0.0081

that is,  and . Then, by substitution into (1.95)

(1.96)
The total response is 

(1.97)

We will use the initial conditions  to evaluate  and . We observe that
 and at  relation (1.98) becomes

or  and thus (1.98) simplifies to

 (1.98)

To evaluate the constant , we make use of the initial condition . We observe that
 and by KCL at node  we have: 

37438400 k3– 12560000 k4+  6280tcos 106– 6280tcos=

12560000 k3– 37438400 k4–  6280tsin 0=

k3 0.024= k4 0.008–=

vf t  0.024 6280tcos 0.008– 6280tsin=

vout t  vn t  vf t + e 1000t– k1 1000tcos k2 1000tsin+ 
0.024 6280tcos 0.008– 6280tsin+

= =

vC1 vC2 0= = k1 k2

vC2 vout= t 0=

vout 0  e0 k1 0cos 0+  0.024 0cos 0–+ 0= =

k1 0.024–=

vout t  e 1000t– 0.024– 1000tcos k2 1000tsin+ 
0.024 6280tcos 0.008– 6280tsin+

=

k2 vC1 0  0=

vC1 v1= v1

v1 v2–
R3

---------------- C2
dvout

dt
------------+ 0=
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or

or

and since , it follows that 

(1.99)

The last step in finding the constant  is to differentiate (1.99), evaluate it at , and equate
it with (1.100). This is done with MATLAB as follows:
y0=exp(1000*t)*(0.024*cos(1000*t)+k2*sin(1000*t))...
+0.024*cos(6280*t)0.008*sin(6280*t);

y1=diff(y0)

y1 =
-1000*exp(-1000*t)*(-3/125*cos(1000*t)+k2*sin(1000*t))+exp(-
1000*t)*(24*sin(1000*t)+1000*k2*cos(1000*t))-3768/
25*sin(6280*t)-1256/25*cos(6280*t)

or

and
(1.100)

Simplifying and equating (1.100) with (1.101) we obtain

or

and by substitution into (1.99),

(1.101)

The plot is shown in Figure 1.27.

v1 0–

5 104
----------------- 10 8––=

dvout

dt
------------

v1 5 10 4––=
dvout

dt
------------

vC1 0  v1 0  0= =

dvout

dt
------------

t 0=

0=    

k2 t 0=

dvout

dt
------------ 1000e 1000t– 3–

125
--------- 1000t k2 1000tsin+cos 
 – e 1000t– 24 1000t 1000k2 1000tcos+sin 

3768
25

------------ 6280t sin–
1256
25

------------ 6280tcos–

+=

dvout

dt
------------

t 0=

1000 3–
125
--------- 
 – 1000k2

1256
25

------------–+=

1000k2 26.24– 0=

k2 0.026=

vout t  e 1000t– 0.024– 1000tcos 0.026 1000tsin+  0.024 6280tcos 0.008– 6280tsin+=
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Other Second Order Circuits

Figure 1.27. Plot of  for Example 1.7
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1.5 Summary
 Circuits that contain energy storing devices can be described by integrodifferential equations

and upon differentiation can be simplified to differential equations with constant coefficients.

 A second order circuit contains two energy storing devices. Thus, an RLC circuit is a second
order circuit.

 The total response is the summation of the natural and forced responses.

 If the differential equation describing a series RLC circuit that is excited by a constant (DC)
voltage source is written in terms of the current, the forced response is zero and thus the total
response is just the natural response.

 If the differential equation describing a parallel RLC circuit that is excited by a constant (DC)
current source is written in terms of the voltage, the forced response is zero and thus the total
response is just the natural response.

 If a circuit is excited by a sinusoidal (AC) source, the forced response is never zero.

 The natural response of a second order circuit may be overdamped, critically damped, or
underdamped depending on the values of the circuit constants.

 For a series RLC circuit, the roots  and  are found from

or

where

If , the roots  and  are real, negative, and unequal. This results in the overdamped
natural response and has the form

If , the roots  and  are real, negative, and equal. This results in the critically
damped natural response and has the form

If , the roots  and  are complex conjugates. This is known as the underdamped or
oscillatory natural response and has the form

s1 s2

s1 s2 S– S
2 0

2– S– S   if   S
2 0

2= =

s1 s2 S– 0
2 S

2– S– nS   if   0
2 S

2= =

S
R

2L
-------=    0

1
LC

------------= S S
2 0

2–= nS 0
2 S

2–=

S
2 0

2 s1 s2

in t  k1e
s1t

k2e
s2t

+=

S
2 0

2= s1 s2

in t  e
St–

k1 k2t+ =

0
2 S

2 s1 s2
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Summary

 For a parallel RLC circuit, the roots  and  are found from

or

where

If , the roots  and  are real, negative, and unequal. This results in the overdamped
natural response and has the form

If , the roots  and  are real, negative, and equal. This results in the critically
damped natural response and has the form

If , the roots  and  are complex conjugates. This results in the underdamped or
oscillatory natural response and has the form

 If a second order circuit is neither series nor parallel, the natural response if found from

or

or

depending on the roots of the characteristic equation being real and unequal, real and equal, or
complex conjugates respectively.

in t  e
S t–

k1 nScos t k2 nS tsin+  k3e
St–

nScos t + = =

s1 s2

s1 s2 P– P
2 0

2– P– P   if   P
2 0

2= =

s1 s2 P– 0
2 P

2– P– nP   if   0
2 P

2= =

P
G

2C
-------=    0

1
LC

------------= P P
2 0

2–= nP 0
2 P

2–=

P
2 0

2 s1 s2

vn t  k1e
s1t

k2e
s2t

+=

P
2 0

2= s1 s2

vn t  e
Pt–

k1 k2t+ =

0
2 P

2 s1 s2

vn t  e
Pt–

k1 nPcos t k2 nPtsin+  k3e
Pt–

nPcos t + = =

yn k1e
s1t

= k2e
s2t

+

yN k1 k2 t+  e
s1t

=

yn e t– k3 tcos k4 sin t+  e  t– k5 t + cos==
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1.6 Exercises

1. For the circuit below it is known that  and . Compute and sketch 
and  for .

2. For the circuit below it is known that  and . Compute and sketch 
and  for .

3. In the circuit below the switch  has been closed for a very long time and opens at .
Compute  for .

4. In the circuit below, the switch  has been closed for a very long time and opens at .
Compute  for .

vC 0  0= iL 0  0= vC t 

iL t  t 0

+
100u0 t  V

10  0.2 H

8 mF

iL t 
+


vC t 

vC 0  0= iL 0  0= vC t 

iL t  t 0

+


100u0 t  V

4  5 H

21.83 mF

iL t  +


vC t 

S t 0=

vC t  t 0

+ 
+

20 H100 

100 V 400 

vC t 
1 120  F

S t 0=

S t 0=

vC t  t 0
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Exercises

5. In the circuit below the switch  has been in position  for closed for a very long time and it is
placed in position  at . Find the value of  that will cause the circuit to become criti-
cally damped and then compute  and  for 

6. In the circuit below the switch  has been closed for a very long time and opens at . Com-
pute  for .

7. Create a Simulink/SimPowerSystems model for the circuit below.

This is the same circuit as in Example 1.4, Page 121 where we found that . The ini-
tial conditions are the same as in Example 1.4, that is,  and ,

+ 
+

20 H100 

400 

vC t 
1 120  F

S t 0=

vS

vS 100 tcos u0 t  V=

S A
B t 0= R

vC t  iL t  t 0

+
 

+

12 V

3 

2 

RA

B

S 6 

3 H
vC t 

1 12  F

iL t t 0=

S t 0=

vAB t  t 0

+


12 V

4 

2 H 1 4 F
BA

S

t 0=

2 

10u0 t  A
v t  40  1 640 F

iCiLiR 10 H

R 40 =

iL 0  2 A= vC 0  5 V=
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1.7 Solutions to EndofChapter Exercises
Dear Reader:

The remaining pages on this chapter contain solutions to the EndofChapter exercises.

You must, for your benefit, make an honest effort to solve the problems without first looking at
the solutions that follow. It is recommended that first you go through and answer those you feel
that you know. For the exercises that you are uncertain, review the pertinent section(s) in this
chapter and try again. If your answers to the exercises do not agree with those provided, look over
your procedures for inconsistencies and computational errors. Refer to the solutions as a last
resort and rework those problems at a later date.

You should follow this practice with the problems in all chapters of this book.
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Solutions to EndofChapter Exercises

1.

and since , the above becomes

From the characteristic equation

we obtain  (critical damping) and 

The total solution is

  (1)

With the first initial condition  the above expression becomes

and by substitution into (1) we obtain

  (2)

+
100u0 t  V

10  0.2 H

8 mF

iL t 
+


vC t 

i t 

Ri Ldi
dt
----- vC+ + 100= t 0

i iC C
dvC

dt
---------= =

RC
dvC

dt
--------- LC

d2vC

dt2
----------- vC+ + 100=

d2vC

dt2
----------- R

L
---- dvC

dt
--------- 1

LC
--------vC+ + 100

LC
---------=

d2vC

dt2
----------- 10

0.2
------- dvC

dt
--------- 1

0.2 8 10 3–
--------------------------------- vC+ + 100

0.2 8 10 3–
---------------------------------=

d2vC

dt2
----------- 50

dvC

dt
--------- 625 vC+ + 62500=

s2 50s 625+ + 0=

s1 s2 25–= = S R 2L 25= =

vC t  vCf vCn+ 100 e
S t–

k1 k2t+ + 100 e 25 t– k1 k2t+ += = =

vC 0  0=

0 100 e0 k1 0+ +=

k1 100–=

vC t  100 e 25 t– k2t 100– +=
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To evaluate  we make use of the second initial condition  and since , and

, we differentiate (2) using the following MATLAB script:

syms t k2  % Must have Symbolic Math Toolbox installed
v0=100+exp(25*t)*(k2*t100); v1=diff(v0)

v1 =
-25*exp(-25*t)*(k2*t-100)+exp(-25*t)*k2

Thus,

and
  (3)

Also,  and at 

  (4)

From (3) and (4)  or  and by substitution into (2)

  (5)

We find  by differentiating (5) and multiplication by .

Using MATLAB we obtain:

syms t    % Must have Symbolic Math Toolbox installed
C=8*10^(3); i0=C*(100exp(25*t)*(100+2500*t)); iL=diff(i0)

iL =
1/5*exp(-25*t)*(100+2500*t)-20*exp(-25*t)

Thus,

The plots for  and  are shown below.

k2 iL 0  0= iL iC=

i iC C
dvC

dt
---------= =

dvC

dt
--------- k2 e 25t– 25e 25t– k2 t 100– –=

dvC

dt
---------

t 0=

k2 2500+=

dvC

dt
--------- iC

C
---- iL

C
----= = t 0=

dvC

dt
---------

t 0=

iL 0 
C

--------------- 0= =

k2 2500+ 0= k2 2500–=

vC t  100 e 25 t–– 2500t 100+ =

iL t  iC t = C

iL t  iC t  0.2e 25t– 100 2500t+  20e 25t––= =

vC t  iL t 
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Solutions to EndofChapter Exercises

2.

The general form of the differential equation that describes this circuit is same as in Exercise 1,
that is,

From the characteristic equation  and the MATLAB script below

Time (sec)

V
ol

ta
ge

 (
V

) vC t  100 e 25 t–– 2500t 100+ =

Time (sec)

C
ur

re
nt

 (
A

)

iL t  0.2e 25t– 100 2500t+  20e 25t––=

+


100u0 t  V

4  5 H

21.83 mF

iL t  +


vC t 

d2vC

dt2
----------- R

L
---- dvC

dt
--------- 1

LC
--------vC+ + 100

LC
---------= t 0

d2vC

dt2
----------- 0.8

dvC

dt
--------- 9.16vC+ + 916=

s2 0.8s 9.16+ + 0=
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s=[1  0.8  9.16]; roots(s)

we obtain

ans =
  -0.4000 + 3.0000i
  -0.4000 - 3.0000i

that is,  and . Therefore, the total solution is

where

and

Thus,
  (1)

and with the initial condition  we obtain

or
  (2)

To evaluate  and  we differentiate (1) using MATLAB and evaluate it at .

syms t  k  phi; v0=100+k*exp(0.4*t)*cos(3*t+phi); v1=diff(v0)
% Must have Symbolic Math Toolbox installed

v1 =
-2/5*k*exp(-2/5*t)*cos(3*t+phi)-3*k*exp(-2/5*t)*sin(3*t+phi)

or

and with (2)
  (3)

Also,  and at 

s1 0.4– j3+= s2 0.4– j3–=

vC t  vCf vCn+ 100 ke
St–

nS t + cos+= =

S R 2L 0.4= =

nS 0
2 S

2– 1 LC R2 4L2– 9.16 0.16– 3= = = =

vC t  100 ke 0.4t– 3t + cos+=

vC 0  0=

0 100 k 0 + cos+=

k cos 100–=

k  t 0=

dvC

dt
--------- 0.4k– e 0.4t– 3t + cos 3ke 0.4t– 3 t + sin–=

dvC

dt
---------

t 0=

0.4k– cos 3k sin–=

dvC

dt
---------

t 0=

40 3k sin–=

dvC

dt
--------- iC

C
---- iL

C
----= = t 0=
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Solutions to EndofChapter Exercises

  (4)

From (3) and (4)
  (5)

and from (2) and (5)

The value of  can be found from either (2) or (5). From (2)

and by substitution into (1)

  (6)

Since , we use MATLAB to differentiate (6).

syms t; vC=100100.8*exp(0.4*t)*cos(3*t-0.1326); C=0.02183; iL=C*diff(vC)
% Must have Symbolic Math Toolbox installed

iL =
137529/156250*exp(-2/5*t)*cos(3*t-663/5000)+412587/62500*exp(-

2/5*t)*sin(3*t-663/5000)

137529/156250, 412587/62500

ans =
    0.8802
ans =

    6.6014

The plots for  and  are shown below.

dvC

dt
---------

t 0=

iL 0 
C

--------------- 0= =

3k sin 40=

3k sin
k cos
------------------ 40

100–
------------=

3 tan 0.4–=

 0.4– 3 1–tan 0.1326 rad– 7.6–= = =

k

k 0.1236– cos 100–=

k 100–
0.1236– cos

--------------------------------- 100.8–= =

vC t  100 100.8– e 0.4t– 3t 7.6– cos=

iL t  iC t  C dvC dt = =

iL t  0.88e 0.4t– 3t 7.6–  6.6e 0.4t– 3t 7.6– sin+cos=

vC t  iL t 
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3.
At  the circuit is as shown below.

At this time the inductor behaves as a short and the capacitor as an open. Then,

and this establishes the first initial condition as . Also,

Time (sec)

V
ol

ta
ge

 (
V

)

vC t  100 100.8– e 0.4t– 3t 7.6– cos=

C
ur

re
nt

 (
A

)

Time (sec)

iL t  0.88e 0.4t– 3t 7.6– 
6.6e 0.4t– 3t 7.6– sin

+cos=

t 0=

+
 

+

20 H100 

100 V 400 

vC 0 
1 120  F

iL 0 

iL 0  100 100 400+  I0 0.2 A= = =

I0 0.2 A=

vC 0  v400  400 iL 0  400 0.2 V0 80 V= = = = =
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Solutions to EndofChapter Exercises

and this establishes the second initial condition as .

For  the circuit is as shown below.

The general form of the differential equation that describes this circuit is same as in Exercise 1,
that is,

From the characteristic equation  we find that  and  and the
total response for the capacitor voltage is

  (1)

Using the initial condition  we obtain

or
  (2)

Differentiation of (1) and evaluation at  yields

  (3)

Also,  and at 

  (4)

Equating (3) and (4) we obtain

V0 80 V=

t 0

+ 
+

20 H100 

100 V

vC t 
1 120  F

d2vC

dt2
----------- R

L
---- dvC

dt
--------- 1

LC
--------vC+ + 100

LC
---------= t 0

d2vC

dt2
----------- 5

dvC

dt
--------- 6vC+ + 600=

s2 5s 6+ + 0= s1 2–= s2 3–=

vC t  vCf vCn+ 100 k1e
s1t

k2e
s2t

+ + 100 k1e 2t– k2e 3t–+ += = =

V0 80 V=

vC 0  V0 80 V 100 k1e0 k2e0+ += ==

k1 k2+ 20–=

t 0=

dvC

dt
---------

t 0=

2k1– 3k2–=

dvC

dt
--------- iC

C
---- iL

C
----= = t 0=

dvC

dt
---------

t 0=

iL 0 
C

--------------- 0.2
1 120
---------------- 24= = =
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  (5)

and simultaneous solution of (2) and (5) yields  and 

By substitution into (1) we find the total solution

4.

This is the same circuit as in Exercise 3 where the DC voltage source has been replaced by an
AC source that is being applied at . No initial conditions were given so we will assume

that  and . Also, the circuit constants are the same and thus the natu-

ral response has the form .

We will find the forced (steady-state) response using phasor circuit analysis where ,
, , and . The phasor circuit is shown below.

Using the voltage division expression we obtain

and in the  . Therefore, the total response is

  (1)

2k1– 3k2– 24=

k1 36–= k2 16=

vC t  vCf vCn+ 100 36– e 2t– 16e 3t–+= =

+ 
+

20 H100 

400 

vC t 
1 120  F

S
t 0=vS

vS 100 tcos u0 t  V=

t 0+=

iL 0  0= vC 0  0=

vCn k1e 2t– k2e 3t–+=

 1=

jL j20= j– C j120–= 100 t 100 0cos

+ 
+

j20 100 

VS

VS 100 0 V=

VCj– 120 

VC
j120–

100 j20 j120–+
----------------------------------------100 0 j120–

100 j100+
--------------------------100 0 120 90 100 0–

100 2 45
---------------------------------------------------- 60 2 135–= = = =

t domain– vCf 60 2 t 135– cos=

vC t  60 2 t 135– cos k1e 2t– k2e 3t–+ +=
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Solutions to EndofChapter Exercises

Using the initial condition  and (1) we obtain

and since , the above expression reduces to

  (2)
Differentiating (1) we obtain

and

or
  (3)

Also,  and at 

  (4)

Equating (3) and (4) we obtain
  (5)

Simultaneous solution of (2) and (5) yields  and . Then, by substitution into
(1) we obtain

5.

We must first find the value of  before we can establish initial conditions for  and

.

vC 0  0=

vC 0  0 60 2 135– cos k1 k2+ += =

135– cos 2– 2=

k1 k2+ 60=

dvC

dt
--------- 60 2 t 45+ sin 2k– 1e 2t– 3k2– e 3t–+=

dvC

dt
---------

t 0=

60 2 45 sin 2k– 1 3k2–=

dvC

dt
---------

t 0=

60 2k– 1 3k2–=

dvC

dt
--------- iC

C
---- iL

C
----= = t 0=

dvC

dt
---------

t 0=

iL 0 
C

--------------- 0= =

2k1 3k2+ 60=

k1 120= k2 60–=

vC t  60 2 t 135– cos 120e 2t– 60– e 3t–+=

+
 

+

12 V

3 

2 

R

A
B

S 6 

3 H
vC t 1 12  F

iL t t 0=

R iL 0  0=

vC 0  0=
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The condition for critical damping is  where  and

. Then,  where . Therefore,

, or , or , or  and thus .

At  the circuit is as shown below.

From the circuit above

and

At  the circuit is as shown below.

Since the circuit is critically damped, the solution has the form

where  and thus

  (1)

With the initial condition  relation (1) becomes  or
 and (1) simplifies to

  (2)

P
2 0

2– 0= P G 2C 1 2R'C= =

0
2 1 LC= P

2 1
2R' 1 12
--------------------------- 

 
2

0
2= = 1

3 1 12
----------------------= R' R 2 +=

12
2 R 2+ 
--------------------- 

 
2

4=
6

R 2+
------------- 

 
2

4= R 2+ 2 36 4 9= = R 2+ 3= R 1=

t 0=

+ 
+

12 V

3  1  6 

vC 0  iL 0 
v6 

+ 

vC 0  v6 
6

3 1 6+ +
--------------------- 12 7.2 V= = =

iL 0  v6 

6
--------- 7.2

6
------- 1.2 A= = =

t 0+=


+

6 

3 HvC t 
1 12  F

iL t 

1 

2 
iC t iR t 

vC t  e
P t–

k1 k2t+ =

P
1

2 1 2+  1 12
--------------------------------------- 
  2= =

vC t  e 2 t– k1 k2t+ =

vC 0  7.2 V= 7.2 e0 k1 0+ =
k1 7.2 V=

vC t  e 2 t– 7.2 k2t+ =
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Solutions to EndofChapter Exercises

Differentiating (2) we obtain

and
  (3)

Also,  and at 

  (4)

because at  the capacitor is an open circuit.

Equating (3) and (4) we obtain  or  and by substitution into (2)

We find  from  or  where 
and . Then,

6.

At  the circuit is as shown below where , , and
thus the initial conditions have been established.

For  the circuit is as shown below.
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For this circuit

and with  the above relation can be written as

The characteristic equation of the last expression above yields  and  and thus

  (1)

With the initial condition  and (1) we obtain

  (2)
Differentiating (1) we obtain

and
  (3)

Also,  and at 

  (4)

From (3) and (4)
  (5)
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Solutions to EndofChapter Exercises

and from (2) and (5)  and . By substitution into (1) we obtain

Thus, 

The plot for  is shown below.
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Chapter 2

Resonance

his chapter defines series and parallel resonance. The quality factor  is then defined in
terms of the series and parallel resonant frequencies. The halfpower frequencies and
bandwidth are also defined in terms of the resonant frequency.

2.1Series Resonance

Consider phasor series  circuit of Figure 2.1.

Figure 2.1. Series RLC phasor circuit

The impedance  is 

(2.1)

or
(2.2)

Therefore, the magnitude and phase angle of the impedance are:

(2.3)
and

(2.4)

The components of  are shown on the plot in Figure 2.2.

The frequency at which the capacitive reactance  and the inductive reactance
 are equal is called the resonant frequency. The resonant frequency is denoted as  or

 and these can be expressed in terms of the inductance  and capacitance  by equating the
reactances, that is,

T Q
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Figure 2.2. The components of  in a series RLC circuit

or

(2.5)

and
(2.6)

We observe that at resonance  where  denotes the impedance value at resonance, and
. In our subsequent discussion the subscript zero will be used to indicate that the circuit

variables are at resonance.

Example 2.1  
For the circuit shown in Figure 2.3, compute , , C, , , and . Then, draw a

phasor diagram showing , , and .

Figure 2.3. Circuit for Example 2.1
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Series Resonance

Solution:
At resonance,

and thus

Then,

Since

it follows that

Therefore,

or

Now,

and

The phasor diagram showing , , and  is shown in Figure 2.4.

Figure 2.4. Phasor diagram for Example 2.1

Figure 2.4 reveals that  and these voltages are much higher than the
applied voltage of . This illustrates the useful property of resonant circuits to develop high
voltages across capacitors and inductors.
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2.2  Quality Factor Q0s in Series Resonance

The quality factor * is an important parameter in resonant circuits. Its definition is derived from
the following relations:
At resonance,

and

Then
(2.7)

and
(2.8)

At series resonance the left sides of (2.7) and (2.8) are equal and therefore,

Then, by definition

(2.9)

In a practical circuit, the resistance  in the definition of  above, represents the resistance of
the inductor and thus the quality factor  is a measure of the energy storage property of the induc-

tance  in relation to the energy dissipation property of the resistance  of that inductance.

In terms of , the magnitude of the voltages across the inductor and capacitor are

(2.10)

and therefore, we say that there is a “resonant” rise in the voltage across the reactive devices and
it is equal to the  times the applied voltage. Thus in Example 2.1,

* We denote the quality factor for series resonant circuits as , and the quality factor for parallel resonant cir-
cuits as .
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Quality Factor Q0s in Series Resonance

The quality factor  is also a measure of frequency selectivity. Thus, we say that a circuit with a
high  has a high selectivity, whereas a low  circuit has low selectivity. The high frequency
selectivity is more desirable in parallel circuits as we will see in the next section.

We will see later that 

(2.11)

Figure 2.5 shows the relative response versus  for , and  where we observe that
highest  provides the best frequency selectivity, i.e., higher rejection of signal components out-
side the bandwidth which is the difference in the  frequencies. The curves
were created with the MATLAB script below.
w=450:1:550; x1=1./(1+25.^2*(w./500500./w).^2); plot(w,x1);...
x2=1./(1+50.^2*(w./500500./w).^2); plot(w,x2);...
x3=1./(1+100.^2*(w./500500./w).^2); plot(w,x3);...
plot(w,x1,w,x2,w,x3); grid

We also observe from (2.9) that selectivity depends on  and this dependence is shown on the
plot of Figure 2.6.

Figure 2.5. Selectivity curves with , and 

The curves in Figure 2.6 were created with the MATLAB script below.
w=0:10:6000; R1=0.5; R2=1; L=10^(3); C=10^(4); Y1=1./sqrt(R1.^2+(w.*L1./(w.*C)).^2);...
Y2=1./sqrt(R2.^2+(w.*L1./(w.*C)).^2); plot(w,Y1,w,Y2)
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Figure 2.6. Selectivity curves with different values of R

If we keep one reactive device, say , constant while varying , the relative response “shifts” as
shown in Figure 2.7, but the general shape does not change.

Figure 2.7. Relative response with constant L and variable C

The curves in Figure 2.7 were created with the MATLAB script below.
w=0:10:6000; R=0.5; L=10^(3); C1=10^(4); C2=0.5*10^(4);...
Y1=1./sqrt(R.^2+(w.*L1./(w.*C1)).^2);...
Y2=1./sqrt(R.^2+(w.*L1./(w.*C2)).^2); plot(w,Y1,w,Y2)

2.3 Parallel Resonance
Parallel resonance (antiresonance) applies to parallel circuits such as that shown in Figure 2.8.
The admittance  for this circuit is given by 

R
el

at
iv

e 
R

es
po

ns
e

Radian Frequency  

R 0.5 =

R 1.0 =

L C

R
el

at
iv

e 
R

es
po

ns
e

Radian Frequency  

C 10 4–  F=
C 0.5 10 4–  F=

Y

Admit cetan Y Phasor Current
Phasor Voltage
------------------------------------ IS

V
---- G jC 1

jL
---------+ + G j C 1

L
-------– 

 += = = = =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystemsModeling 27
Copyright © Orchard Publications

Parallel Resonance

Figure 2.8. Parallel GLC circuit for defining parallel resonance
or

(2.12)

Therefore, the magnitude and phase angle of the admittance  are:

(2.13)
and

(2.14)

The frequency at which the inductive susceptance  and the capacitive susceptance
 are equal is, again, called the resonant frequency and it is also denoted as  We can

find  in terms of  and  as before.

Since

then,
(2.15)

as before. The components of  are shown on the plot of Figure 2.9.

Figure 2.9. The components of  in a parallel RLC circuit
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We observe that at this parallel resonant frequency,

(2.16)
and

(2.17)

Example 2.2  

For the circuit of Figure 2.10, . Compute , , and .

Figure 2.10. Circuit for Example 2.2
Solution:

The capacitive and inductive susceptances are 

and

and since , the given circuit operates at parallel resonance with .
Then,

and

Next, to compute  and , we must first find . For this example,

In phasor form,

Now,

and in the domain,
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iS t  10 5000t mAcos= iG t  iL t  iC t 

G
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Quality Factor Q0P in Parallel Resonance

or

Similarly, 

and in the domain,

or

We observe that  as expected.

2.4  Quality Factor Q0P in Parallel Resonance
At parallel resonance,

and

Then,
(2.18)

Also,
(2.19)

At parallel resonance the left sides of (2.18) and (2.19) are equal and therefore,

Now, by definition

(2.20)

The above expressions indicate that at parallel resonance, it is possible to develop high currents
through the capacitors and inductors. This was found to be true in Example 2.2.

2.5  General Definition of Q

The general (and best) definition of  is

(2.21)
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Essentially, the resonant frequency is the frequency at which the inductor gives up energy just as
fast as the capacitor requires it during one quarter cycle, and absorbs energy just as fast as it is
released by the capacitor during the next quarter cycle. This can be seen from Figure 2.11 where
at the instant of maximum current the energy is all stored in the inductance, and at the instant of
zero current all the energy is stored in the capacitor.

Figure 2.11. Waveforms for  and  at resonance

2.6 Energy in L and C at Resonance

For a series  circuit we let

Then,

Also,
(2.22)

and

(2.23)

Therefore, by (2.22) and (2.23), the total energy  at any instant is

(2.24)

and this expression is true for any series circuit, that is, the circuit need not be at resonance.
However, at resonance,
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HalfPower Frequencies  Bandwidth

or

By substitution into (2.24),

 (2.25)

and (2.25) shows that the total energy  is dependent only on the circuit constants ,  and
resonant frequency, but it is independent of time.

Next, using the general definition of  we obtain:

or
(2.26)

and we observe that (2.26) is the same as (2.9). Similarly,

or
(2.27)

and this is also the same as (2.9).

Following the same procedure for a simple  (or ) parallel circuit we can show that:

(2.28)

and this is the same as (2.20).

2.7 HalfPower Frequencies  Bandwidth
Parallel resonance is by far more important and practical than series resonance and therefore, the
remaining discussion will be on parallel  (or ) circuits. The plot in Figure 2.12 shows
the magnitude of the voltage response versus radian frequency for a typical parallel  circuit.
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Figure 2.12. Relative voltage vs.radian frequency in a parallel  circuit

By definition, the halfpower frequencies  and  in Figure 2.12 are the frequencies at which
the magnitude of the input admittance of a parallel resonant circuit, is greater than the magni-
tude at resonance by a factor of , or equivalently, the frequencies at which the magnitude of
the input impedance of a parallel resonant circuit, is less than the magnitude at resonance by a
factor of  as shown above. We observe also, that  and  are not exactly equidistant from

. However, it is convenient to assume that they are equidistant, and unless otherwise stated,
this assumption will be followed in the subsequent discussion.

We call  the lower halfpower point, and  the upper halfpower point. The difference 

is the halfpower bandwidth , that is,

(2.29)

The names halfpower frequencies and halfpower bandwidth arise from the fact that the power

at these frequencies drop to  since .

The bandwidth  can also be expressed in terms of the quality factor  as follows:

Consider the admittance
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HalfPower Frequencies  Bandwidth

Recalling that for parallel resonance

by substitution we obtain
(2.30)

and if , then

Next, we want to find the bandwidth  in terms of the quality factor . At the half

power points, the magnitude of the admittance is  and, if we use the halfpower
points as reference, then to obtain the admittance value of

we must set

for .

We must also set

for .

Recalling that  and solving the above expressions for  and , we obtain

(2.31)

and
(2.32)

Subtraction of (2.32) from (2.31) yields

(2.33)

or
(2.34)

As mentioned earlier,  and  are not equidistant from  In fact, the resonant frequency
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 is the geometric mean* of  and , that is,

(2.35)

This can be shown by multiplication of the two expressions in (2.31) and (2.32) and substitution
into (2.33).

Example 2.3  
For the network of Figure 2.13, find:

a. 

b.  

c. 

d. 

e. 

 
Figure 2.13. Network for Example 2.3

Solution:
a.

or

b.

c.

d.

* The geometric mean of n positive numbers , ,...,  is the nth root of the product.
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HalfPower Frequencies  Bandwidth

e.

The SimPowerSystems model for the circuit in Figure 2.13 is shown in Figure 2.14.

Figure 2.14. SimPowerSystems model for the circuit in Figure 2.13

To observe the impedance of the parallel RLC circuit in Figure 2.14 we double-click the power-
gui block to open the Simulation and configuration options window shown in Figure 2.15, we
click the Impedance vs Frequency option, and the magnitude an phase of the impedance as a
function of frequency are shown in Figure 2.16.

Figure 2.15. Simulation and configuration options in the powergui 
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In Figure 2.16, the frequency is in logarithmic scale for the frequency range  to  as
shown on the right pane. The resonant frequency is about  and at that frequency the mag-
nitude of the impedance is  (purely resistive) and the phase is  degrees.

Figure 2.16. Plots for the magnitude and phase for the model in Figure 2.14

2.8 A Practical Parallel Resonant Circuit
In our previous discussion, we assumed that the inductors are ideal, but a real inductor has some
resistance. The circuit shown in Figure 2.17 is a practical parallel resonant circuit. To derive an
expression for its resonant frequency, we make use of the fact that the resonant frequency is inde-
pendent of the conductance  and, for simplicity, it is omitted from the network of Figure 2.17.
We will therefore, find an expression for the network of Figure 2.18.

103 Hz 105 Hz
8 KHz 

1 K 0

G
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A Practical Parallel Resonant Circuit

 
Figure 2.17. A practical parallel resonant circuit

Figure 2.18. Simplified network for derivation of the resonant frequency

For the network of Figure 2.18,

and

where

and

Also,

and

Then,

(2.36)

Now, at resonance, the imaginary component of  must be zero, that is,

Y G
L

C
R

IT

L
C

R

IL
IC

+

V



IL
V

R jL+
-------------------- R j– L 

R2 L 2+
---------------------------V= =

IC
V

1 jC 
--------------------- jC V= =

Re IL  R
R2 L 2+
---------------------------V=

Im IL  – L
R2 L 2+
---------------------------V=

Re IC  0=

Im IC  C V=

IT IL IC+ Re IL  Im IL + V Re IC  Im IC + V+= =

Re IL  Re IC  Im IL  Im IC + + + V=

Re IT  Im IT + V=
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and solving for  we obtain

(2.37)

or

(2.38)

We observe that for , (2.37) reduces to  as before.

2.9 Radio and Television Receivers
When a radio or TV receiver is tuned to a particular station or channel, it is set to operate at the
resonant frequency of that station or channel. As we have seen, a parallel circuit has high imped-
ance (low admittance) at its resonant frequency. Therefore, it attenuates signals at all frequen-
cies except the resonant frequency. 

We have also seen that one particular inductor and one particular capacitor will resonate to one
frequency only. Varying either the inductance or the capacitance of the tuned circuit, will
change the resonant frequency. Generally, the inductance is kept constant and the capacitor
value is changed as we select different stations or channels. 

The block diagram of Figure 2.19 is a typical  (Amplitude Modulation) radio receiver.

Figure 2.19. Block diagram of a typical AM radio receiver

The antenna picks up signals from several stations and these are fed into the Radio Frequency
( ) Amplifier which improves the SignaltoNoise ( ) ratio. The  amplifier also serves as
a preselector. This preselection suppresses the imagefrequency interference as explained below.
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Radio and Television Receivers

When we tune to a station of, say , we are setting the  circuit to  and at
the same time the local oscillator is set at . This is accom-
plished by the capacitor in the  amplifier which is also ganged to the local oscillator. These
two signals, one of  and the other of , are fed into the mixer whose output
into the Intermediate Frequency ( ) amplifier is ; this is the difference between these
two frequencies ( ).

The  amplifier is always set at  and therefore if the antenna picks another signal from
another station, say , it would be mixed with the local oscillator to produce a frequency
of  but since the IF amplifier is set at , the unwanted

 signal will not be amplified. Of course, in order to hear the signal at  the radio
receiver must be retuned to that frequency and the local oscillator frequency will be changed to

 so that the difference of these frequencies will be again
.

Now let us assume that we select a station at . Then, the local oscillator will be set to
 so that the  signal will again be . Now, let us sup-

pose that a powerful nearby station broadcasts at  and this signal is picked up by the
mixer circuit. The difference between this signal and the local oscillator will also be 

. The  amplifier will then amplify both signals and the result
will be a strong interference so that the radio speaker will produce unintelligent sounds. This
interference is called imagefrequency interference and it is reduced by the  amplifier before
entering the mixer circuit and for this reason the  amplifier is said to act as a preselector.

The function of the detector circuit is to convert the  signal which contains both the carrier
and the desired signal to an audio signal and this signal is amplified by the Audio Frequency
( ) Amplifier whose output appears at the radio speaker.

Example 2.4  

A radio receiver with a parallel  circuit whose inductance is  is tuned to a radio
station transmitting at  frequency.

a. What is the value of the capacitor of this circuit at this resonant frequency?

b. What is the value of conductance  if ?

c. If a nearby radio station transmits at  and both signals picked up by the antenna have
the same current amplitude  ( ), what is the ratio of the voltage at  to the volt-
age at ? 

740 KHz RF 740 KHz
740 KHz 456 KHz+ 1196 KHz=

RF
740 KHz 1196 KHz

IF 456 KHz
1196 KHz 740–  KHz 456 KHz=

IF 456 KHz
850 KHz

1196 KHz 850–  KHz 346 KHz= 456 KHz
850 KHz 850 KHz

850 KHz 456 KHz+ 1306 KHz=

456 KHz

600 KHz
600 KHz 456 KHz+ 1056 KHz= IF 456 KHz

1512 KHz
456 KHz

1512 KHz 1056–  KHz 456 KHz= IF

RF
RF

IF

AF

GLC L 0.5 mH=

810 KHz

G Q0P 75=

740 KHz
I A 810 KHz

740 KHz
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Solution:
a.

or

Then,

b.

or

c.
(2.39)

Also,

where

or

or

and
(2.40)

Then from (2.39) and (2.40),

(2.41)

that is, the voltage developed across the parallel circuit when it is tuned at  is
 times larger than the voltage developed at .

0
2 1
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f0
2 1
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C 1
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----------------------------------------------------------------------- 77.2 pF= =
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75

---------------------------------------------------------------------- 5.4   1–= = =
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  2
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I
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---------------------------=

V810 KHz
V740 KHz

------------------------- I 5.24 10 6–
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Summary

2.10 Summary

 In a series  circuit, the frequency at which the capacitive reactance  and the
inductive reactance  are equal, is called the resonant frequency.

 The resonant frequency is denoted as  or  where

and

 The quality factor  at series resonance is defined as

 In a parallel  circuit, the frequency at which the inductive susceptance  and
the capacitive susceptance  are equal is, again, called the resonant frequency and it
is also denoted as  As in a series  circuit, the resonant frequency is 

 The quality factor  at parallel resonance is defined as

 The general definition of  is

 In a parallel  circuit, the halfpower frequencies  and  are the frequencies at which
the magnitude of the input admittance of a parallel resonant circuit, is greater than the magni-
tude at resonance by a factor of , or equivalently, the frequencies at which the magnitude
of the input impedance of a parallel resonant circuit, is less than the magnitude at resonance
by a factor of .

RLC XC 1 C=

XL L=

0 f0
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 We call  the lower halfpower point, and  the upper halfpower point. The difference

 is the halfpower bandwidth , that is,

 The bandwidth  can also be expressed in terms of the quality factor  as 

or

1 2

2 1– BW

Bandwidth BW 2 1–= =

BW Q

BW 2 1–
0

Q0P
---------= =

  BW f2 f1–
f0

Q0P
---------= =
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Exercises

2.11  Exercises

1. A series  circuit is resonant at  with  and its halfpower band-
width is . Find , , and  for this circuit.

2. For the network below the impedance  is variable,  and . To what
value should  be adjusted so that the network will operate at resonant frequency?

3. For the circuit below with the capacitance  adjusted to , the halfpower frequencies are
 and .

a.  Compute the approximate resonant frequency.

b.  Compute the exact resonant frequency.

c.  Using the approximate value of the resonant frequency, compute the values of , ,

and .

4. The  circuit below is resonant at  with  and its halfpower
bandwidth is .

a.  Compute , , and  for this circuit.

b.  Compute the magnitude of the admittances  and  corresponding to the half
power frequencies  and . Use MATLAB to plot  in the 
range.

RLC f0 1 MHz= Z0 100 =

BW 20 KHz= R L C

Z1 Z2 3 j4+= Z3 4 j3–=

Z1

Z1

Z2 Z3ZIN

C 1 F
f1 925 KHz= f2 1075 KHz=

Qop G

L

G L C

GLC f0 500 KHz= V0 20 V=

BW 20 KHz=

L C I0

Y1 Y2

f1 f2 Y 100 KHz f 1000 KHz

G L C
+



V 
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5. For the circuit below  and . Find:
a.  

b.  

c.   and 

d.  

6. The seriesparallel circuit below will behave as a filter if the parallel part is made resonant to
the frequency we want to suppress, and the series part is made resonant to the frequency we
wish to pass. Accordingly, we can adjust capacitor  to achieve parallel resonance which will
reject the unwanted frequency by limiting the current through the resistive load to its mini-
mum value. Afterwards, we can adjust  to make the entire circuit series resonant at the
desired frequency thus making the total impedance minimum so that maximum current will
flow into the load.

For this circuit, we want to set the values of capacitors so that  will be maximum at
 and minimum at . Compute the values of  and  that will

achieve these values. It is suggested that you use MATLAB to plot  versus frequency
 in the interval  to verify your answers.
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Solutions to EndofChapter Exercises

2.12 Solutions to EndofChapter Exercises

1. At series resonance  and thus . We find  from 
where . Also,

Then,

and from 

Check with MATLAB:

f0=10^6; w0=2*pi*f0; Z0=100; BW=2*pi*20000; w1=w0BW/2; w2=w0+BW/2;...
R=Z0; Qos=w0/BW; L=R*Qos/w0; C=1/(w0^2*L); fprintf(' \n');...
fprintf('R = %5.2f Ohms \t', R); fprintf('L = %5.2e H \t', L);...
fprintf('C = %5.2e F \t', C); fprintf(' \n'); fprintf(' \n');

R = 100.00 Ohms   L = 7.96e-004 H    C = 3.18e-011 F

2.

where

We let  and . For resonance we must have

Z0 R 100= = R 100 = L Q0S 0L R=

0 2f0=

Q0S
0
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0
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---------- 2 106

2 20 103
--------------------------------- 50= = = =
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C 1
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2L
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2
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7 j+
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----------= =

168 j49 j24– 7+ +
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---------------------------------------------- 175 j25+

50
----------------------- 3.5 j0.5+= ==

ZIN RIN jXIN+= Z1 R1 jX1+=

ZIN RIN jXIN+ R1 jX1 3.5 j0.5+ + + RIN 0+ R1 jX1 3.5 j0.5+ + += = = =
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Equating real and imaginary parts we obtain

and while  can be any real number, we must have  and thus

3.
a.

Then,

b. The exact value of  is the geometric mean of  and  and thus

c.
. Also, 

Then

and

4.
a.

Also,  or

RIN R1 3.5+=

0 jX1 j0.5+=

R1 jX1 j0.5–=

Z1 R1 j0.5 –=
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Solutions to EndofChapter Exercises

b.  and 

Likewise,

We will use MATLAB to do the computations.

G=10^(3); BC1=2*pi*490*10^3*7.96*10^(9);...
BL1=1/(2*pi*490*10^3*12.73*10^(6)); Y1=G+j*(BC1BL1);...
BC2=2*pi*510*10^3*7.96*10^(9); BL2=1/(2*pi*510*10^3*12.73*10^(6));...
Y2=G+j*(BC2BL2); fprintf(' \n'); fprintf('magY1 = %5.2e mho \t', abs(Y1));...
fprintf('magY2 = %5.2e mho \t', abs(Y2)); fprintf(' \n'); fprintf(' \n')

magY1 = 1.42e-003 mho magY2 = 1.41e-003 mho

We will use the following MATLAB script for the plot

f=100*10^3: 10^3: 1000*10^3; w=2*pi*f;...
G=10^(3); C=7.96*10^(9); L=12.73*10^(6);...
BC=w.*C; BL=1./(w.*L); Y=G+j*(BCBL); plot(f,abs(Y));...
xlabel('Frequency in Hz'); ylabel('Magnitude of Admittance');grid

The plot is shown below.

f1 f0 BW 2– 500 10– 490 KHz= = = f2 f0 BW 2+ 500 10+ 510 KHz= = =

Y f f1=
G j 1C 1

1L
----------– 

 +=
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2 490 103 12.73 10 6–
-------------------------------------------------------------------------– 

 +=

Y f f2=
G j 1C 1

1L
----------– 

 +=

10 3– j 2 510 103 7.96 10 9– 1
2 510 103 12.73 10 6–
-------------------------------------------------------------------------– 

 +=
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5.

a. It is important to remember that the relation  applies only to series  and
parallel  circuits. For any other circuit we must find the input impedance , set the
imaginary part of  equal to zero, and solve for . Thus, for the given circuit

1 mH
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Solutions to EndofChapter Exercises

For resonance, the imaginary part of  must be zero, that is,

and thus

b.

c.

d. At resonance

 and 

The phasor equivalent circuit is shown below.

We let , , and . Using nodal analysis we obtain:
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We will use MATLAB to obtain the value of .

Vs=170; z1=1; z2=j*100/3; z3=10+j*30; Z=1/z1+1/z2+1/z3; Vc0=Vs/Z;...
fprintf(' \n'); fprintf('Vc0 = %6.2f', abs(Vc0)); fprintf(' \n'); fprintf(' \n')

Vc0 = 168.32

6.
First, we will find the appropriate value of . We recall that at parallel resonance the voltage
is maximum and the current is minimum. For this circuit the parallel resonance was found as
in (2.37), that is,

or

Next, we must find the value of  that will make the entire circuit series resonant (minimum
impedance, maximum current) at . In the circuit below we let ,

, , and . 

Then, 
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Solutions to EndofChapter Exercises

and
  (1)

where  is found with the MATLAB script below.

format short g; f=10000; w=2*pi*f; C2=6.62*10^(9); XC2=1/(w*C2); L=2*10^(3);...
XL=w*L; R1=100; z2=j*XC2; z3=R1+j*XL; Zp=z2*z3/(z2+z3)

Zp =
      111.12 + 127.72i

and by substitution into (1)

  (2)

The expression of (2) will be minimum if we let  at . Then, the
capacitor  value must be such that  or

Shown below is the plot of  versus frequency and the MATLAB script that produces this
plot.

f=1000: 100: 60000; w=2*pi*f; Vs=170; C1=1.25*10^(7); C2=6.62*10^(9); L=2.*10.^(3);...
R1=100; Rld=1; z1=j./(w.*C1); z2=j./(w.*C2); z3=R1+j.*w.*L; Zld=Rld;...
Zin=z1+z2.*z3./(z2+z3); Vld=Zld.*Vs./(Zin+Zld); magVld=abs(Vld);...
plot(f,magVld); axis([1000 60000 0 2]);...
xlabel('Frequency f'); ylabel('|Vld|'); grid

ZIN z1 z2 z3 zLOAD+ +=

ZIN f 10 KHz=  z1 z2 z3
f 10 KHz=

zLOAD+ + z1 z2 z3
f 10 KHz=

+ += =

z2 z3
f 10 KHz=

ZIN f 10 KHz=  z1 111.12 j127.72 1+ + + z1 113.12+ j127.72 += =

z1 j127.72 –= f 10 KHz=

C1 1 C 127.72=

C1
1

2 104 127.72
-------------------------------------------- 1.25 10 7–  F 0.125 F= = =

VLD
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This circuit is considered to be a special type of filter that allows a specific frequency (not a
band of frequencies) to pass, and attenuates another specific frequency.
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Chapter 3

Elementary Signals

his chapter begins with a discussion of elementary signals that may be applied to electric
networks. The unit step, unit ramp, and delta functions are then introduced. The sampling
and sifting properties of the delta function are defined and derived. Several examples for

expressing a variety of waveforms in terms of these elementary signals are provided. 

3.1 Signals Described in Math Form

Consider the network of Figure 3.1 where the switch is closed at time .

Figure 3.1. A switched network with open terminals

We wish to describe  in a math form for the time interval . To do this, it is conve-
nient to divide the time interval into two parts, , and .

For the time interval  the switch is open and therefore, the output voltage  is zero.
In other words,

(3.1)

For the time interval  the switch is closed. Then, the input voltage  appears at the
output, i.e.,

(3.2)

Combining (3.1) and (3.2) into a single relationship, we obtain

(3.3)

We can express (3.3) by the waveform shown in Figure 3.2.

The waveform of Figure 3.2 is an example of a discontinuous function. A function is said to be dis-
continuous if it exhibits points of discontinuity, that is, the function jumps from one value to
another without taking on any intermediate values.
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Figure 3.2. Waveform for  as defined in relation (3.3)

3.2 The Unit Step Function 

A well known discontinuous function is the unit step function * which is defined as

(3.4)

It is also represented by the waveform of Figure 3.3.

Figure 3.3. Waveform for 

In the waveform in Figure 3.3, the unit step function  changes abruptly from  to  at
. But if it changes at  instead, it is denoted as . In this case, its waveform and

definition are as shown in Figure 3.4 and relation (3.5) respectively.

Figure 3.4. Waveform for 

(3.5)

If the unit step function changes abruptly from  to  at , it is denoted as . In
this case, its waveform and definition are as shown in Figure 3.5 and relation (3.6) respectively.

* In some books, the unit step function is denoted as , that is, without the subscript 0. In this text, however, we
will reserve the  designation for any input when we will discuss state variables in Chapter 7.
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The Unit Step Function

Figure 3.5. Waveform for 

(3.6)

Example 3.1  

Consider the network of Figure 3.6, where the switch is closed at time .

Figure 3.6. Network for Example 3.1

Express the output voltage  as a function of the unit step function, and sketch the appropriate
waveform.

Solution:

For this example, the output voltage  for , and  for . Therefore,

 (3.7)

and the waveform is shown in Figure 3.7.

Figure 3.7. Waveform for Example 3.1

Other forms of the unit step function are shown in Figure 3.8.

Unit step functions can be used to represent other timevarying functions such as the rectangular
pulse shown in Figure 3.9.
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Figure 3.8. Other forms of the unit step function

Figure 3.9. A rectangular pulse expressed as the sum of two unit step functions

Thus, the pulse of Figure 3.9(a) is the sum of the unit step functions of Figures 3.9(b) and 3.9(c)
and it is represented as .

The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source. For example, a constant voltage source of  applied at , can be
denoted as . Likewise, a sinusoidal voltage source  that is applied to
a circuit at , can be described as . Also, if the excitation in a
circuit is a rectangular, or triangular, or sawtooth, or any other recurring pulse, it can be repre-
sented as a sum (difference) of unit step functions.

Example 3.2  
Express the square waveform of Figure 3.10 as a sum of unit step functions. The vertical dotted
lines indicate the discontinuities at , and so on.
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The Unit Step Function

Figure 3.10. Square waveform for Example 3.2
Solution:

Line segment  has height , starts at , and terminates at . Then, as in Example 3.1, this
segment is expressed as

(3.8)

Line segment  has height , starts at  and terminates at . This segment is
expressed as 

(3.9)

Line segment  has height , starts at  and terminates at . This segment is expressed
as 

(3.10)

Line segment  has height , starts at , and terminates at . It is expressed as 

(3.11)

Thus, the square waveform of Figure 3.10 can be expressed as the summation of (3.8) through
(3.11), that is,

(3.12)

Combining like terms, we obtain

(3.13)

Example 3.3  

Express the symmetric rectangular pulse of Figure 3.11 as a sum of unit step functions.

Solution:

This pulse has height , starts at , and terminates at . Therefore, with refer-
ence to Figures 3.5 and 3.8 (b), we obtain
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Figure 3.11. Symmetric rectangular pulse for Example 3.3

(3.14)

Example 3.4  

Express the symmetric triangular waveform of Figure 3.12 as a sum of unit step functions.

Figure 3.12. Symmetric triangular waveform for Example 3.4

Solution:
We first derive the equations for the linear segments  and  shown in Figure 3.13.

Figure 3.13. Equations for the linear segments in Figure 3.12

For line segment ,
(3.15)

and for line segment ,

(3.16)

Combining (3.15) and (3.16), we obtain

(3.17)
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The Unit Step Function

Example 3.5  
Express the waveform of Figure 3.14 as a sum of unit step functions.

Figure 3.14. Waveform for Example 3.5
Solution:
As in the previous example, we first find the equations of the linear segments linear segments 
and  shown in Figure 3.15.

Figure 3.15. Equations for the linear segments of Figure 3.14

Following the same procedure as in the previous examples, we obtain

Multiplying the values in parentheses by the values in the brackets, we obtain

and combining terms inside the brackets, we obtain

(3.18)
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Two other functions of interest are the unit ramp function, and the unit impulse or delta function.
We will introduce them with the examples that follow.

Example 3.6  

In the network of Figure 3.16  is a constant current source and the switch is closed at time
. Express the capacitor voltage  as a function of the unit step.

Figure 3.16. Network for Example 3.6
Solution:

The current through the capacitor is , and the capacitor voltage  is

* (3.19)

where  is a dummy variable.

Since the switch closes at , we can express the current  as
(3.20)

and assuming that  for , we can write (3.19) as

(3.21)

or

(3.22)

Therefore, we see that when a capacitor is charged with a constant current, the voltage across it is
a linear function and forms a ramp with slope  as shown in Figure 3.17.

* Since the initial condition for the capacitor voltage was not specified, we express this integral with  at the lower limit of
integration so that any non-zero value prior to  would be included in the integration.
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The Unit Ramp Function

Figure 3.17. Voltage across a capacitor when charged with a constant current source

3.3 The Unit Ramp Function 

The unit ramp function, denoted as , is defined as

(3.23)

where  is a dummy variable.

We can evaluate the integral of (3.23) by considering the area under the unit step function 
from  as shown in Figure 3.18.

Figure 3.18. Area under the unit step function from 

Therefore, we define  as

(3.24)

Since  is the integral of , then  must be the derivative of , i.e.,

(3.25)

Higher order functions of  can be generated by repeated integration of the unit step function. For
example, integrating  twice and multiplying by , we define  as

(3.26)
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Similarly,

(3.27)

and in general,

(3.28)

Also,
(3.29)

Example 3.7  

In the network of Figure 3.19, the switch is closed at time  and  for . Express
the inductor voltage  in terms of the unit step function.

Figure 3.19. Network for Example 3.7
Solution: 
The voltage across the inductor is

(3.30)

and since the switch closes at ,
(3.31)

Therefore, we can write (3.30) as

(3.32)

But, as we know,  is constant (  or ) for all time except at  where it is discontinuous.
Since the derivative of any constant is zero, the derivative of the unit step  has a nonzero
value only at . The derivative of the unit step function is defined in the next section.
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The Delta Function

3.4 The Delta Function 

The delta function or unit impulse, denoted as , is the derivative of the unit step . It is also
defined as

(3.33)

and
(3.34)

To better understand the delta function , let us represent the unit step  as shown in Fig-
ure 3.20 (a). 

Figure 3.20. Representation of the unit step as a limit

The function of Figure 3.20 (a) becomes the unit step as . Figure 3.20 (b) is the derivative of
Figure 3.20 (a), where we see that as ,  becomes unbounded, but the area of the rect-
angle remains . Therefore, in the limit, we can think of  as approaching a very large spike or
impulse at the origin, with unbounded amplitude, zero width, and area equal to .

Two useful properties of the delta function are the sampling property and the sifting property.

3.4.1 The Sampling Property of the Delta Function 
The sampling property of the delta function states that 

(3.35)

or, when ,
(3.36)

that is, multiplication of any function  by the delta function  results in sampling the func-
tion at the time instants where the delta function is not zero. The study of discretetime systems is
based on this property.

Proof:

Since  then, 
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(3.37)
We rewrite  as

(3.38)

Integrating (3.37) over the interval  and using (3.38), we obtain

(3.39)

The first integral on the right side of (3.39) contains the constant term ; this can be written
outside the integral, that is,

(3.40)

The second integral of the right side of (3.39) is always zero because

and

Therefore, (3.39) reduces to

(3.41)

Differentiating both sides of (3.41), and replacing  with , we obtain

(3.42)

3.4.2 The Sifting Property of the Delta Function 
The sifting property of the delta function states that

(3.43)

that is, if we multiply any function  by  and integrate from , we will obtain
the value of  evaluated at .

Proof:

Let us consider the integral

(3.44)
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Higher Order Delta Functions

We will use integration by parts to evaluate this integral. We recall from the derivative of prod-
ucts that

(3.45)

and integrating both sides we obtain

(3.46)

Now, we let ; then, . We also let ; then, . By sub-
stitution into (3.44), we obtain

(3.47)

We have assumed that ; therefore,  for , and thus the first term of the
right side of (3.47) reduces to . Also, the integral on the right side is zero for , and there-
fore, we can replace the lower limit of integration  by . We can now rewrite (3.47) as

and letting , we obtain

(3.48)

3.5 Higher Order Delta Functions

An nth-order delta function is defined as the  derivative of , that is,

(3.49)

The function  is called doublet,  is called triplet, and so on. By a procedure similar to the
derivation of the sampling property of the delta function, we can show that 

(3.50)

Also, the derivation of the sifting property of the delta function can be extended to show that

(3.51)
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Example 3.8  

Evaluate the following expressions:

a. b. c. 

Solution:

a. The sampling property states that  For this example,  and
. Then,

b. The sifting property states that . For this example,  and

. Then,

c. The given expression contains the doublet; therefore, we use the relation

Then, for this example,

Example 3.9  

a. Express the voltage waveform  shown in Figure 3.21 as a sum of unit step functions for the
time interval .

b. Using the result of part (a), compute the derivative of  and sketch its waveform.

Solution:

a. We begin with the derivation of the equations for the linear segments of the given waveform
as shown in Figure 3.22.

Next, we express  in terms of the unit step function , and we obtain

(3.52)
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Higher Order Delta Functions

Figure 3.21. Waveform for Example 3.9

Figure 3.22. Equations for the linear segments of Figure 3.21

Multiplying and collecting like terms in (3.52), we obtain

or

b. The derivative of  is
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(3.53)

From the given waveform, we observe that discontinuities occur only at , , and
. Therefore, , , and , and the terms that contain

these delta functions vanish. Also, by application of the sampling property,

and by substitution into (3.53), we obtain

(3.54)

The plot of  is shown in Figure 3.23.

 
Figure 3.23. Plot of the derivative of the waveform of Figure 3.21

We observe that a negative spike of magnitude  occurs at , and two positive spikes of
magnitude  occur at , and . These spikes occur because of the discontinuities at
these points.
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Higher Order Delta Functions

It would be interesting to observe the given signal and its derivative on the Scope block of the
Simulink* model of Figure 3.24. They are shown in Figure 3.25.

Figure 3.24. Simulink model for Example 3.9

Figure 3.25. Piecewise linear waveform for the Signal Builder block in Figure 3.24

The waveform in Figure 3.25 is created with the following procedure:

1. We open a new model by clicking the new model icon shown as a blank page on the left corner
of the top menu bar. Initially, the name Untitled appears on the top of this new model. We
save it with the name Figure_3.25 and Simulink appends the .mdl extension to it.

2. From the Sources library, we drag the Signal Builder block into this new model. We also drag
the Derivative block from the Continuous library, the Bus Creator block from the Com-
monly Used Blocks library, and the Scope block into this model, and we interconnect these
blocks as shown in Figure 3.24.

* A brief introduction to Simulink is presented in Appendix B. For a detailed procedure for generating piece-wise
linear functions with Simulink’s Signal Builder block, please refer to Introduction to Simulink with Engineering
Applications, ISBN 9781934404096 
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3. We doubleclick the Signal Builder block in Figure 3.24, and on the plot which appears as a
square pulse, we click the yaxis and we enter Minimum: 2.5, and Maximum: 3.5. Likewise
we rightclick anywhere on the plot and we specify the Change Time Range at Min time: 2,
and Max time: 8. 

4. To select a particular point, we position the mouse cursor over that point and we leftclick. A
circle is drawn around that point to indicate that it is selected.

5. To select a line segment, we leftclick on that segment. That line segment is now shown as a
thick line indicating that it is selected. To deselect it, we press the Esc key.

6. To drag a line segment to a new position, we place the mouse cursor over that line segment and
the cursor shape shows the position in which we can drag the segment.

7. To drag a point along the yaxis, we move the mouse cursor over that point, and the cursor
changes to a circle indicating that we can drag that point. Then, we can move that point in a
direction parallel to the xaxis. 

8. To drag a point along the xaxis, we select that point, and we hold down the Shift key while
dragging that point.

9. When we select a line segment on the time axis (xaxis) we observe that at the lower end of
the waveform display window the Left Point and Right Point fields become visible. We can
then reshape the given waveform by specifying the Time (T) and Amplitude (Y) points.

Figure 3.26. Waveforms for the Simulink model in Figure 3.24

The two positive spikes that occur at , and , are clearly shown in Figure 3.26.
MATLAB* has built-in functions for the unit step, and the delta functions. These are denoted by
the names of the mathematicians who used them in their work. The unit step function  is
referred to as Heaviside(t), and the delta function  is referred to as Dirac(t). 

* An introduction to MATLAB® is given in Appendix A.
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Summary

3.6 Summary

 The unit step function  is defined as

 The unit step function offers a convenient method of describing the sudden application of a
voltage or current source.

 The unit ramp function, denoted as , is defined as

 The unit impulse or delta function, denoted as , is the derivative of the unit step . It is
also defined as

and

 The sampling property of the delta function states that 

or, when ,

 The sifting property of the delta function states that

 The sampling property of the doublet function  states that

u0 t 
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3.7 Exercises
1. Evaluate the following functions:

a.  b.  c.  

d.  e.  f.  

2.
a. Express the voltage waveform  shown below as a sum of unit step functions for the time

interval .

b. Using the result of part (a), compute the derivative of , and sketch its waveform. This
waveform cannot be used with Sinulink’s Function Builder block because it contains the
decaying exponential segment which is a nonlinear function.

tsin t 
6
---– 

  2tcos t 
4
---– 

  t2  t 
2
---– 
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2ttan t 
8
---– 

  t2e
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–



 t2 1 t 
2
---– 

 sin

v t 
0 t 7 s 

10

20
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20
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3.8 Solutions to EndofChapter Exercises

1. We apply the sampling property of the  function for all expressions except (e) where we
apply the sifting property. For part (f) we apply the sampling property of the doublet.

We recall that the sampling property states that . Thus,

a.  

b.  

c.  

d.  

We recall that the sampling property states that . Thus,

e.  

f. We recall that the sampling property for the doublet states that

Thus,

  

2.

a.  

 t 
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b.

  (1)

Referring to the given waveform we observe that discontinuities occur only at , ,
and . Therefore,  and . Also, by the sampling property of the delta
function

and with these simplifications (1) above reduces to

The waveform for  is shown below.
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Chapter 4

The Laplace Transformation

his chapter begins with an introduction to the Laplace transformation, definitions, and
properties of the Laplace transformation. The initial value and final value theorems are also
discussed and proved. It continues with the derivation of the Laplace transform of common

functions of time, and concludes with the derivation of the Laplace transforms of common wave-
forms.

4.1 Definition of the Laplace Transformation
The twosided or bilateral Laplace Transform pair is defined as

 (4.1)

(4.2)

where  denotes the Laplace transform of the time function ,  denotes the
Inverse Laplace transform, and  is a complex variable whose real part is , and imaginary part

, that is, .

In most problems, we are concerned with values of time  greater than some reference time, say
, and since the initial conditions are generally known, the twosided Laplace trans-

form pair of (4.1) and (4.2) simplifies to the unilateral or onesided Laplace transform defined as

(4.3)

(4.4)

The Laplace Transform of (4.3) has meaning only if the integral converges (reaches a limit), that
is, if

 (4.5)
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To determine the conditions that will ensure us that the integral of (4.3) converges, we rewrite
(4.5) as

(4.6)

The term  in the integral of (4.6) has magnitude of unity, i.e., , and thus the con-
dition for convergence becomes

(4.7)

Fortunately, in most engineering applications the functions  are of exponential order*. Then,
we can express (4.7) as,

(4.8)

and we see that the integral on the right side of the inequality sign in (4.8), converges if .
Therefore, we conclude that if  is of exponential order,  exists if

(4.9)

where  denotes the real part of the complex variable .

Evaluation of the integral of (4.4) involves contour integration in the complex plane, and thus, it
will not be attempted in this chapter. We will see in the next chapter that many Laplace trans-
forms can be inverted with the use of a few standard pairs, and thus there is no need to use (4.4)
to obtain the Inverse Laplace transform.

In our subsequent discussion, we will denote transformation from the time domain to the com-
plex frequency domain, and vice versa, as

(4.10)

4.2 Properties and Theorems of the Laplace Transform
The most common properties and theorems of the Laplace transform are presented in Subsec-
tions 4.2.1 through 4.2.13 below.

4.2.1 Linearity Property
The linearity property states that if the functions

* A function  is said to be of exponential order if .

f t e t–

0



 e jt– dt 

e jt– e jt– 1=

f t e t–

0



 dt 

f t 

f t  f t  ke
0t

  for all  t 0

f t e t–

0



 dt ke
0t

e t–

0



 dt

 0

f t  L f t  

Re s   0=

Re s  s

f t  F s 

f1 t  f2 t   fn t   

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 43
Copyright © Orchard Publications

Properties and Theorems of the Laplace Transform

have Laplace transforms

respectively, and

are arbitrary constants, then,

(4.11)

Proof:

Note 1:

It is desirable to multiply  by the unit step function  to eliminate any unwanted non
zero values of  for .

4.2.2 Time Shifting Property
The time shifting property states that a right shift in the time domain by  units, corresponds to

multiplication by  in the complex frequency domain. Thus,

(4.12)

Proof:
(4.13)

Now, we let ; then,  and . With these substitutions and with ,
the second integral on the right side of (4.13) is expressed as

4.2.3 Frequency Shifting Property
The frequency shifting property states that if we multiply a time domain function  by an expo-

nential function  where  is an arbitrary positive constant, this multiplication will produce a
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shift of the s variable in the complex frequency domain by  units. Thus,

(4.14)

Proof:

Note 2:

A change of scale is represented by multiplication of the time variable  by a positive scaling fac-
tor . Thus, the function  after scaling the time axis, becomes .

4.2.4 Scaling Property
Let  be an arbitrary positive constant; then, the scaling property states that 

(4.15)

Proof:

and letting , we obtain

Note 3: 
Generally, the initial value of  is taken at  to include any discontinuity that may be

present at . If it is known that no such discontinuity exists at , we simply interpret

 as .

4.2.5 Differentiation in Time Domain Property
The differentiation in time domain property states that differentiation in the time domain corre-
sponds to multiplication by  in the complex frequency domain, minus the initial value of  at

. Thus,

(4.16)

Proof:

Using integration by parts where
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(4.17)

we let  and . Then, , , and thus

The time differentiation property can be extended to show that

(4.18)

(4.19)

and in general

(4.20)

To prove (4.18), we let

and as we found above,

Then,

Relations (4.19) and (4.20) can be proved by similar procedures.

We must remember that the terms , and so on, represent the initial condi-
tions. Therefore, when all initial conditions are zero, and we differentiate a time function  
times, this corresponds to  multiplied by  to the  power.

4.2.6 Differentiation in Complex Frequency Domain Property
This property states that differentiation in complex frequency domain and multiplication by minus
one, corresponds to multiplication of  by  in the time domain. In other words,
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(4.21)

Proof:

Differentiating with respect to  and applying Leibnitz’s rule* for differentiation under the integral,
we obtain

In general,

(4.22)

The proof for  follows by taking the second and higherorder derivatives of  with
respect to .

4.2.7 Integration in Time Domain Property
This property states that integration in time domain corresponds to  divided by  plus the ini-

tial value of  at , also divided by . That is,

(4.23)

Proof:

We begin by expressing the integral on the left side of (4.23) as two integrals, that is,

(4.24)

The first integral on the right side of (4.24), represents a constant value since neither the upper,
nor the lower limits of integration are functions of time, and this constant is an initial condition
denoted as . We will find the Laplace transform of this constant, the transform of the sec-

* This rule states that if a function of a parameter  is defined by the equation  where f is some known

function of integration x and the parameter , a and b are constants independent of x and , and the partial derivative

 exists and it is continuous, then .
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ond integral on the right side of (4.24), and will prove (4.23) by the linearity property. Thus,

(4.25)

This is the value of the first integral in (4.24). Next, we will show that

We let

then,

and

Now,

(4.26)

and the proof of (4.23) follows from (4.25) and (4.26).

4.2.8 Integration in Complex Frequency Domain Property
This property states that integration in complex frequency domain with respect to  corresponds to

division of a time function  by the variable , provided that the limit  exists. Thus,

(4.27)
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Integrating both sides from  to , we obtain

Next, we interchange the order of integration, i.e., 

and performing the inner integration on the right side integral with respect to , we obtain

4.2.9 Time Periodicity Property
The time periodicity property states that a periodic function of time with period  corresponds to

the integral  divided by  in the complex frequency domain. Thus, if we let

 be a periodic function with period , that is, , for  we obtain
the transform pair

(4.28)

Proof:

The Laplace transform of a periodic function can be expressed as

In the first integral of the right side, we let , in the second , in the third
, and so on. The areas under each period of  are equal, and thus the upper and

lower limits of integration are the same for each integral. Then,

(4.29)

Since the function is periodic, i.e., , we can express
(4.29) as
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(4.30)

By application of the binomial theorem, that is,

(4.31)

we find that expression (4.30) reduces to

4.2.10 Initial Value Theorem

The initial value theorem states that the initial value  of the time function  can be found
from its Laplace transform multiplied by  and letting .That is,

(4.32)

Proof:

From the time domain differentiation property,
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Taking the limit of both sides by letting , we obtain

Interchanging the limiting process, we obtain
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the above expression reduces to

or

4.2.11 Final Value Theorem
The final value theorem states that the final value  of the time function  can be found
from its Laplace transform multiplied by , then, letting . That is,

(4.33)

Proof:

From the time domain differentiation property,

or

Taking the limit of both sides by letting , we obtain

and by interchanging the limiting process, the expression above is written as
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4.2.12 Convolution in Time Domain Property

Convolution* in the time domain corresponds to multiplication in the complex frequency domain,
that is,

(4.34)
Proof:

(4.35)

We let ; then, , and . Then, by substitution into (4.35),

4.2.13 Convolution in Complex Frequency Domain Property
Convolution in the complex frequency domain divided by , corresponds to multiplication in
the time domain. That is,

(4.36)

Proof:
(4.37)

and recalling that the Inverse Laplace transform from (4.2) is

* Convolution is the process of overlapping two time functions  and . The convolution integral indicates

the amount of overlap of one function as it is shifted over another function The convolution of two time functions

 and  is denoted as , and by definition,  where  is a dummy

variable. Convolution is discussed in Signals and Systems with MATLAB Computing and Simulink Modeling,

ISBN 9781934404119.
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by substitution into (4.37), we obtain

We observe that the bracketed integral is ; therefore,

For easy reference, the Laplace transform pairs and theorems are summarized in Table 4.1.

4.3 Laplace Transform of Common Functions of Time
In this section, we will derive the Laplace transform of common functions of time. They are pre-
sented in Subsections 4.3.1 through 4.3.11 below.

4.3.1 Laplace Transform of the Unit Step Function 
We begin with the definition of the Laplace transform, that is,

or

Thus, we have obtained the transform pair

(4.38)

for .*

4.3.2 Laplace Transform of the Ramp Function  
We apply the definition

* This condition was established in relation (4.9), Page 42.

L f1 t f2 t   1
2j
-------- F1

 j–

 j+

  etd f2 t 
0



 e st– dt 1
2j
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 j–

 j+

   f2 t 
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 j+
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2j
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L f t   F s  f t 
0
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s
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0 1
s
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1
s
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u0 t  1
s
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Re s   0=
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or

TABLE 4.1  Summary of Laplace Transform Properties and Theorems

Property/Theorem Time Domain Complex Frequency Domain

1 Linearity

2 Time Shifting

3 Frequency Shifting

4 Time Scaling

5 Time Differentiation
See also (4.18) through (4.20)

6 Frequency Differentiation
See also (4.22)

7 Time Integration

8 Frequency Integration

9 Time Periodicity

10 Initial Value Theorem

11 Final Value Theorem

12 Time Convolution

13 Frequency Convolution

c1 f1 t  c2 f2 t +

     +  cn fn t +

c1 F1 s  c2 F2 s +

       +  cnFn s +

f t a– u0 t a–  e as– F s 

e as– f t  F s a+ 

f at  1
a
---F s

a
-- 

 

d
dt
----- f t  sF s  f 0 –

tf t  d
ds
-----– F s 

f  
–

t
 d F s 

s
---------- f 0 

s
-------------+

f t 
t

-------- F s  sd
s





f t nT+ 
f t 

0

T

 e st– dt

1 e sT––
------------------------------

f t 
t 0
lim sF s 

s 
lim f 0 =

f t 
t 
lim sF s 

s 0
lim f  =

f1 t *f2 t  F1 s F2 s 

f1 t f2 t  1
2j
-------- F1 s *F2 s 

L u1 t   L t  t
0



 e st– dt= =
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We will perform integration by parts by recalling that

(4.39)

We let

then,

By substitution into (4.39),

(4.40)

Since the upper limit of integration in (4.40) produces an indeterminate form, we apply L’ Hôpi-
tal’s rule*, that is, 

Evaluating the second term of (4.40), we obtain 

Thus, we have obtained the transform pair

(4.41)

for .

4.3.3 Laplace Transform of 
Before deriving the Laplace transform of this function, we digress to review the gamma or general-

* Often, the ratio of two functions, such as , for some value of x, say a, results in an indeterminate form. To work

around this problem, we consider the limit , and we wish to find this limit, if it exists. To find this limit, we use

L’Hôpital’s rule which states that if , and if the limit  as x approaches a exists, then,

u vd uv v ud–=

u t  and  dv e st–= =
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s

-----------= =
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s
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-----------

x a
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dx
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dx
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x a
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te st–
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lim t
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t 
lim td
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t 1
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ized factorial function  which is an improper integral* but converges (approaches a limit) for
all . It is defined as

(4.42)

We will now derive the basic properties of the gamma function, and its relation to the well
known factorial function

The integral of (4.42) can be evaluated by performing integration by parts. Thus, in (4.42) we let

Then,

and (4.42) is written as

(4.43)

With the condition that , the first term on the right side of (4.43) vanishes at the lower
limit . It also vanishes at the upper limit as . This can be proved with L’ Hôpital’s
rule by differentiating both numerator and denominator  times, where . Then,

Therefore, (4.43) reduces to

and with (4.42), we have

* Improper integrals are two types and these are:

a.  where the limits of integration a or b or both are infinite

b.  where f(x) becomes infinite at a value x between the lower and upper limits of integration inclusive.

 n 
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(4.44)

By comparing the integrals in (4.44), we observe that

(4.45)

or
(4.46)

It is convenient to use (4.45) for , and (4.46) for . From (4.45), we see that 
becomes infinite as .

For , (4.42) yields
(4.47)

and thus we have obtained the important relation,

(4.48)

From the recurring relation of (4.46), we obtain

(4.49)

and in general
(4.50)

for 

The formula of (4.50) is a noteworthy relation; it establishes the relationship between the 
function and the factorial 

We now return to the problem of finding the Laplace transform pair for , that is,

(4.51)

To make this integral resemble the integral of the gamma function, we let , or ,
and thus . Now, we rewrite (4.51) as

 n  xn 1– e x– xd
0




1
n
--- xne x– xd

0



= =

 n   n 1+ 
n

---------------------=

n n   n 1+ =

n 0 n 0  n 
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 3  2  2  2 1 2!= = =
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 n 
n!

t nu0t

L t nu0t  t n

0



 e st– dt=

st y= t y s=

dt dy s=

L t nu0t  y
s
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  n
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s
--- 

  1
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----------- yn
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Therefore, we have obtained the transform pair

(4.52)

for positive integers of  and .

4.3.4 Laplace Transform of the Delta Function 
We apply the definition

and using the sifting property of the delta function,* we obtain

Thus, we have the transform pair 

(4.53)

for all .

4.3.5 Laplace Transform of the Delayed Delta Function 
We apply the definition

and again, using the sifting property of the delta function, we obtain

Thus, we have the transform pair 

(4.54)

for .

* The sifting property of the  is described in Subsection 3.4.2, Chapter 3.

t nu0 t  n!

sn 1+
-----------

n  0

 t 

L  t    t 
0



 e st– dt=

 t 

L  t    t 
0



 e st– dt e s 0 – 1= = =

 t  1



 t a– 

L  t a–    t a– 
0



 e st– dt=

L  t a–    t a– 
0



 e st– dt e as–= =

 t a–  e as–

 0
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4.3.6 Laplace Transform of 
We apply the definition

 Thus, we have the transform pair 

(4.55)
for .

4.3.7 Laplace Transform of 
For this derivation, we will use the transform pair of (4.52), i.e.,

(4.56)

and the frequency shifting property of (4.14), that is,

(4.57)

Then, replacing  with  in (4.56), we obtain the transform pair

(4.58)

where  is a positive integer, and  Thus, for , we obtain the transform pair

(4.59)

for .

For , we obtain the transform

(4.60)

and in general,

(4.61)

for 

e at– u0 t 
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4.3.8 Laplace Transform of 

We apply the definition

and from tables of integrals*

Then,

Thus, we have obtained the transform pair

(4.62)

for 

4.3.9 Laplace Transform of 
We apply the definition

and from tables of integrals†

Then,

* This can also be derived from , and the use of (4.55) where . By the linear-

ity property, the sum of these terms corresponds to the sum of their Laplace transforms. Therefore,

t u0sin t 

L t u0sin t   tsin 
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Thus, we have the fransform pair

(4.63)

for 

4.3.10 Laplace Transform of 
From (4.62),

Using the frequency shifting property of (4.14), that is,

(4.64)

we replace  with , and we obtain

(4.65)

for  and .

4.3.11 Laplace Transform of 
From (4.63),

† We can use the relation  and the linearity property, as in the derivation of the transform of

 on the footnote of the previous page. We can also use the transform pair ; this is the time

differentiation property of (4.16). Applying this transform pair for this derivation, we obtain
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2
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L cos tu0 t   L 1

---- d
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s s a+
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 0 a 0
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and using the frequency shifting property of (4.14), we replace  with , and we obtain

(4.66)

for  and .

For easy reference, we have summarized the above derivations in Table 4.2.

4.4 Laplace Transform of Common Waveforms
In this section, we will present procedures for deriving the Laplace transform of common wave-
forms using the transform pairs of Tables 4.1 and 4.2. The derivations are described in Subsec-
tions 4.4.1 through 4.4.5 below.

TABLE 4.2  Laplace Transform Pairs for Common Functions

1

2

3

4
5

6

7

8

9

10

11

s s a+
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-------------------------

t u0 t sin 
s2 2+
-----------------
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e at– t u0 t sin 
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4.4.1 Laplace Transform of a Pulse
The waveform of a pulse, denoted as , is shown in Figure 4.1.

Figure 4.1. Waveform for a pulse

We first express the given waveform as a sum of unit step functions as we’ve learned in Chapter 3.
Then,

(4.67)
From Table 4.1, Page 413,

and from Table 4.2, Page 422

Thus,

and

Then, in accordance with the linearity property, the Laplace transform of the pulse of Figure 4.1
is

4.4.2 Laplace Transform of a Linear Segment
The waveform of a linear segment, denoted as , is shown in Figure 4.2.

Figure 4.2. Waveform for a linear segment

We must first derive the equation of the linear segment. This is shown in Figure 4.3. 

fP t 

fP t 
A

a t0

fP t  A u0 t  u0 t a– – =

f t a– u0 t a–  e as– F s 

u0 t  1 s   

Au0 t  A s

Au0 t a–  e as– A
s
----

A u0 t  u0 t a– –  A
s
---- e as––

A
s
---- A

s
---- 1 e as–– =

fL t 

1
t

0

1

2

fL t 

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 423
Copyright © Orchard Publications

Laplace Transform of Common Waveforms

Figure 4.3. Waveform for a linear segment with the equation that describes it

Next, we express the given waveform in terms of the unit step function as follows:

From Table 4.1, Page 413,

and from Table 4.2, Page 422,

Therefore, the Laplace transform of the linear segment of Figure 4.2 is 

(4.68)

4.4.3 Laplace Transform of a Triangular Waveform
The waveform of a triangular waveform, denoted as , is shown in Figure 4.4.

 

Figure 4.4. Triangular waveform

The equations of the linear segments are shown in Figure 4.5.

Figure 4.5. Triangular waveform with the equations of the linear segments

Next, we express the given waveform in terms of the unit step function.

1
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Collecting like terms, we obtain

From Table 4.1, Page 413, 

and from Table 4.2, Page 422,

Then,

or

Therefore, the Laplace transform of the triangular waveform of Figure 4.4 is 

(4.69)

4.4.4 Laplace Transform of a Rectangular Periodic Waveform
The waveform of a rectangular periodic waveform, denoted as , is shown in Figure 4.6. This
is a periodic waveform with period , and we can apply the time periodicity property

where the denominator represents the periodicity of .

Figure 4.6. Rectangular periodic waveform

For this waveform,
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(4.70)

4.4.5 Laplace Transform of a HalfRectified Sine Waveform
The waveform of a halfrectified sine waveform, denoted as , is shown in Figure 4.7. This
is a periodic waveform with period , and we can apply the time periodicity property

where the denominator represents the periodicity of .

Figure 4.7. Halfrectified sine waveform*

For this waveform, 
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(4.71)

4.5 Using MATLAB for Finding the Laplace Transforms of Time Functions 
We can use the MATLAB function laplace to find the Laplace transform of a time function. For
examples, please type 

help laplace

in MATLAB’s Command prompt.

We will be using this function extensively in the subsequent chapters of this book.

* This waveform was produced with the following MATLAB script:
t=0:pi/64:5*pi; x=sin(t); y=sin(t2*pi); z=sin(t4*pi); plot(t,x,t,y,t,z); axis([0 5*pi 0 1])
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4.6 Summary
 The twosided or bilateral Laplace Transform pair is defined as

 

where  denotes the Laplace transform of the time function ,  denotes
the Inverse Laplace transform, and  is a complex variable whose real part is , and imagi-
nary part , that is, .

 The unilateral or onesided Laplace transform defined as

 We denote transformation from the time domain to the complex frequency domain, and vice
versa, as

 The linearity property states that

 The time shifting property states that

 The frequency shifting property states that

 The scaling property states that 

 The differentiation in time domain property states that

Also,
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and in general

where the terms , and so on, represent the initial conditions.

 The differentiation in complex frequency domain property states that

and in general,

 The integration in time domain property states that

 The integration in complex frequency domain property states that

provided that the limit  exists.

 The time periodicity property states that

 The initial value theorem states that

 The final value theorem states that
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lim f  = =
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Summary

 Convolution in the time domain corresponds to multiplication in the complex frequency
domain, that is,

 Convolution in the complex frequency domain divided by , corresponds to multiplica-
tion in the time domain. That is,

 The Laplace transforms of some common functions of time are shown in Table 4.1, Page 413

 The Laplace transforms of some common waveforms are shown in Table 4.2, Page 422

 We can use the MATLAB function laplace to find the Laplace transform of a time function

f1 t *f2 t  F1 s F2 s 

1 2j

f1 t f2 t  1
2j
-------- F1 s *F2 s 
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4.7 Exercises
1. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

2. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

3. Derive the Laplace transform of the following time domain functions:

a.       b.  

c.       d.  

e.    Be careful with this! Comment and you may skip derivation.

4. Derive the Laplace transform of the following time domain functions:

a.       b.       c.   

d.    e.  

5. Derive the Laplace transform of the following time domain functions:

a.       b.       c.  

d.       e.  

6. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

7. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.         e.

12 6u0 t  24u0 t 12–  5tu0 t  4t 5u0 t 

j8 j5 90– 5e 5t– u0 t  8t 7e 5t– u0 t  15 t 4– 

t 3 3t 2 4t 3+ + + u0 t  3 2t 3–  t 3– 

3 5tsin u0 t  5 3tcos u0 t 

2 4ttan u0 t 

3t 5tsin u0 t  2t 2 3tcos u0 t  2e 5t– 5tsin

8e 3t– 4tcos tcos  t  4– 

5tu0 t 3–  2t 2 5t 4+– u0 t 3–  t 3– e 2t– u0 t 2– 

2t 4– e 2 t 2– u0 t 3–  4te 3t– 2tcos u0 t 

td
d 3tsin 

td
d 3e 4t– 

td
d t 2 2tcos 

td
d e 2t– 2tsin 

td
d t 2e

2t–
 

tsin
t

--------- sin


---------- d
0

t


atsin

t
------------ cos


----------- d

t




e –


------- d

t
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Exercises

8. Derive the Laplace transform for the sawtooth waveform  below.

9. Derive the Laplace transform for the fullrectified waveform  below.

Write a simple MATLAB script that will produce the waveform above.

fST t 

A

a 2a
t

fST t 

3a

fFR t 

fFR t 

 2 3 4
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4.8 Solutions to EndofChapter Exercises
1. From the definition of the Laplace transform or from Table 4.2, Page 422, we obtain:

a.       b.       c.       d.       e.  

2. From the definition of the Laplace transform or from Table 4.2, Page 422, we obtain:

a.     b.     c.     d.    e.  

3.

a. From Table 4.2, Page 422, and the linearity property, we obtain 

b.  and 

c.   d.   e. 

This answer for part (e) looks suspicious because  and the Laplace transform is
unilateral, that is, there is onetoone correspondence between the time domain and the com-
plex frequency domain. The fallacy with this procedure is that we assumed that if

 and , we cannot conclude that . For this exercise

, and as we’ve learned, multiplication in the time domain corre-

sponds to convolution in the complex frequency domain. Accordingly, we must use the

Laplace transform definition  and this requires integration by parts. We skip

this analytical derivation. The interested reader may try to find the answer with the MATLAB
script

syms s t; 2*laplace(sin(4*t)/cos(4*t))

4. From (4.22), Page 46,

a.

12 s 6 s e 12s– 24
s

------ 5 s2 4 5!

s6
-----

j8 s 5 s 5
s 5+
----------- 8 7!

s 5+ 8
------------------ 15e 4s–

3!

s4
----- 3 2!

s3
-------------- 4

s2
---- 3

s
---+ + +

3 2t 3–  t 3–  3 2t 3–  t 3=
 t 3–  9 t 3– = = 9 t 3–  9e 3s–

3 5
s2 52+
---------------- 5 s

s2 32+
---------------- 2 4ttan 2 4tsin

4tcos
------------- 2 4 s2 22+ 

s s2 22+ 
---------------------------- 8

s
---==

8 s 8u0 t 

f1 t  F1 s  f2 t  F2 s 
f1 t 
f2 t 
-----------

F1 s 
F2 s 
-------------

f1 t  f2 t  4t 1
4tcos

-------------sin=

2 4ttan e st– td
0





t nf t  1– n d n

dsn
--------F s 

3 1– 1 d
ds
----- 5

s2 52+
---------------- 

  3 5 2s –

s2 25+ 
2

------------------------– 30s

s2 25+ 
2

------------------------= =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 433
Copyright © Orchard Publications

Solutions to EndofChapter Exercises

b.

c.

d.

e.
 and 

5.
a. 

b.

c.

d.

2 1– 2 d2

ds2
-------- s

s2 32+
---------------- 

  2 d
ds
----- s2 32 s 2s –+

s2 9+ 
2

----------------------------------- 2 d
ds
----- s2– 9+

s2 9+ 
2

---------------------
 
 
 

= =

2 s2 9+ 
2

2s–  2 s2 9+  2s  s2– 9+ –

s2 9+ 
4

--------------------------------------------------------------------------------------------------=

2 s2 9+  2s–  4s s2– 9+ –

s2 9+ 
3

-------------------------------------------------------------------- 2 2s3– 18s– 4s3 36s–+

s2 9+ 
3

--------------------------------------------------------==

2 2s3 54s–

s2 9+ 
3

---------------------- 2 2s s2 27– 

s2 9+ 
3

--------------------------- 4s s2 27– 

s2 9+ 
3

---------------------------= ==

2 5
s 5+ 2 52+

------------------------------ 10
s 5+ 2 25+

-------------------------------=

8 s 3+ 
s 3+ 2 42+

------------------------------ 8 s 3+ 
s 3+ 2 16+

-------------------------------=

t  4 cos t  4–  2 2  t  4– = 2 2  t  4–  2 2 e  4 s–

5tu0 t 3–  5 t 3–  15+ u0 t 3–  e 3s– 5
s2
---- 15

s
------+ 

  5
s
---e 3s– 1

s
--- 3+ 
 ==

2t 2 5t 4+– u0 t 3–  2 t 3– 2 12t 18– 5t– 4+ + u0 t 3– =

2 t 3– 2 7t 14–+ u0 t 3– =

2 t 3– 2 7 t 3–  21 14–+ + u0 t 3– =

2 t 3– 2 7 t 3–  7+ + u0 t 3–  e 3s– 2 2!
s3

-------------- 7
s2
---- 7

s
---+ + 

 =

t 3– e 2t– u0 t 2–  t 2–  1– e 2 t 2– – e 4– u0 t 2– =

 e 4– e 2s– 1
s 2+ 2

------------------ 1
s 2+ 

----------------– e 4– e 2s– s 1+ –

s 2+ 2
-------------------=

2t 4– e 2 t 2– u0 t 3–  2 t 3–  6 4–+ e 2 t 3– – e 2– u0 t 3– =

 e 2– e 3s– 2
s 3+ 2

------------------ 2
s 3+ 

----------------+ 2e 2– e 3s– s 4+

s 3+ 2
------------------=
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e.

6. a.

b.

c.

Thus,

and

d.

4te 3t– 2tcos u0 t  4 1– 1 d
ds
----- s 3+

s 3+ 2 22+
------------------------------ 4– d

ds
----- s 3+

s2 6s 9 4+ + +
-----------------------------------=

 4– d
ds
----- s 3+

s2 6s 13+ +
----------------------------- 4 s2 6s 13 s 3+  2s 6+ –+ +

s2 6s 13+ + 
2

------------------------------------------------------------------------–=

 4 s2 6s 13 2s2– 6s– 6s– 18–+ +

s2 6s 13+ + 
2

------------------------------------------------------------------------------ 4 s2 6s 5+ + 

s2 6s 13+ + 
2

------------------------------------=–

3t 3
s2 32+
----------------sin d

dt
-----f t  sF s  f 0 – f 0  3tsin t 0=

0= =

td
d 3tsin  s 3

s2 32+
---------------- 0– 3s

s2 9+
--------------=

3e 4t– 3
s 4+
----------- d

dt
-----f t  sF s  f 0 – f 0  3e 4t–

t 0=
3= =

td
d 3e 4t–  s 3

s 4+
----------- 3– 3s

s 4+
----------- 3 s 4+ 

s 4+
-------------------– 12–

s 4+
-----------= =

2tcos s
s2 22+
---------------- t 2 2tcos 1– 2 d2

ds2
-------- s

s2 4+
--------------

d
ds
----- s2 4 s 2s –+

s2 4+ 
2

--------------------------------- d
ds
----- s– 2 4+

s2 4+ 
2

--------------------- s2 4+ 
2

2s–  s– 2 4+  s2 4+ 2 2s –

s2 4+ 
4

-------------------------------------------------------------------------------------------------= =

s2 4+  2s–  s– 2 4+  4s –

s2 4+ 
3

------------------------------------------------------------------------ 2s3– 8s– 4s3 16s–+

s2 4+ 
3

----------------------------------------------------- 2s s2 12– 

s2 4+ 
3

---------------------------= ==

t 2 2tcos 2s s2 12– 

s2 4+ 
3

---------------------------

td
d t 2 2tcos  sF s  f 0       s2s s2 12– 

s2 4+ 
3

--------------------------- 0– 2s2 s2 12– 

s2 4+ 
3

------------------------------=–

2sin t 2
s2 22+
---------------- e 2t– 2tsin 2

s 2+ 2 4+
---------------------------- d

dt
-----f t  sF s  f 0 –

td
d e 2t– 2tsin  s 2

s 2+ 2 4+
---------------------------- 0– 2s

s 2+ 2 4+
----------------------------=
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Solutions to EndofChapter Exercises

e.

7.
a.

 but to find  we must first show that the limit  exists. Since

, this condition is satisfied and thus . From tables of inte-

grals, . Then,  and the constant of

integration  is evaluated from the final value theorem. Thus,

 and 

b.

From (a) above,  and since , it follows that

c.

From (a) above  and since , it follows that

 or 

d.

, , and from tables of integrals,

. Then,  and the constant of inte-

gration  is evaluated from the final value theorem. Thus,

 and using  we

t 2 2!

s3
----- t 2e

2t– 2!

s 2+ 3
------------------ d

dt
-----f t  sF s  f 0 –

td
d t 2e

2t–
  s 2!

s 2+ 3
------------------ 0– 2s

s 2+ 3
------------------=

tsin 1
s2 1+
-------------- L tsin

t
---------

 
 
  tsin

t
---------

t 0
lim

xsin
x

----------
x 0
lim 1=

tsin
t

--------- 1
s2 1+
-------------- sd

s





1
x2 a2+
---------------- xd

1
a
--- x a 1–tan C+=

1
s2 1+
-------------- sd 1 s 1–tan= C+

C

f t 
t 
lim sF s 

s 0
lim s 1 s 1–tan C+ 

s 0
lim 0= = =

tsin
t

--------- 1 s 1–tan

tsin
t

--------- 1 s 1–tan f  
–

t

 d F s 
s

---------- f 0 
s

-------------+

sin


----------
0

t

 d 1
s
--- 1 s 1–tan

tsin
t

--------- 1 s 1–tan f at  1
a
---F s

a
-- 

 

atsin
at

------------ 1
a
--- 1 s

a
--------- 
 1–

tan atsin
t

------------ a s 1–tan

tcos s
s2 1+
-------------- tcos

t
---------- s

s2 1+
-------------- sd

s





x
x2 a2+
---------------- xd

1
2
--- x2 a2+ ln C+= s

s2 1+
-------------- sd

1
2
--- s2 1+ ln C+=

C

f t 
t 
lim sF s 

s 0
lim s 1

2
--- s2 1+ ln C+

s 0
lim 0= = = f  

–

t

 d F s 
s

---------- f 0 
s

-------------+
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obtain

e.

, , and from tables of integrals . Then,

 and the constant of integration  is evaluated from the final value

theorem. Thus,

and using , we obtain

8. 

This is a periodic waveform with period , and its Laplace transform is

  (1)

and from (4.41), Page 414, and limits of integration  to , we obtain

Adding and subtracting  in the last expression above, we obtain

cos


----------- d
t




1
2s
----- s2 1+ ln

e t– 1
s 1+
----------- e t–

t
------ 1

s 1+
----------- sd

s



 1
ax b+
--------------- xd

1
2
--- ax b+ ln=

1
s 1+
----------- sd s 1+ ln C+= C

f t 
t 
lim sF s 

s 0
lim s s 1+ ln C+ 

s 0
lim 0= = =

f  
–

t

 d F s 
s

---------- f 0 
s

-------------+

e –


------- d

t




1
s
--- s 1+ ln

A

a 2a
t

fST t 

3a

A
a
----t

T a=

F s  1
1 e as––
------------------ A

a
----te st– td

0

a


A

a 1 e as–– 
-------------------------- te st– td

0

a

= =

0 a

L t  0
a te st– td

0

a

 te st–

s
----------– e st–

s2
--------–

0

a
te st–

s
---------- e st–

s2
--------+

a

0

= = =

1
s2
---- ae as–

s
------------– e as–

s2
---------–

1
s2
---- 1 1 as+ e as–– ==

as
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Solutions to EndofChapter Exercises

By substitution into (1) we obtain

9.
This is a periodic waveform with period  and its Laplace transform is

From tables of integrals,

Then,

The fullrectified waveform can be produced with the MATLAB script below.

t=0:pi/16:4*pi; x=sin(t); plot(t,abs(x)); axis([0 4*pi 0 1])

The fullrectified waveform can also be produced with the Simulink model below. The Sine
Wave, Abs, and Reshape blocks are in the Math Operations library, the MATLAB Func-
tion block is in the UserDefined Functions library, and the Scope and Display blocks are
found in the Sinks library.

L t  0
a 1

s2
---- 1 as+  1 as+ e as– as––  1

s2
---- 1 as+  1 e as––  as– = =

F s  A
a 1 e as–– 
-------------------------- 1

s2
---- 1 as+  1 e as––  as–  A

as2 1 e as–– 
------------------------------- 1 as+  1 e as––  as– = =

A 1 as+ 
as2

------------------------ Aa
as 1 e as–– 
----------------------------–

A
as
----- 1 as+ 

s
------------------- a

1 e as–– 
-----------------------–==

T a = =

F s  1
1 e sT––
------------------ f t e st– td

0

T


1

1 e s–– 
----------------------- te st–sin td

0



= =

bxeaxsin xd eax bx b bxcos–asin 
a2 b2+

------------------------------------------------------=

F s  1
1 e s––
------------------ e st– s tsin tcos– 

s2 1+
------------------------------------------

0



 1
1 e s––
------------------ 1 e s–+

s2 1+
-------------------= =

1
s2 1+
-------------- 1 e s–+

1 e s––
------------------- 1

s2 1+
-------------- s

2
----- 
 coth==

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
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Before simulation execution, the following script must be entered at the MATLAB command
prompt:

x=[0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi]; string1='abs(sin(x))';

The Scope block displays the waveform shown below.

We can use MATLAB polyfit(x,y,n) and polyval(p,x) functions to find a suitable polynomial*

that approximates the fullrectifier waveform.

* For an example with a stepbystep procedure, please refer to Numerical Analysis Using MATLAB and
Excel, ISBN 9781934404034, Chapter 8, Example 8.8.

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 51
Copyright © Orchard Publications           

Chapter 5

The Inverse Laplace Transformation

his chapter is a continuation to the Laplace transformation topic of the previous chapter
and presents several methods of finding the Inverse Laplace Transformation. The partial
fraction expansion method is explained thoroughly and it is illustrated with several exam-

ples. 

5.1 The Inverse Laplace Transform Integral
The Inverse Laplace Transform Integral was stated in the previous chapter; it is repeated here for
convenience.

(5.1)

This integral is difficult to evaluate because it requires contour integration using complex vari-
ables theory. Fortunately, for most engineering problems we can refer to Tables of Properties, and
Common Laplace transform pairs to lookup the Inverse Laplace transform.

5.2 Partial Fraction Expansion
Quite often the Laplace transform expressions are not in recognizable form, but in most cases
appear in a rational form of , that is,

(5.2)

where  and  are polynomials, and thus (5.2) can be expressed as

(5.3)

The coefficients  and  are real numbers for , and if the highest power  of
 is less than the highest power  of , i.e., ,  is said to be expressed as a proper

rational function. If ,  is an improper rational function.

In a proper rational function, the roots of  in (5.3) are found by setting ; these are
called the zeros of . The roots of , found by setting , are called the poles of .
We assume that  in (5.3) is a proper rational function. Then, it is customary and very conve-

nient to make the coefficient of  unity; thus, we rewrite  as

T

L 1– F s   f t =
1

2j
-------- F s 

 j–

 j+

 estds=

s

F s  N s 
D s 
-----------=

N s  D s 

F s  N s 
D s 
-----------

bmsm bm 1– sm 1– bm 2– sm 2–  b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2–  a1s a0+ + + + +
--------------------------------------------------------------------------------------------------------------------= =

ak bk k 1 2  n  = m

N s  n D s  m n F s 
m n F s 

N s  N s  0=

F s  D s  D s  0= F s 
F s 

sn F s 
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(5.4)

The zeros and poles of (5.4) can be real and distinct, repeated, complex conjugates, or combina-
tions of real and complex conjugates. However, we are mostly interested in the nature of the
poles, so we will consider each case separately, as indicated in Subsections 5.2.1 through 5.2.3
below.

5.2.1 Distinct Poles
If all the poles  of  are distinct (different from each another), we can factor the
denominator of  in the form 

(5.5)

where  is distinct from all other poles. Next, using the partial fraction expansion method,*we can
express (5.5) as

(5.6)

where  are the residues, and  are the poles of .

To evaluate the residue , we multiply both sides of (5.6) by ; then, we let , that is,

(5.7)

Example 5.1  

Use the partial fraction expansion method to simplify  of (5.8) below, and find the time
domain function  corresponding to .

(5.8)

* The partial fraction expansion method applies only to proper rational functions. It is used extensively in integration, and in
finding the inverses of the Laplace transform, the Fourier transform, and the z-transform. This method allows us to decom-
pose a rational polynomial into smaller rational polynomials with simpler denominators from which we can easily recognize
their integrals and inverse transformations. This method is also being taught in intermediate algebra and introductory cal-
culus courses. 

F s  N s 
D s 
-----------

1
an
----- bmsm bm 1– sm 1– bm 2– sm 2–  b1s b0+ + + + + 

sn an 1–

an
-----------sn 1– an 2–

an
-----------sn 2– 

a1
an
-----s

a0
an
-----+ + + + +

-------------------------------------------------------------------------------------------------------------------------------= =

p1 p2 p3  pn    F s 

F s 

F s  N s 
s p1–  s p2–  s p3–   s pn–    

-------------------------------------------------------------------------------------------------=

pk

F s  r1

s p1– 
------------------ r2

s p2– 
------------------ r3

s p3– 
------------------ 

rn
s pn– 

------------------+ + + +=

r1 r2 r3  rn    p1 p2 p3  pn    F s 

rk s pk–  s pk

rk s pk– F s 
s pk
lim s pk– F s 

s pk=
= =

F1 s 

f1 t  F1 s 

F1 s  3s 2+

s2 3s 2+ +
--------------------------=
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Partial Fraction Expansion

Solution:
Using (5.6), we obtain

(5.9)

The residues are
(5.10)

and
(5.11)

Therefore, we express (5.9) as

(5.12)

and from Table 4.2, Chapter 4, Page 422, we find that

(5.13)

Therefore,
(5.14)

The residues and poles of a rational function of polynomials such as (5.8), can be found easily
using the MATLAB residue(a,b) function. For this example, we use the script

Ns = [3, 2]; Ds = [1, 3, 2]; [r, p, k] = residue(Ns, Ds)

and MATLAB returns the values

r =
     4
    -1
p =
    -2
    -1
k =
     []

For the MATLAB script above, we defined Ns and Ds as two vectors that contain the numerator
and denominator coefficients of . When this script is executed, MATLAB displays the r and
p vectors that represent the residues and poles respectively. The first value of the vector r is asso-
ciated with the first value of the vector p, the second value of r is associated with the second

F1 s  3s 2+

s2 3s 2+ +
-------------------------- 3s 2+

s 1+  s 2+ 
--------------------------------- r1

s 1+ 
---------------- r2

s 2+ 
----------------+= = =

r1 s 1+ F s 
s 1–
lim 3s 2+

s 2+ 
----------------

s 1–=

1–= = =

r2 s 2+ F s 
s 2–
lim 3s 2+

s 1+ 
----------------

s 2–=

4= = =

F1 s  3s 2+

s2 3s 2+ +
-------------------------- 1–

s 1+ 
---------------- 4

s 2+ 
----------------+= =

e at– u0 t  1
s a+
-----------

F1 s  1–
s 1+ 

---------------- 4
s 2+ 

----------------+= e t–– 4e 2t–+  u0 t  f1 t =

F s 
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value of p, and so on.

The vector k is referred to as the direct term and it is always empty (has no value) whenever 
is a proper rational function, that is, when the highest degree of the denominator is larger than
that of the numerator. For this example, we observe that the highest power of the denominator is

, whereas the highest power of the numerator is  and therefore the direct term is empty.

We can also use the MATLAB ilaplace(f) function to obtain the time domain function directly
from . This is done with the script that follows. 
syms s t; Fs=(3*s+2)/(s^2+3*s+2); ft=ilaplace(Fs); pretty(ft)
% Must have Symbolic Math Toolbox installed

When this script is executed, MATLAB displays the expression

   4 exp(-2 t)- exp(-t)

Example 5.2  

Use the partial fraction expansion method to simplify  of (5.15) below, and find the time
domain function  corresponding to .

(5.15)

Solution:
First, we use the MATLAB factor(s) symbolic function to express the denominator polynomial of

 in factored form. For this example,

syms s; factor(s^3 + 12*s^2 + 44*s + 48)  % Must have Symbolic Math Toolbox installed

ans =
(s+2)*(s+4)*(s+6)

Then, 

(5.16)

The residues are
(5.17)

(5.18)

F s 

s2 s

F s 

F2 s 

f2 t  F2 s 

F2 s  3s2 2s 5+ +

s3 12s+
2

44s 48+ +
-------------------------------------------------=

F2 s 

F2 s  3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 3s2 2s 5+ +

s 2+  s 4+  s 6+ 
-------------------------------------------------- r1

s 2+ 
---------------- r2

s 4+ 
---------------- r3

s 6+ 
----------------+ += = =

r1
3s2 2s 5+ +
s 4+  s 6+ 

---------------------------------
s 2–=

9
8
---= =

r2
3s2 2s 5+ +
s 2+  s 6+ 

---------------------------------
s 4–=

37
4
------–= =
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Partial Fraction Expansion

(5.19)

Then, by substitution into (5.16) we obtain

(5.20)

From Table 4.2, Chapter 4, Page 422,

(5.21)

Therefore,

(5.22)

Check with MATLAB:

syms s t; Fs = (3*s^2 + 4*s + 5) / (s^3 + 12*s^2 + 44*s + 48); ft = ilaplace(Fs)

ft =
-37/4*exp(-4*t)+9/8*exp(-2*t)+89/8*exp(-6*t)

5.2.2 Complex Poles

Quite often, the poles of  are complex,* and since complex poles occur in complex conjugate
pairs, the number of complex poles is even. Thus, if  is a complex root of , then, its com-

plex conjugate pole, denoted as , is also a root of . The partial fraction expansion method
can also be used in this case, but it may be necessary to manipulate the terms of the expansion in
order to express them in a recognizable form. The procedure is illustrated with the following
example.

Example 5.3  

Use the partial fraction expansion method to simplify  of (5.23) below, and find the time
domain function  corresponding to .

(5.23)

* A review of complex numbers is presented in Appendix D

r3
3s2 2s 5+ +
s 2+  s 4+ 

---------------------------------
s 6–=

89
8

------= =

F2 s  3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 9 8

s 2+ 
---------------- 37 4–

s 4+ 
---------------- 89 8

s 6+ 
----------------+ += =

e at– u0 t  1
s a+
-----------

F2 s  9 8
s 2+ 

---------------- 37 4–
s 4+ 

---------------- 89 8
s 6+ 

----------------+ +=
9
8
---e 2t– 37

4
------– e 4t– 89

8
------e 6t–+ 

  u0 t  f2 t =

F s 
pk D s 

pk D s 

F3 s 

f3 t  F3 s 

F3 s  s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=
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Solution:

Let us first express the denominator in factored form to identify the poles of  using the
MATLAB factor(s) symbolic function. Then,

syms s; factor(s^3 + 5*s^2 + 12*s + 8)

ans =
(s+1)*(s^2+4*s+8)

The factor(s) function did not factor the quadratic term. We will use the roots(p) function.

p=[1  4  8]; roots_p=roots(p)

roots_p =
  -2.0000 + 2.0000i
  -2.0000 - 2.0000i

Then,

or
(5.24)

The residues are
(5.25)

(5.26)

(5.27)

By substitution into (5.24),

(5.28)

The last two terms on the right side of (5.28), do not resemble any Laplace transform pair that we
derived in Chapter 2. Therefore, we will express them in a different form. We combine them into
a single term*, and now (5.28) is written as

F3 s 

F3 s  s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- s 3+

s 1+  s 2 j2+ +  s 2 j2–+ 
------------------------------------------------------------------------= =

F3 s  s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- r1

s 1+ 
---------------- r2

s 2 j2+ + 
---------------------------

r2
s 2 j– 2+ 

-------------------------+ += =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2
s 3+

s 1+  s 2 j– 2+ 
------------------------------------------

s 2– j2–=

1 j2–
1– j2–  j4– 

------------------------------------ 1 j2–
8– j4+

------------------= = =

1 j2– 
8– j4+ 

----------------------- 8– j4– 
8– j4– 

----------------------- 16– j12+
80

------------------------ 1
5
---– j3

20
------+= ==

r2
1
5
---– j3

20
------+ 

  1
5
---– j3

20
------–= =

F3 s  2 5
s 1+ 

---------------- 1 5– j3 20+
s 2 j2+ + 

----------------------------------- 1 5– j3 20–
s 2 j– 2+ 

-----------------------------------+ +=

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 57
Copyright © Orchard Publications

Partial Fraction Expansion

(5.29)

For convenience, we denote the first term on the right side of (5.29) as , and the second as
. Then,

(5.30)

Next, for 
(5.31)

From Table 4.2, Chapter 4, Page 422,

(5.32)

Accordingly, we express  as 

(5.33)

Addition of (5.30) with (5.33) yields

Check with MATLAB:

syms a s t w; % Define several symbolic variables. Must have Symbolic Math Tootbox installed
Fs=(s + 3)/(s^3 + 5*s^2 + 12*s + 8); ft=ilaplace(Fs)

* Here, we used MATLAB function simple((1/5 +3j/20)/(s+2+2j)+(1/5 3j/20)/(s+22j)). The simple function,
after several simplification tools that were displayed on the screen, returned (-2*s-1)/(5*s^2+20*s+40).

F3 s  2 5
s 1+ 

---------------- 1
5
--- 2s 1+ 

s2 4s 8+ + 
-------------------------------–=

F31 s 

F32 s 

F31 s  2 5
s 1+ 

----------------= 2
5
---e t– f31 t =

F32 s 
F32 s  1

5
---–

2s 1+ 
s2 4s 8+ + 

-------------------------------=

e at– tu0tsin 
s a+ 2 2+

-------------------------------

e at– tu0tcos s a+

s a+ 2 2+
-------------------------------

F32 s 

F32 s  2
5
---–

s 1
2
--- 3

2
--- 3

2
---–+ +

s 2 + 2 22+ 
---------------------------------
 
 
 
 

2
5
---– s 2+

s 2 + 2 22+ 
--------------------------------- 3 2–

s 2 + 2 22+ 
---------------------------------+ 

 = =

2
5
---–

s 2+

s 2 + 2 22+ 
--------------------------------- 

  6 10
2

------------- 2
s 2 + 2 22+ 

--------------------------------- 
 +=

2
5
---–

s 2+

s 2 + 2 22+ 
--------------------------------- 

  3
10
------ 2

s 2 + 2 22+ 
--------------------------------- 

 +=

F3 s  F31 s  F32 s + 2 5
s 1+ 

---------------- 2
5
---– s 2+

s 2 + 2 22+ 
--------------------------------- 

  3
10
------ 2

s 2 + 2 22+ 
--------------------------------- 

 += =

 2
5
---e t– 2

5
---e 2t– 2t 3

10
------e 2t– 2tsin+cos– f3 t =
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ft =
2/5*exp(-t)-2/5*exp(-2*t)*cos(2*t)+3/10*exp(-2*t)*sin(2*t)

5.2.3 Multiple (Repeated) Poles
In this case,  has simple poles, but one of the poles, say , has a multiplicity . For this con-
dition, we express it as

(5.34)

Denoting the  residues corresponding to multiple pole  as , the partial frac-
tion expansion of (5.34) is expressed as

(5.35)

For the simple poles , we proceed as before, that is, we find the residues from

(5.36)

The residues  corresponding to the repeated poles, are found by multiplication

of both sides of (5.35) by . Then, 

(5.37)

Next, taking the limit as  on both sides of (5.37), we obtain

or
(5.38)

and thus (5.38) yields the residue of the first repeated pole.

F s  p1 m

F s  N s 
s p1– m s p2–  s pn 1––  s pn– 

------------------------------------------------------------------------------------------=

m p1 r11 r12 r13  r1m   

F s  r11

s p1– m
--------------------- r12

s p1– m 1–
---------------------------- r13

s p1– m 2–
----------------------------  r1m

s p1– 
------------------+ + + +=

 + 
r2

s p2– 
------------------ r3

s p3– 
------------------ 

rn
s pn– 

------------------+ + +

p1 p2  pn  

rk s pk– F s 
s pk
lim s pk– F s 

s pk=
= =

r11 r12 r13  r1m   

s p– m

s p1– mF s  r11 s p1– r12 s p1– 2r13  s p1– m 1– r1m+ + + +=

 + s p1– m r2

s p2– 
------------------ r3

s p3– 
------------------ 

rn
s pn– 

------------------+ + + 
 

s p1

s p1– mF s 
s p1
lim r11 s p1– r12 s p1– 2r13  s p1– m 1– r1m+ + + 

s p1
lim+=

 + s p1– m r2

s p2– 
------------------ r3

s p3– 
------------------ 

rn
s pn– 

------------------+ + + 
 

s p1
lim

r11 s p1– mF s 
s p1
lim=
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Partial Fraction Expansion

The residue  for the second repeated pole , is found by differentiating (5.37) with respect to

 and again, we let , that is, 

(5.39)

In general, the residue  can be found from

(5.40)

whose  derivative of both sides is

(5.41)

or
(5.42)

Example 5.4  

Use the partial fraction expansion method to simplify  of (5.43) below, and find the time
domain function  corresponding to .

(5.43)

Solution:

We observe that there is a pole of multiplicity 2 at , and thus in partial fraction expansion
form,  is written as

(5.44)

The residues are

r12 p1

s s p1

r12
d
ds
-----

s p1
lim s p1– mF s  =

r1k

s p1– mF s  r11 r12 s p1–  r13 s p1– 2 + + +=

m 1– th

k 1– !r1k
1

k 1– !
------------------

s p1
lim d k 1–

dsk 1–
-------------- s p1– mF s  =

r1k
1

k 1– !
------------------

s p1
lim d k 1–

dsk 1–
-------------- s p1– mF s  =

F4 s 

f4 t  F4 s 

F4 s  s 3+

s 2+  s 1+ 2
-----------------------------------=

s 1–=

F4 s 

F4 s  s 3+

s 2+  s 1+ 2
-----------------------------------

r1
s 2+ 

----------------
r21

s 1+ 2
------------------

r22
s 1+ 

----------------+ += =

r1
s 3+

s 1+ 2
------------------

s 2–=

1= =

r21
s 3+
s 2+
-----------

s 1–=

2= =

r22
d
ds
----- s 3+

s 2+
----------- 

 

s 1–=

s 2+  s 3+ –

s 2+ 2
---------------------------------------

s 1–=

1–= = =
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The value of the residue  can also be found without differentiation as follows:

Substitution of the already known values of  and  into (5.44), and letting *, we obtain

or

from which  as before. Finally, 

(5.45)

Check with MATLAB:

syms s t; Fs=(s+3)/((s+2)*(s+1)^2); ft=ilaplace(Fs) % Must have Symbolic Math Toolbox installed

ft = exp(-2*t)+2*t*exp(-t)-exp(-t)

We can use the following script to check the partial fraction expansion.

syms s
Ns = [1  3]; % Coefficients of the numerator N(s) of F(s)
expand((s + 1)^2); % Expands (s + 1)^2 to s^2 + 2*s + 1;
d1 = [1  2  1]; % Coefficients of (s + 1)^2 = s^2 + 2*s + 1 term in D(s)
d2 = [0  1  2]; % Coefficients of (s + 2) term in D(s)
Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express the

% denominator D(s) of F(s) as a polynomial
[r,p,k]=residue(Ns,Ds)

r =
    1.0000
   -1.0000
    2.0000

* This is permissible since (5.44) is an identity.

r22

r1 r21 s 0=

s 3+

s 1+ 2 s 2+ 
-----------------------------------

s 0=

1
s 2+ 

----------------
s 0=

2
s 1+ 2

------------------
s 0=

r22
s 1+ 

----------------
s 0=

+ +=

3
2
--- 1

2
--- 2 r22+ +=

r22 1–=

F4 s  s 3+

s 2+  s 1+ 2
-----------------------------------= 1

s 2+ 
---------------- 2

s 1+ 2
------------------ 1–

s 1+ 
----------------+ += e 2t– 2te t– e t––+ f4 t =
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Partial Fraction Expansion

p =
   -2.0000
   -1.0000
   -1.0000
k =
     []

Example 5.5  

Use the partial fraction expansion method to simplify  of (5.46) below, and find the time
domain function  corresponding to the given .

(5.46)

Solution:

We observe that there is a pole of multiplicity  at , and a pole of multiplicity  at .
Then, in partial fraction expansion form,  is written as

(5.47)

The residues are

Next, for the pole at ,

F5 s 

f5 t  F5 s 

F5 s  s2 3+ s 1+

s 1+ 3 s 2+ 2
--------------------------------------=

3 s 1–= 2 s 2–=

F5 s 

F5 s  r11

s 1+ 3
------------------ r12

s 1+ 2
------------------ r13

s 1+ 
---------------- r21

s 2+ 2
------------------ r22

s 2+ 
----------------+ + + +=

r11
s2 3+ s 1+

s 2+ 2
--------------------------

s 1–=

1–= =

r12
d
ds
----- s2 3+ s 1+

s 2+ 2
--------------------------
 
 
 

s 1–=

=

s 2+ 2 2s 3+  2 s 2+  s2 3+ s 1+ –

s 2+ 4
----------------------------------------------------------------------------------------------

s 1–=

s 4+

s 2+ 3
------------------

s 1–=

3= ==

r13
1
2!
----- d 2

ds2
-------- s2 3+ s 1+

s 2+ 2
--------------------------
 
 
 

s 1–=

1
2
--- d

ds
----- d

ds
----- s2 3+ s 1+

s 2+ 2
--------------------------
 
 
 

s 1–=

1
2
--- d

ds
----- s 4+

s 2+ 3
------------------ 

 

s 1–=

= = =

      1
2
--- s 2+ 3 3 s 2+ 2 s 4+ –

s 2+ 6
----------------------------------------------------------------

s 1–=

=
1
2
--- s 2 3s– 12–+

s 2+ 4
----------------------------------- 

 

s 1–=

s– 5–

s 2+ 4
------------------

s 1–=

4–= = =

s 2–=
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and

By substitution of the residues into (5.47), we obtain

(5.48)

We will check the values of these residues with the MATLAB script below.

syms s; % The function collect(s) below multiplies (s+1)^3 by (s+2)^2
% and we use it to express the denominator D(s) as a polynomial so that we can
% use the coefficients of the resulting polynomial with the residue function

Ds=collect(((s+1)^3)*((s+2)^2))
Ds =
s^5+7*s^4+19*s^3+25*s^2+16*s+4

Ns=[1 3 1];  Ds=[1 7 19 25 16 4];  [r,p,k]=residue(Ns,Ds)

r =
    4.0000
    1.0000
   -4.0000
    3.0000
   -1.0000
p =
   -2.0000
   -2.0000
   -1.0000
   -1.0000
   -1.0000
k =
     []

From Table 4.2, Chapter 4,

 

r21
s2 3+ s 1+

s 1+ 3
--------------------------

s 2–=

1= =

r22
d
ds
----- s2 3+ s 1+

s 1+ 3
--------------------------
 
 
 

s 2–=

s 1+ 3 2s 3+  3 s 1+ 2 s2 3+ s 1+ –

s 1+ 6
---------------------------------------------------------------------------------------------------

s 2–=

= =

s 1+  2s 3+  3 s2 3+ s 1+ –

s 1+ 4
-----------------------------------------------------------------------------

s 2–=

s2– 4s–

s 1+ 4
--------------------

s 2–=

4= ==

F5 s  1–

s 1+ 3
------------------ 3

s 1+ 2
------------------ 4–

s 1+ 
---------------- 1

s 2+ 2
------------------ 4

s 2+ 
----------------+ + + +=

e at– 1
s a+
----------- te at– 1

s a+ 2
------------------ t n 1– e at– n 1– !

s a+ n
------------------
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Case where F(s) is Improper Rational Function

and with these, we derive  from (5.48) as

(5.49)

We can verify (5.49) with MATLAB as follows:

syms s t; Fs=-1/((s+1)^3) + 3/((s+1)^2) - 4/(s+1) + 1/((s+2)^2) + 4/(s+2); ft=ilaplace(Fs)

ft = -1/2*t^2*exp(-t)+3*t*exp(-t)-4*exp(-t)
          +t*exp(-2*t)+4*exp(-2*t)

5.3 Case where F(s) is Improper Rational Function

Our discussion thus far, was based on the condition that  is a proper rational function. How-
ever, if  is an improper rational function, that is, if , we must first divide the numerator

 by the denominator  to obtain an expression of the form

(5.50)

where  is a proper rational function.

Example 5.6  

Derive the Inverse Laplace transform  of

(5.51)

Solution:

For this example,  is an improper rational function. Therefore, we must express it in the form
of (5.50) before we use the partial fraction expansion method.

By long division, we obtain

Now, we recognize that

and

but

f5 t 

f5 t  1
2
---– t 2e t– 3te t– 4e t–– te 2t– 4e 2t–+ + +=

F s 
F s  m n

N s  D s 

F s  k0 k1s k2s2  km n– sm n– N s 
D s 
-----------+ + + + +=

N s  D s 

f6 t 

F6 s  s2 2s 2+ +
s 1+

--------------------------=

F6 s 

F6 s  s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += =

1
s 1+
----------- e t–

1  t 

s ?
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To answer that question, we recall that

and
 

where  is the doublet of the delta function. Also, by the time differentiation property

Therefore, we have the new transform pair

(5.52)
and thus,

(5.53)

In general,
(5.54)

We verify (5.53) with MATLAB as follows:

Ns = [1  2  2]; Ds = [1  1]; [r, p, k] = residue(Ns, Ds)

r =
     1
p =
    -1
k =
     1     1

The direct terms k= [1 1] above are the coefficients of  and  respectively.

5.4 Alternate Method of Partial Fraction Expansion
Partial fraction expansion can also be performed with the method of clearing the fractions, that is,
making the denominators of both sides the same, then equating the numerators. As before, we
assume that  is a proper rational function. If not, we first perform a long division, and then
work with the quotient and the remainder as we did in Example 5.6. We also assume that the
denominator  can be expressed as a product of real linear and quadratic factors. If these

assumptions prevail, we let  be a linear factor of , and we assume that  is the
highest power of  that divides . Then, we can express  as

u0' t   t =

u0'' t  ' t =

' t 

u0'' t  ' t = s2F s  sf 0  f '– 0 – s2F s  s2 1
s
--- s= = =

s ' t 

F6 s  s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += = e t–  t  ' t + + f6 t =

d n

dt n
-------- t  sn

 t  ' t 

F s 

D s 

s a–  D s  s a– m

s a–  D s  F s 
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Alternate Method of Partial Fraction Expansion

 (5.55)

Let  be a quadratic factor of , and suppose that  is the highest power
of this factor that divides . Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions, that is,

2. We repeat step 1 for each of the distinct linear and quadratic factors of 

3. We set the given  equal to the sum of these partial fractions

4. We clear the resulting expression of fractions and arrange the terms in decreasing powers of 

5. We equate the coefficients of corresponding powers of 

6. We solve the resulting equations for the residues

Example 5.7  

Express  of (5.56) below as a sum of partial fractions using the method of clearing the frac-
tions.

(5.56)

Solution:

Using Steps 1 through 3 above, we obtain

(5.57)

With Step 4,
(5.58)

and with Step 5,

(5.59)

Relation (5.59) will be an identity is  if each power of  is the same on both sides of this relation.
Therefore, we equate like powers of  and we obtain

F s  N s 
D s 
-----------

r1
s a–
-----------

r2

s a– 2
------------------ 

rm

s a– m
-------------------+ += =

s2 s + + D s  s2 s + + 
n

D s 

r1s k1+

s2 s + +
---------------------------

r2s k2+

s2 s + + 
2

---------------------------------- 
rns kn+

s2 s + + 
n

----------------------------------+ + +

D s 

F s 

s

s

F7 s 

F7 s  2s– 4+

s2 1+  s 1– 2
-------------------------------------=

F7 s  2s– 4+

s2 1+  s 1– 2
------------------------------------- r1s A+

s2 1+ 
------------------ r21

s 1– 2
------------------ r22

s 1– 
----------------+ += =

2s– 4+ r1s A+  s 1– 2 r21 s2 1+  r22 s 1–  s2 1+ + +=

2s– 4+ r1 r22+ s3 2r1– A r22 r21+–+ s2+=

 + r1 2A– r22+  s A r22– r21+ +

s s
s
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(5.60)

Subtracting the second equation of (5.60) from the fourth, we obtain

or
(5.61)

By substitution of (5.61) into the first equation of (5.60), we obtain

or
(5.62)

Next, substitution of (5.61) and (5.62) into the third equation of (5.60) yields

or
(5.63)

Finally by substitution of (5.61), (5.62), and (5.63) into the fourth equation of (5.60), we obtain

or
(5.64)

Substitution of these values into (5.57) yields

(5.65)

Example 5.8  

Use partial fraction expansion to simplify  of (5.66) below, and find the time domain func-
tion  corresponding to .

(5.66)

Solution:

This is the same transform as in Example 5.3, Page 56, where we found that the denominator

0 r1 r22+=

0 2r1– A r22 r21+–+=

2– r1 2A– r22+=

4 A r22– r21+=

4 2r1=

r1 2=

0 2 r22+=

 r22 2–=

2– 2 2A– 2–=

A 1=

4 1 2 r21+ +=

r21 1=

F7 s  2s– 4+

s2 1+  s 1– 2
------------------------------------- 2s 1+

s2 1+ 
------------------ 1

s 1– 2
------------------ 2

s 1– 
----------------–+= =

F8 s 

f8 t  F8 s 

F8 s  s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=
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Alternate Method of Partial Fraction Expansion

 can be expressed in factored form of a linear term and a quadratic. Thus, we write  as

(5.67)

and using the method of clearing the fractions, we express (5.67) as

(5.68)

As in Example 5.3,
(5.69)

Next, to compute  and , we follow the procedure of this section and we obtain

 (5.70)

Since  is already known, we only need two equations in  and . Equating the coefficient of 

on the left side, which is zero, with the coefficients of  on the right side of (5.70), we obtain

(5.71)

and since , it follows that .

To obtain the third residue , we equate the constant terms of (5.70). Then,  or
, or . Then, by substitution into (5.68), we obtain 

(5.72)

as before.

The remaining steps are the same as in Example 5.3, and thus  is the same as , that is,
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------------------------------------------------=
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r2s r3+
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--------------------------+= =
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2
5
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r2 r3
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r1 r2 r3 s2

s2

0 r1= r2+

r1 2 5= r2 2 5–=

r3 3 8r1 r3+=

3 8 2 5 r3+= r3 1 5–=
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5
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-------------------------------–=
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5
---e t– 2

5
---e 2t– 2t 3

10
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5.5 Summary
 The Inverse Laplace Transform Integral defined as

is difficult to evaluate because it requires contour integration using complex variables theory. 
 For most engineering problems we can refer to Tables of Properties, and Common Laplace

transform pairs to lookup the Inverse Laplace transform. The partial fraction expansion
method offers a convenient means of expressing Laplace transforms in a recognizable form
from which we can obtain the equivalent timedomain functions. The partial fraction expan-
sion method can be applied whether the poles of  are distinct, complex conjugates,
repeated, or a combination of these. The method of clearing the fractions is an alternate
method of partial fraction expansion.

 If the highest power  of the numerator  is less than the highest power  of the denomi-
nator , i.e., ,  is said to be expressed as a proper rational function. If , 
is an improper rational function. The Laplace transform  must be expressed as a proper
rational function before applying the partial fraction expansion. If  is an improper rational
function, that is, if , we must first divide the numerator  by the denominator  to
obtain an expression of the form

 In a proper rational function, the roots of numerator  are called the zeros of  and the
roots of the denominator  are called the poles of .

 When  is expressed as 

 are called the residues and  are the poles of .

 The residues and poles of a rational function of polynomials can be found easily using the
MATLAB residue(a,b) function. The direct term is always empty (has no value) whenever

 is a proper rational function. We can use the MATLAB factor(s) symbolic function to
convert the denominator polynomial form of  into a factored form. We can also use the
MATLAB collect(s) and expand(s) symbolic functions to convert the denominator factored
form of  into a polynomial form. In this chapter we introduced the new transform pair

 and in general, 

L 1– F s   f t =
1

2j
-------- F s 

 j–

 j+

 estds=

F s 

m N s  n
D s  m n F s  m n F s 

F s 
F s 

m n N s  D s 

F s  k0 k1s k2s2  km n– sm n– N s 
D s 
-----------+ + + + +=

N s  F s 
D s  F s 

F s 

F s  r1

s p1– 
------------------ r2

s p2– 
------------------ r3

s p3– 
------------------ 

rn
s pn– 

------------------+ + + +=

r1 r2 r3  rn    p1 p2 p3  pn    F s 

F s 
F2 s 

F2 s 

s ' t  d n

dt n
-------- t  sn
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Exercises

5.6 Exercises
1. Find the Inverse Laplace transform of the following:

a.       b.       c.       d.       e.  

2. Find the Inverse Laplace transform of the following:

a.       b.       c.  

d.       e.  

3. Find the Inverse Laplace transform of the following:

a.       b.       Hint: 

c.       d.       e.  

4. Use the Initial Value Theorem to find  given that the Laplace transform of  is

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform  has two distinct poles, one at , the other at
. It also has a single zero at , and we know that . Find  and

.

4
s 3+
----------- 4

s 3+ 2
------------------ 4

s 3+ 4
------------------ 3s 4+

s 3+ 5
------------------ s2 6s 3+ +

s 3+ 5
--------------------------

3s 4+

s2 4s 85+ +
----------------------------- 4s 5+

s2 5s 18.5+ +
--------------------------------- s2 3s 2+ +

s3 5s2 10.5s 9+ + +
------------------------------------------------

s2 16–

s3 8s2 24s 32+ + +
---------------------------------------------- s 1+

s3 6s2 11s 6+ + +
-------------------------------------------

3s 2+

s2 25+
----------------- 5s2 3+

s2 4+ 
2

---------------------

1
2
------- t t tcos+sin  s2

s2 2+ 
2

------------------------

1
23
--------- tsin t tcos–  1

s2 2+ 
2

------------------------
 
 
 
 
 
 
 

2s 3+

s2 4.25s 1+ +
--------------------------------- s3 8s2 24s 32+ + +

s2 6s 8+ +
---------------------------------------------- e 2s– 3

2s 3+ 3
----------------------

f 0  f t 

2s 3+

s2 4.25s 1+ +
---------------------------------

F s  s 0=

s 1–= s 1= f t 
t 
lim 10= F s 

f t 
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5.7 Solutions to EndofChapter Exercises
1.

a.        b.       c.  

d.  

e.  

2.

a.

b.

c. Using the MATLAB factor(s) function we obtain:

syms s; factor(s^2+3*s+2), factor(s^3+5*s^2+10.5*s+9)
%  Must have Symbolic Math Toolbox installed

ans = (s+2)*(s+1)
ans = 1/2*(s+2)*(2*s^2+6*s+9)

Then,

4
s 3+
----------- 4e 3t– 4

s 3+ 2
------------------ 4te 3t– 4

s 3+ 4
------------------ 4

3!
-----t3e

3t– 2
3
---t3e

3t–
=

3s 4+

s 3+ 5
------------------ 3 s 4 3 5 3 5 3–++ 

s 3+ 5
----------------------------------------------------------- 3 s 3+  5 3–

s 3+ 5
-------------------------------- 3 1

s 3+ 4
------------------ 5 1

s 3+ 5
------------------–= = =

 3
3!
-----t3e 3t– 5

4!
-----t4e 3t–– 1

2
--- t3e 3t– 5

12
------t4e 3t–– 

 =

s2 6s 3+ +

s 3+ 5
-------------------------- s2 6s 9 6–+ +

s 3+ 5
----------------------------------- s 3+ 2

s 3+ 5
------------------ 6

s 3+ 5
------------------– 1

s 3+ 3
------------------ 6 1

s 3+ 5
------------------–= = =

 1
2!
-----t2e 3t– 6

4!
-----t4e 3t––

1
2
--- t2e 3t– 1

2
---t4e 3t–– 

 =

3s 4+

s2 4s 85+ +
----------------------------- 3 s 4 3 2 3 2 3–++ 

s 2+ 2 81+
----------------------------------------------------------- 3 s 2+  2 3–

s 2+ 2 92+
-------------------------------- 3 s 2+ 

s 2+ 2 92+
------------------------------ 1

9
--- 2 9

s 2+ 2 92+
------------------------------–= = =

3 s 2+ 
s 2+ 2 92+

------------------------------ 2
9
--- 9

s 2+ 2 92+
------------------------------ 3e 2t– 9tcos 2

9
---e 2t– 9tsin––=

4s 5+

s2 5s 18.5+ +
--------------------------------- 4s 5+

s2 5s 6.25 12.25+ + +
----------------------------------------------------- 4s 5+

s 2.5+ 2 3.52+
--------------------------------------- 4 s 5 4+

s 2.5+ 2 3.52+
---------------------------------------= = =

4 s 10 4 10 4– 5 4+ +

s 2.5+ 2 3.52+
--------------------------------------------------------- 4 s 2.5+

s 2.5+ 2 3.52+
--------------------------------------- 1

3.5
------- 5 3.5

s 2.5+ 2 3.52+
---------------------------------------–==

4 s 2.5+ 
s 2.5+ 2 3.52+

--------------------------------------- 10
7
------ 3.5

s 2.5+ 2 3.52+
---------------------------------------– 4e 2.5t– 3.5tcos 10

7
------e 2.5t– 3.5tsin–=
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Solutions to EndofChapter Exercises

d.

e.

3.

a.  

b.  

c.  

s2 3s 2+ +

s3 5s2 10.5s 9+ + +
------------------------------------------------ s 1+  s 2+ 

s 2+  s2 3s 4.5+ + 
---------------------------------------------------- s 1+ 

s2 3s 4.5+ + 
----------------------------------- s 1+

s2 3s 2.25 2.25– 4.5+ + +
----------------------------------------------------------------= = =

s 1.5 1.5– 1+ +

s 1.5+ 2 1.5 2+
-------------------------------------------- s 1.5+

s 1.5+ 2 1.5 2+
-------------------------------------------- 1

1.5
------- 0.5 1.5

s 1.5+ 2 1.5 2+
--------------------------------------------–==

s 1.5+

s 1.5+ 2 1.5 2+
-------------------------------------------- 1

3
--- 1.5

s 2.5+ 2 3.52+
---------------------------------------– e 1.5t– 1.5tcos 1

3
---e 1.5t– 1.5tsin–=

s2 16–

s3 8s2 24s 32+ + +
---------------------------------------------- s 4+  s 4– 

s 4+  s2 4s 8+ + 
------------------------------------------------ s 4– 

s 2+ 2 22+
------------------------------ s 2 2– 4–+

s 2+ 2 22+
------------------------------= = =

s 2+

s 2+ 2 22+
------------------------------ 1

2
--- 6 2

s 2+ 2 22+
------------------------------–=

s 2+

s 2+ 2 22+
------------------------------ 3 2

s 2+ 2 22+
------------------------------– e 2t– 2tcos 3e 2t– 2tsin–=

s 1+

s3 6s2 11s 6+ + +
------------------------------------------- s 1+ 

s 1+  s 2+  s 3+ 
-------------------------------------------------- 1

s 2+  s 3+ 
---------------------------------= =

1
s 2+  s 3+ 

---------------------------------
r1

s 2+
-----------

r2
s 3+
-----------     r1

1
s 3+
-----------

s 2–=

1     r2
1

s 2+
-----------

s 3–=

1–= == =+==

1
s 2+  s 3+ 

--------------------------------- 1
s 2+
----------- 1

s 3+
-----------–= e 2t– e 3t––=

3s 2+

s2 25+
----------------- 3s

s2 52+
---------------- 1

5
--- 2 5

s2 52+
----------------+ 3 s

s2 52+
---------------- 2

5
--- 5

s2 52+
----------------+ 3 5t 2

5
--- 5tsin+cos= =

5s2 3+

s2 4+ 
2

--------------------- 5s2

s2 22+ 
2

----------------------- 3

s2 22+ 
2

-----------------------+ 5 1
2 2
------------ 2t 2t 2tcos+sin  3 1

2 8
------------ 2t 2t 2tcos–sin +=

 5
4
--- 3

16
------+ 

  2tsin 5
4
--- 3

16
------– 

  2t 2tcos+ 23
16
------ 2t 17

8
------t 2tcos+sin=

2s 3+

s2 4.25s 1+ +
--------------------------------- 2s 3+

s 4+  s 1 4+ 
----------------------------------------

r1
s 4+
-----------

r2
s 1 4+
------------------+= =

r1
2s 3+

s 1 4+
------------------

s 4–=

5–
15– 4

---------------- 4
3
---          r2

2s 3+
s 4+

---------------
s 1 4–=

5 2
15 4
-------------= = 2

3
---== = =
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d.  

e.

4. The initial value theorem states that . Then,

The value  is the same as in the time domain expression found in Exercise 3(c).

5. We are given that  and . Then, 

Therefore,

that is,

and we observe that

4 3
s 4+
----------- 2 3

s 1 4+
------------------+

2
3
--- 2e 4t– e t 4–+ 

s3 8s2 24s 32+ + +

s2 6s 8+ +
---------------------------------------------- s 4+  s2 4s 8+ + 

s 2+  s 4+ 
------------------------------------------------ s2 4s 8+ + 

s 2+ 
-------------------------------= =    and by long division

s2 4s 8+ +
s 2+

-------------------------- s 2 4
s 2+
-----------+ += ' t  2 t  4e 2t–+ +

e 2s– 3
2s 3+ 3

---------------------- e 2s– F s  f t 2– u0 t 2– 

F s  3
2s 3+ 3

----------------------= 3 23
2s 3+ 3 23

------------------------------- 3 8
2s 3+  2 3

---------------------------------- 3 8
s 3 2+ 3

-------------------------- 3
8
--- 1

2!
-----t2e 3 2 t–

 
  3

16
------t2e 3 2 t–== = =

e 2s– F s  e 2s– 3
2s 3+ 3

----------------------=
3

16
------ t 2– 2e 3 2  t 2– – u0 t 2– 

f t 
t 0
lim sF s 

s 
lim=

f 0  s 2s 3+

s2 4.25s 1+ +
---------------------------------

s 
lim 2s2 3s+

s2 4.25s 1+ +
---------------------------------

s 
lim= =

2s2 s2 3s s2+

s2 s2 4.25s s2 1 s2+ +
------------------------------------------------------------

s 
lim 2 3 s+

1 4.25 s 1 s2+ +
--------------------------------------------

s 
lim 2= ==

f 0  2=

F s  A s 1– 
s s 1+ 
--------------------= f t 

t 
lim sF s 

s 0
lim 10= =

sA s 1– 
s s 1+ 
--------------------

s 0
lim A s 1– 

s 1+ 
----------------

s 0
lim A– 10= = =

F s  10– s 1– 
s s 1+ 

-------------------------
r1
s
----

r2
s 1+
-----------+ 10

s
------ 20

s 1+
-----------–= = = 10 20e t–– u0 t 

f t  10 20e t–– u0 t =

f t 
t 
lim 10=
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Chapter 6

Circuit Analysis with Laplace Transforms

his chapter presents applications of the Laplace transform. Several examples are presented
to illustrate how the Laplace transformation is applied to circuit analysis. Complex imped-
ance, complex admittance, and transfer functions are also defined. 

6.1 Circuit Transformation from Time to Complex Frequency
In this section we will show the voltagecurrent relationships for the three elementary circuit
networks, i.e., resistive, inductive, and capacitive in the time and complex frequency domains.
They are described in Subsections 6.1.1 through 6.1.3 below.

6.1.1 Resistive Network Transformation
The time and complex frequency domains for purely resistive networks are shown in Figure 6.1.

Figure 6.1. Resistive network in time domain and complex frequency domain

6.1.2 Inductive Network Transformation
The time and complex frequency domains for purely inductive networks are shown in Figure 6.2.

Figure 6.2. Inductive network in time domain and complex frequency domain

T

vR t  RiR t =

iR t 
vR t 

R
-------------=
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+

Time Domain

vR t  iR t  R

+
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VR s  IR s 
VR s  RIR s =

IR s 
VR s 

R
---------------=



+
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LvL t 
iL t  vL t  L

diL
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-------=

iL t  1
L
--- vL td

–

t

=

+
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+


sL

LiL 0 
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IL s 

VL s  sLIL s  LiL 0 –=

IL s 
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Ls
--------------

iL 0 
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---------------+=

 

    

www.ebooko.ir


Chapter 6  Circuit Analysis with Laplace Transforms

62 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

6.1.3 Capacitive Network Transformation
The time and complex frequency domains for purely capacitive networks are shown in Figure 6.3.

Figure 6.3. Capacitive circuit in time domain and complex frequency domain

Note:
In the complex frequency domain, the terms  and  are referred to as complex inductive
impedance, and complex capacitive impedance respectively. Likewise, the terms and  and 
are called complex capacitive admittance and complex inductive admittance respectively.

Example 6.1  
Use the Laplace transform method and apply Kirchoff’s Current Law (KCL) to find the voltage

 across the capacitor for the circuit of Figure 6.4, given that .

Figure 6.4. Circuit for Example 6.1
Solution:

We apply KCL at node  as shown in Figure 6.5.

Figure 6.5. Application of KCL for the circuit of Example 6.1

Then,



+

Time Domain


+

CvC t 

iC t 
iC t  C

dvC
dt

---------=

vC t  1
C
---- iC td

–

t

=

+



Complex Frequency Domain

+



+

VC s 
vC 0 

s
----------------

IC s 
1

sC
------ IC s  sCVC s  CvC 0 –=
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IC s 

sC
------------

vC 0 
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----------------+=

sL 1 sC
sC 1 sL

vC t  vC 0  6 V=
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++


V 1 F



12u0 t 

vS
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++


V 1 F



12u0 t 
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www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 63
Copyright © Orchard Publications

Circuit Transformation from Time to Complex Frequency

or

(6.1)

The Laplace transform of (6.1) is

By partial fraction expansion,

Therefore,

Example 6.2  
Use the Laplace transform method and apply Kirchoff’s Voltage Law (KVL) to find the voltage

 across the capacitor for the circuit of Figure 6.6, given that .

Figure 6.6. Circuit for Example 6.2

iR iC+ 0=

vC t  12u0 t –

1
------------------------------------- 1

dvC
dt

---------+ 0=

dvC
dt

--------- vC t + 12u0 t =

sVC s  vC 0  VC s +– 12
s

------=

s 1+ VC s  12
s

------ 6+=

VC s  6s 12+
s s 1+ 
-------------------=

VC s  6s 12+
s s 1+ 
------------------- r1

s
---- r2

s 1+ 
----------------+= =

r1
6s 12+

s 1+ 
------------------

s 0=

12= =

r2
6s 12+

s
------------------

s 1–=

6–= =

VC s  12
s

------ 6
s 1+
-----------–= 12 6e t–– 12 6e t–– u0 t  vC t = =

vC t  vC 0  6 V=
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V 1 F



12u0 t 

vS

vC t 

R
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Solution:

This is the same circuit as in Example 6.1. We apply KVL for the loop shown in Figure 6.7.

Figure 6.7. Application of KVL for the circuit of Example 6.2

and with  and , we obtain

(6.2)

Next, taking the Laplace transform of both sides of (6.2), we obtain

 

or

Check: From Example 6.1,

Then,

(6.3)

The presence of the delta function in (6.3) is a result of the unit step that is applied at .

R
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12u0 t 
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vC t 
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RiC t  1
C
---- iC t  td

–
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R 1= C 1=
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---=
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-----------= iC t  6e t– u0 t =
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--------- dvC
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Circuit Transformation from Time to Complex Frequency

Example 6.3  

In the circuit of Figure 6.8, switch  closes at , while at the same time, switch  opens.
Use the Laplace transform method to find  for .

Figure 6.8. Circuit for Example 6.3

Solution:

Since the circuit contains a capacitor and an inductor, we must consider two initial conditions
One is given as . The other initial condition is obtained by observing that there is
an initial current of  in inductor ; this is provided by the  current source just before

switch  opens. Therefore, our second initial condition is .

For , we transform the circuit of Figure 6.8 into its sdomain* equivalent shown in Figure 6.9.

Figure 6.9. Transformed circuit of Example 6.3

In Figure 6.9 the current in inductor  has been replaced by a voltage source of . This is
found from the relation

(6.4)

* Henceforth, for convenience, we will refer the time domain as tdomain and the complex frequency domain as sdomain.

S1 t 0= S2

vout t  t 0



+
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+
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0.5 HvC 0  3 V=
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t 0=
iS t 
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R2
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S1
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vC 0  3 V=

2 A L1 2 A

S2 iL1 0  2 A=

t 0



++
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2 0.5s

0.5s
+

1/s
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1 V 
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The polarity of this voltage source is as shown in Figure 6.9 so that it is consistent with the direc-
tion of the current  in the circuit of Figure 6.8 just before switch  opens. The initial
capacitor voltage is replaced by a voltage source equal to .

Applying KCL at node  we obtain

(6.5)

and after simplification,

(6.6)

We will use MATLAB to factor the denominator  of (6.6) into a linear and a quadratic fac-
tor.

p=[1  8  10  4]; r=roots(p) % Find the roots of D(s)

r =
  -6.5708         
  -0.7146 + 0.3132i
  -0.7146 - 0.3132i

y=expand((s + 0.7146  0.3132j)*(s + 0.7146 + 0.3132j)) % Find quadratic form

y =
s^2+3573/2500*s+3043737/5000000

3573/2500 % Simplify coefficient of s

ans =
    1.4292

3043737/5000000 % Simplify constant term

ans =
    0.6087

Therefore,

(6.7)

Next, we perform partial fraction expansion.

(6.8)

iL1 t  S2

3 s



Vout s  1– 3 s–

1 s 2 s 2+ +
------------------------------------------

Vout s 
1

------------------
Vout s 

s 2
------------------+ + 0=

Vout s  2s s 3+ 
s3 8s2 10s 4+ + +
-------------------------------------------=

D s 

Vout s  2s s 3+ 
s3 8s2 10s 4+ + +
------------------------------------------- 2s s 3+ 

s 6.57+  s2 1.43s 0.61+ + 
----------------------------------------------------------------------= =

Vout s  2s s 3+ 
s 6.57+  s2 1.43s 0.61+ + 

---------------------------------------------------------------------- r1

s 6.57+
------------------- r2 s r3+

s2 1.43s 0.61+ +
-----------------------------------------+==

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 67
Copyright © Orchard Publications

Circuit Transformation from Time to Complex Frequency

(6.9)

The residues  and  are found from the equality 

(6.10)

Equating constant terms of (6.10), we obtain

and by substitution of the known value of  from (6.9), we obtain

Similarly, equating coefficients of , we obtain

and using the known value of , we obtain

(6.11)
By substitution into (6.8),

*

or

(6.12)

Taking the Inverse Laplace of (6.12), we obtain

(6.13)

* We perform these steps to express the term  in a form that resembles the transform pairs

 and . The remaining steps are carried out in (6.12).

r1
2s s 3+ 

s2 1.43s 0.61+ +
-----------------------------------------

s 6.57–=

1.36= =

r2 r3

2s s 3+  r1 s2 1.43s 0.61+ +  r2 s r3+  s 6.57+ +=

0 0.61r1 6.57r3+=

r1

r3 0.12–=

s2

2 r1 r2+=

r1

r2 0.64=

Vout s  1.36
s 6.57+
------------------- 0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------+ 1.36

s 6.57+
------------------- 0.64s 0.46 0.58–+

s2 1.43s 0.51 0.1+ + +
-------------------------------------------------------+= =

0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------

e at– tu0 t cos s a+

s a+ 2 2+
------------------------------- e at– tu0 t sin 

s a+ 2 2+
-------------------------------

Vout s  1.36
s 6.57+
------------------- 0.64  s 0.715 0.91–+

s 0.715+ 2 0.316 2+
--------------------------------------------------------+=

1.36
s 6.57+
------------------- 0.64 s 0.715+ 

s 0.715+ 2 0.316 2+
-------------------------------------------------------- 0.58

s 0.715+ 2 0.316 2+
--------------------------------------------------------–+=

1.36
s 6.57+
------------------- 0.64 s 0.715+ 

s 0.715+ 2 0.316 2+
-------------------------------------------------------- 1.84 0.316

s 0.715+ 2 0.316 2+
--------------------------------------------------------–+=

vout t  1.36e 6.57t– 0.64e 0.715t– 0.316tcos 1.84e 0.715t– 0.316tsin–+ u0 t =
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From (6.13), we observe that as , . This is to be expected because  is the
voltage across the inductor as we can see from the circuit of Figure 6.9. The MATLAB script
below will plot the relation (6.13) above.

t=0:0.01:10;...
Vout=1.36.*exp(6.57.*t)+0.64.*exp(0.715.*t).*cos(0.316.*t)1.84.*exp(0.715.*t).*sin(0.316.*t);...
plot(t,Vout); grid

Figure 6.10. Plot of  for the circuit of Example 6.3

Figure 6.11 shows the Simulink/SimPower Systems model for the circuit in Figure 6.8.

Figure 6.11. The Simulink/SimPowerSystems model for the circuit in Figure 6.8
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Circuit Transformation from Time to Complex Frequency

In the model in Figure 6.11, the Switch 1 and Switch 2 blocks are modeled as current sources
and unless a snubber* circuit is present, cannot be connected in series with a current source or in
series with an inductor. The Current Source block and the series RL block in Figure 6.11 do not
include snubbers and in this case, the Resistor blocks  and , both set as , are con-
nected in parallel with the Current Source block and the series RL block to act as snubbers. 

The Block Parameters for the Simulink/SimPowerSystems blocks in Figure 6.11 are set as follows:

On the model in Figure 6.11 window click Simulation>Configuration Parameters, and select:

Type: Variable Step, Solver: ode23. Leave unlisted parameters in their default states.

Timer 1 and Timer 2 blocks  Time(s): [0 3/60]
Amplitude  Timer 1: [1   0]   (Closed, then Open after 3/60 s)

Timer 2: [0   1]   (Open, then Closed after 3/60 s)

Switch 1 block  as shown in Figure 6.12

Figure 6.12. Block parameters for Switch 1 block

Switch 2 block  as shown in Figure 6.12, except Initial state .

* A snubber is a device used to suppress transients such as voltage in electrical systems, force in mechanical sys-
tems, and pressure in fluid mechanics.

R3 R4 1 M

0
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Current Source block  Peak Amplitude: 2, Phase: 90, Frequency: 0, Measurement: Current

With these settings the Current Source block behaves as a 2 Amp DC current source.

 block - As shown in Figure 6.13.

Figure 6.13. Block parameters for R1 L1 branch

The waveform for the voltage  in expression 6.13 is displayed by the Scope 3 block in Fig-
ure 6.11 is shown in Figure 6.14 and it compares favorably with the waveform produced with
MATLAB in Figure 6.10.

R1  L1

vout t 

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 611
Copyright © Orchard Publications

Complex Impedance Z(s)

Figure 6.14. Waveform displayed by the Scope 3 block in Figure 6.11.

6.2 Complex Impedance Z(s)

Consider the   series circuit of Figure 6.11, where the initial conditions are
assumed to be zero.

Figure 6.15. Series RLC circuit in sdomain

For this circuit, the sum  represents the total opposition to current flow. Then,

(6.14)

and defining the ratio  as , we obtain

(6.15)

and thus, the  current  can be found from the relation (6.16) below.

(6.16)

s domain– RLC



+
R 

+

VS s 
I s 

sL

1
sC
------

Vout s 

R sL 1
sC
------+ +

I s 
VS s 

R sL 1 sC+ +
------------------------------------=

Vs s  I s  Z s 

Z s 
VS s 
I s 

-------------- R sL 1
sC
------+ +=

s domain– I s 

I s 
VS s 
Z s 

--------------=
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where
(6.17)

We recall that . Therefore,  is a complex quantity, and it is referred to as the com-
plex input impedance of an   series circuit. In other words,  is the ratio of the
voltage excitation  to the current response  under zero state (zero initial conditions).

Example 6.4  

For the network of Figure 6.16, all values are in  (ohms). Find  using:

a. nodal analysis

b. successive combinations of series and parallel impedances

Figure 6.16. Circuit for Example 6.4

Solution:
a.

We will first find , and we will compute  using (6.15). We assign the voltage  at
node  as shown in Figure 6.17.

Figure 6.17. Network for finding  in Example 6.4

By nodal analysis,

Z s  R sL 1
sC
------+ +=

s  j+= Z s 
s domain– RLC Z s 

Vs s  I s 

 Z s 



+

1 

VS s 

1 s

s s

I s  Z s  VA s 

A



+
1 

VS s 

1 s

s s
I s 

VA s 
A

I s 

VA s  VS s –

1
-----------------------------------

VA s 
s

---------------
VA s 
s 1 s+
------------------+ + 0=

1 1
s
--- 1

s 1 s+
------------------+ + 

 VA s  VS s =
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Complex Admittance Y(s)

The current  is now found as

and thus, 
(6.18)

b.
The impedance  can also be found by successive combinations of series and parallel
impedances, as it is done with series and parallel resistances. For convenience, we denote the
network devices as  and  shown in Figure 6.16.

Figure 6.18. Computation of the impedance of Example 6.4 by series  parallel combinations

To find the equivalent impedance , looking to the right of terminals  and , we begin on
the right side of the network and we proceed to the left combining impedances as we would
combine resistances where the symbol  denotes parallel combination. Then,

(6.19)

We observe that (6.19) is the same as (6.18).

6.3 Complex Admittance Y(s)

Consider the   parallel circuit of Figure 6.19 where the initial conditions are
zero.

VA s  s3 1+

s3 2s2 s 1+ + +
------------------------------------- VS s =

I s 

I s 
VS s  VA s –

1
----------------------------------- 1 s3 1+

s3 2s2 s 1+ + +
-------------------------------------–

 
 
 

VS s  2s2 1+

s3 2s2 s 1+ + +
------------------------------------- VS s = = =

Z s 
VS s 
I s 

-------------- s3 2s2 s 1+ + +

2s2 1+
-------------------------------------= =

Z s 

Z1 Z2 Z3  Z4

1 1 s

s sZ s 
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Z2

Z3
Z4

a

b

Z s  a b

||

Z s  Z3 Z4+  || Z2  Z1+=

Z s  s s 1 s+ 
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-------------------------------------= = = =

s domain– GLC
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Figure 6.19. Parallel GLC circuit in sdomain

For the circuit of Figure 6.19,

Defining the ratio  as , we obtain

(6.20)

and thus the  voltage  can be found from

(6.21)

where

(6.22)

We recall that . Therefore,  is a complex quantity, and it is referred to as the com-
plex input admittance of an   parallel circuit. In other words,  is the ratio of
the current excitation  to the voltage response  under zero state (zero initial condi-
tions).

 

Example 6.5  

Compute  and  for the circuit of Figure 6.20. All values are in  (ohms). Verify your
answers with MATLAB.

G 

+

IS s 
V s  1

sL
------ sC

GV s  1
sL
------V s  sCV s + + I s =

G 1
sL
------ sC+ + 

  V s   I s =

IS s  V s  Y s 

Y s  I s 
V s 
----------- G 1

sL
------ sC+ + 1

Z s 
-----------= =

s domain– V s 

V s 
IS s 
Y s 
------------=

Y s  G 1
sL
------ sC+ +=

s  j+= Y s 
s domain– GLC Y s 

IS s  V s 

Z s  Y s  
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Complex Admittance Y(s)

Figure 6.20. Circuit for Example 6.5

Solution:

It is convenient to represent the given circuit as shown in Figure 6.17.

Figure 6.21. Simplified circuit for Example 6.5

where

Then,

Check with MATLAB:

syms s; % Define symbolic variable s. Must have Symbolic Math Toolbox installed
z1 = 13*s + 8/s; z2 = 5*s + 10; z3 = 20 + 16/s; z = z1 + z2 * z3 / (z2+z3)

z =
13*s+8/s+(5*s+10)*(20+16/s)/(5*s+30+16/s)

z10 = simplify(z)

Z s 

Y s 

13s 8 s

5s 16 s

10 20

Z3Z2

Z1

Z s   Y s ,

Z1 13s 8
s
---+ 13s2 8+

s
--------------------= =

Z2 10 5s+=

Z3 20 16
s

------+ 4 5s 4+ 
s

-----------------------= =

Z s  Z1
Z2Z3

Z2 Z3+
------------------+ 13s2 8+

s
--------------------

10 5s+  4 5s 4+ 
s

----------------------- 
 

10 5s+ 4 5s 4+ 
s

-----------------------+
----------------------------------------------------+ 13s2 8+

s
--------------------

10 5s+  4 5s 4+ 
s

----------------------- 
 

5s2 10s 4 5s 4+ + +
s

----------------------------------------------------
-----------------------------------------------------+= = =

13s2 8+
s

-------------------- 20 5s2 14s 8+ + 
5s2 30s 16+ +

-------------------------------------------+ 65s4 490s3 528s2 400s 128+ + + +

s 5s2 30s 16+ + 
-------------------------------------------------------------------------------------==
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z10 =
(65*s^4+490*s^3+528*s^2+400*s+128)/s/(5*s^2+30*s+16)

pretty(z10)

               4        3        2
           65 s  + 490 s  + 528 s  + 400 s + 128
           -------------------------------------
                         2
                   s (5 s  + 30 s + 16)

The complex input admittance  is found by taking the reciprocal of , that is,

(6.23)

6.4 Transfer Functions

In an  circuit, the ratio of the output voltage  to the input voltage 

under zero state conditions, is of great interest* in network analysis. This ratio is referred to as the
voltage transfer function and it is denoted as , that is, 

(6.24)

Similarly, the ratio of the output current  to the input current  under zero state condi-

tions, is called the current transfer function denoted as , that is, 

(6.25)

The current transfer function of (6.25) is rarely used; therefore, from now on, the transfer func-
tion will have the meaning of the voltage transfer function, i.e., 

* To appreciate the usefulness of the transfer function, let us express relation (6.24) as .
This relation indicates that if we know the transfer function of a network, we can compute its output by multi-
plication of the transfer function by its input. We should also remember that the transfer function concept exists
only in the complex frequency domain. In the time domain this concept is known as the impulse response, and
it is discussed in Signals and Systems with MATLAB Computing and Simulink Modeling, ISBN 9781
934404119.

Y s  Z s 
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Z s 
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-------------------------------------------------------------------------------------= =
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Vout s  Gv s  Vin s =
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Vout s 
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------------------

Iout s  Iin s 

Gi s 

Gi s 
Iout s 
Iin s 
----------------
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Transfer Functions

(6.26)

Example 6.6  

Derive an expression for the transfer function  for the circuit of Figure 6.22, where  rep-
resents the internal resistance of the applied (source) voltage , and  represents the resis-
tance of the load that consists of , , and .

Figure 6.22. Circuit for Example 6.6

Solution:

No initial conditions are given, and even if they were, we would disregard them since the transfer
function was defined as the ratio of the output voltage  to the input voltage

 under zero initial conditions. The  circuit is shown in Figure 6.23.

Figure 6.23. The sdomain circuit for Example 6.6

The transfer function  is readily found by application of the voltage division expression of
the  circuit of Figure 6.23. Thus,

G s 
Vout s 
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+
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RL
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vout
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+
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Vin s  Vg s = s domain–

+

+


Vin s 

Rg

RL

sL

1
sC
------

Vout s 

G s 
s domain–
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Therefore,
(6.27)

Example 6.7  

Compute the transfer function  for the circuit of Figure 6.24 in terms of the circuit constants
 Then, replace the complex variable  with , and the circuit constants

with their numerical values and plot the magnitude  versus radian fre-

quency .

Figure 6.24. Circuit for Example 6.7

Solution:
The complex frequency domain equivalent circuit is shown in Figure 6.25.

Figure 6.25. The sdomain circuit for Example 6.7

Next, we write nodal equations at nodes 1 and 2. At node 1,

(6.28)

Vout s 
RL sL 1 sC+ +

Rg RL sL 1 sC+ + +
----------------------------------------------------Vin s =

G s 
Vout s 
Vin s 
------------------=

RL Ls 1 sC+ +
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----------------------------------------------------=
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1 2
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1 sC1
---------------
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Transfer Functions

At node 2,

(6.29)

Since  (virtual ground), we express (6.29) as

(6.30)

and by substitution of (6.30) into (6.28), rearranging, and collecting like terms, we obtain:

or

(6.31)

To simplify the denominator of (6.31), we use the MATLAB script below with the given values
of the resistors and the capacitors.

syms s; % Define symbolic variable s
R1=2*10^5; R2=4*10^4; R3=5*10^4; C1=25*10^(-9); C2=10*10^(-9);...
DEN=R1*((1/R1+1/R2+1/R3+s*C1)*(s*R3*C2)+1/R2); simplify(DEN)

ans =
1/200*s+188894659314785825/75557863725914323419136*s^2+5

188894659314785825/75557863725914323419136 % Simplify coefficient of s^2

ans =
  2.5000e-006

1/200 % Simplify coefficient of s^2

ans =
    0.0050

Therefore,

By substitution of  with  we obtain

                (6.32)

We use MATLAB to plot the magnitude of (6.32) on a semilog scale with the following script:

V2 s  V1 s –
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---------------------------------
Vout s 
1 sC2

-------------------=

V2 s  0=
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1
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----- 1
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----- sC1+ + + 

  sR– 3C2  1
R2
-----– Vout s  1

R1
-----Vin s =

G s 
Vout s 
Vin s 
-------------------= 1–

R1 1 R1 1 R2 1 R3 sC1+ + +  sR3C2  1 R2+ 
--------------------------------------------------------------------------------------------------------------------------------=

G s 
Vout s 
Vin s 
------------------= 1–

2.5 10 6– s2 5 10 3– s 5+ +
--------------------------------------------------------------------=

s j

G j 
Vout j 
Vin j 
----------------------= 1–

2.5 10 6– 2 j5 10 3–  5+–
------------------------------------------------------------------------=
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w=1:10:10000; Gs=1./(2.5.*10.^(6).*w.^25.*j.*10.^(3).*w+5);...
semilogx(w,abs(Gs)); xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');... 
title('Magnitude Vout/Vin vs. Radian Frequency'); grid

The plot is shown in Figure 6.22. We observe that the given op amp circuit is a second order low
pass filter whose cutoff frequency ( ) occurs at about .

Figure 6.26.  versus  for the circuit of Example 6.7

6.5 Using the Simulink Transfer Fcn Block

The Simulink Transfer Fcn block implements a transfer function where the input  and
the output  can be expressed in transfer function form as

(6.33)

Example 6.8  
Let us reconsider the active lowpass filter op amp circuit of Figure 6.24, Page 6-18 where we
found that the transfer function is 
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Using the Simulink Transfer Fcn Block

(6.34)

and for simplicity, let , and . By substitution into (6.34) we
obtain

(6.35)

Next, we let the input be the unit step function , and as we know from Chapter 4,
. Therefore,

(6.36)

To find , we perform partial fraction expansion, and for convenience, we use the MAT-
LAB residue function as follows:

num=1; den=[1 3 1 0];[r p k]=residue(num,den)

r =
   -0.1708
    1.1708
   -1.0000
p =
   -2.6180
   -0.3820
         0
k =
     []

Therefore,

(6.37)

The plot for  is obtained with the following MATLAB script, and it is shown in Figure
6.27.

t=0:0.01:10; ft=1+1.171.*exp(0.382.*t)0.171.*exp(2.618.*t); plot(t,ft); grid

The same plot can be obtained using the Simulink model of Figure 6.29, where in the Function
Block Parameters dialog box for the Transfer Fcn block we enter  for the numerator, and
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s
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 for the denominator. After the simulation command is executed, the Scope block dis-
plays the waveform of Figure 6.29.

Figure 6.27. Plot of  for Example 6.8.

Figure 6.28. Simulink model for Example 6.8

Figure 6.29. Waveform for the Simulink model of Figure 6.28
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Summary

6.6 Summary
 The Laplace transformation provides a convenient method of analyzing electric circuits since

integrodifferential equations in the  are transformed to algebraic equations in the
.

 In the  the terms  and  are called complex inductive impedance, and com-
plex capacitive impedance respectively. Likewise, the terms and  and  are called com-
plex capacitive admittance and complex inductive admittance respectively.

 The expression

is a complex quantity, and it is referred to as the complex input impedance of an 
 series circuit. 

 In the  the current  can be found from

 The expression

is a complex quantity, and it is referred to as the complex input admittance of an 
 parallel circuit.

 In the  the voltage  can be found from

 In an  circuit, the ratio of the output voltage  to the input voltage 
under zero state conditions is referred to as the voltage transfer function and it is denoted as

, that is, 

t domain–
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6.7 Exercises

1. In the circuit below, switch  has been closed for a long time, and opens at . Use the
Laplace transform method to compute  for .

2. In the circuit below, switch  has been closed for a long time, and opens at . Use the
Laplace transform method to compute  for .

3. Use mesh analysis and the Laplace transform method, to compute  and  for the cir-

cuit below, given that  and .

4. For the  circuit below,

a.  compute the admittance 

b.  compute the  value of  when , and all initial conditions are
zero.
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+


72 V

6 K
C


+60 K

30 K 20 K

10 K
40
9

------F

vC t 

R1

R2

R3 R4

R5

i1 t  i2 t 

iL(0  0= vC(0  0=
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Exercises

5. Derive the transfer functions for the networks (a) and (b) below.

6. Derive the transfer functions for the networks (a) and (b) below.

7. Derive the transfer functions for the networks (a) and (b) below.

8. Derive the transfer function for the networks (a) and (b) below.
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9. Derive the transfer function for the network below. Using MATLAB, plot  versus fre-
quency in Hertz, on a semilog scale.

G s 

R1

R2

R3

C1
C2

Vout s 
Vin s 

R1 = 11.3 k
R2 = 22.6 k
R3=R4 = 68.1 k

C1=C2 = 0.01 F
R4
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Solutions to EndofChapter Exercises

6.8 Solutions to EndofChapter Exercises

1. At , the switch is closed, and the  circuit is as shown below where the 
resistor is shorted out by the inductor.

Then,

and thus the initial condition has been established as 

For all  the  and  circuits are as shown below.

From the  circuit on the right side above we obtain

2. At , the switch is closed and the  circuit is as shown below.

Then, 
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and

Therefore, the initial condition is

For all , the  circuit is as shown below.

Then,

3. The  circuit is shown below where , , and 

Then,

iT 0  72 V
6 K 60 K 60 K+
------------------------------------------------------------- 72 V

6 K 30 K+
-------------------------------------- 72 V

36 K
-----------------= = 2 mA= =

i2 0  1
2
---iT 0  1 mA= =

vC 0  20 K 10 K+  i2 0  30 K  1 mA  30 V= = =

t 0 s domain–

+


60 K

30 K 20 K

10 K

1
40 9 10 6– s
----------------------------------

30 s

+


9 106
40s

-------------------

30 s

60 K 30 K+  20 K 10 K+  22.5 K=

VC s  VR

VR VC s =

+


22.5 K

VC s  VR
22.5 103

9 106 40s 22.5 103+
------------------------------------------------------------- 30

s
------ 30 22.5 103

9 106 40 22.5 103s+
-------------------------------------------------------------= = =

30 22.5 103  22.5 103 
9 106 40 22.5 103  s+

---------------------------------------------------------------------------- 30
9 106 90 104 s+
--------------------------------------------------- 30

10 s+
--------------= ==

VC s  30
s 10+
--------------= 30e 10t– u0 t  V vC t =

s domain– z1 2s= z2 1 1 s+= z3 s 3+=

+



+

I1 s  +
I2 s 

2s
1 s

1 s1 s
2 s

3

z1

z3

z2
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and in matrix form

We use the MATLAB script below we obtain the values of the currents.

syms s; z1=2*s; z2=1+1/s; z3=s+3;  % Must have Symbolic Math Toolbox installed
Z=[z1+z2  z2; z2  z2+z3]; Vs=[1/s  2/s]'; Is=Z\Vs; fprintf(' \n');...
disp('Is1 = '); pretty(Is(1)); disp('Is2 = '); pretty(Is(2))

Is1 = 
                                           2
                                 2 s - 1 + s
                        -------------------------------
                                      2      3
                        (6 s + 3 + 9 s  + 2 s ) 
Is2 = 

                                      2
                                  4 s  + s + 1
                       - -------------------------------
                                      2      3
                         (6 s + 3 + 9 s  + 2 s ) conj(s)

Therefore,
  (1)

  (2)

We use MATLAB to express the denominators of (1) and (2) as a product of a linear and a
quadratic term.

p=[2  9  6  3]; r=roots(p); fprintf(' \n'); disp('root1 ='); disp(r(1));...
disp('root2 ='); disp(r(2)); disp('root3 ='); disp(r(3)); disp('root2 + root3 ='); disp(r(2)+r(3));...
disp('root2 * root3 ='); disp(r(2)*r(3))

 root1 =
   -3.8170

root2 =
  -0.3415 + 0.5257i

z1 z2+ I1 s  z2I2 s – 1 s=

z2I1 s – z2 z3+ I2 s + 2– s=

z1 z2+  z2–

z2– z2 z3+ 
I1 s 
I2 s 

 1 s
2– s

=

I1 s  s2 2s 1–+

2s3 9s2 6s 3+ + +
--------------------------------------------=

I2 s  4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=
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root3 =
  -0.3415 - 0.5257i

root2 + root3 =
   -0.6830

root2 * root3 =
    0.3930

and with these values (1) is written as

  (3)

Multiplying every term by the denominator and equating numerators we obtain

Equating , , and constant terms we obtain

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[1  2  1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

 r1 = 0.48   r2 = 0.52   r3 = -0.31

By substitution of these values into (3) we obtain

   (4)

By inspection, the Inverse Laplace of first term on the right side of (4) is

  (5)

The second term on the right side of (4) requires some manipulation. Therefore, we will use
the MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t  % Must have Symbolic Math Toolbox installed
IL=ilaplace((0.52*s-0.31)/(s^2+0.68*s+0.39));
pretty(IL)

I1 s  s2 2s 1–+

s 3.817+  s2 0.683s 0.393+ + 
-----------------------------------------------------------------------------------

r1
s 3.817+ 

---------------------------
r2s r3+

s2 0.683s 0.393+ + 
----------------------------------------------------+= =

s2 2s 1–+ r1 s2 0.683s 0.393+ +  r2s r3+  s 3.817+ +=

s2 s

r1 r2+ 1=

0.683r1 3.817r2 r3+ + 2=

0.393r1 3.817r3+ 1–=

I1 s 
r1

s 3.817+ 
---------------------------

r2s r3+

s2 0.683s 0.393+ + 
----------------------------------------------------+ 0.48

s 3.817+ 
--------------------------- 0.52s 0.31–

s2 0.683s 0.393+ + 
----------------------------------------------------+= =

0.48
s 3.82+ 

------------------------ 0.48e 3.82t–
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Solutions to EndofChapter Exercises

      1217       17      1/2            1/2
    - ---- exp(- -- t) 14    sin(7/50 14    t)
      4900       50
           13       17               1/2
         + -- exp(- -- t) cos(7/50 14    t)
           25       50

Thus, 

Next, we will find . We found earlier that

and following the same procedure we obtain

  (6)

Multiplying every term by the denominator and equating numerators we obtain

Equating , , and constant terms, we obtain

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[4  1  1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

r1 = -4.49   r2 = 0.49   r3 = 0.20

By substitution of these values into (6) we obtain

  (7)

By inspection, the Inverse Laplace of first term on the right side of (7) is

  (8)

i1 t  0.48e 3.82t– 0.93e 0.34t– 0.53t 0.52e 0.34t– 0.53tcos+sin–=

I2 s 

I2 s  4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=

I2 s  4s2 s– 1––

s 3.817+  s2 0.683s 0.393+ + 
-----------------------------------------------------------------------------------

r1
s 3.817+ 

---------------------------
r2s r3+

s2 0.683s 0.393+ + 
----------------------------------------------------+= =

4s2 s– 1–– r1 s2 0.683s 0.393+ +  r2s r3+  s 3.817+ +=

s2 s

r1 r2+ 4–=

0.683r1 3.817r2 r3+ + 1–=

0.393r1 3.817r3+ 1–=

I1 s 
r1

s 3.817+ 
---------------------------

r2s r3+

s2 0.683s 0.393+ + 
----------------------------------------------------+ 4.49–

s 3.817+ 
--------------------------- 0.49s 0.20+

s2 0.683s 0.393+ + 
----------------------------------------------------+= =

0.48
s 3.82+ 

------------------------ 4.47– e 3.82t–
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The second term on the right side of (7) requires some manipulation. Therefore, we will use
the MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t  %  Must have Symbolic Math Toolbox installed
IL=ilaplace((0.49*s+0.20)/(s^2+0.68*s+0.39)); pretty(IL) 

  167        17     1/2            1/2                             
 ---- exp(- -- t) 14    sin(7/50 14    t)
  9800       50

    49       17               1/2
 + --- exp(- -- t) cos(7/50 14    t)
   100       50                         

Thus, 

4.

a. Mesh 1:

or
  (1)

Mesh 2:
  (2)

Addition of (1) and (2) yields

or

and thus

b. With  we obtain

i2 t  4.47– e 3.82t– 0.06e 0.34t– 0.53t 0.49e 0.34t– 0.53tcos+sin+=

+


1

+

1

31 s

V1 s 

VC s 

I1 s 

+

V2 s  2VC s =2
I2 s 

2 1 s+  I1 s  I2 s – V1 s =

6 2 1 s+  I1 s  6I2 s – 6V1 s =

I1– s  6I2 s + V– 2 s  2 s I1 s –= =

12 6 s+  I1 s  2 s 1–  I1 s + 6V1 s =

11 8 s+  I1 s  6V1 s =

Y s 
I1 s 
V1 s 
-------------- 6

11 8 s+
--------------------- 6s

11s 8+
------------------= ==

V1 s  1 s=

I1 s  Y s  V1 s  6s
11s 8+
------------------ 1

s
--- 6

11s 8+
------------------ 6 11

s 8 11+
---------------------= = = = 6

11
------e 8 11 t– i1 t =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 633
Copyright © Orchard Publications

Solutions to EndofChapter Exercises

5.

Network (a):

and thus

Network (b):

and thus

Both of these networks are firstorder lowpass filters.

6.

Network (a):

and

Network (b):

and

Both of these networks are firstorder highpass filters.

R



++


Vin s  Vout s 

1 Cs

+


Vin s 

Ls
R

+


Vout s 

b a 

Vout s  1 Cs
R 1 Cs+
------------------------ Vin s =

G s 
Vout s 
Vin s 
------------------ 1 Cs

R 1 Cs+
------------------------ 1 Cs

RCs 1+  Cs 
---------------------------------------- 1

RCs 1+
-------------------- 1 RC

s 1 RC+
------------------------= = = = =

Vout s  R
Ls R+
---------------- Vin s =

G s 
Vout s 
Vin s 
------------------ R

Ls R+
---------------- R L

s R L+
--------------------= = =

R


++


Vin s  Vout s 1 Cs + R

Vin s 


Ls
+



b a 

Vout s 

Vout s  R
1 Cs R+
------------------------ Vin s =

G s 
Vout s 
Vin s 
------------------ R

1 Cs R+
------------------------ RCs

RCs 1+ 
------------------------- s

s 1 RC+
------------------------= = = =

Vout s  Ls
R Ls+
---------------- Vin s =

G s 
Vout s 
Vin s 
------------------ Ls

R Ls+
---------------- s

s R L+
--------------------= = =
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7.

Network (a):

and thus

This network is a secondorder bandpass filter.

Network (b):

and

This network is a secondorder bandelimination (bandreject) filter.

R


++


Vin s  Vout s 1 CsLs

+

Vin s 



R
Ls

1 Cs

+



Vout s 

b 
a 

Vout s  R
Ls 1+ Cs R+
------------------------------------ Vin s =

G s 
Vout s 
Vin s 
------------------ R

Ls 1+ Cs R+
------------------------------------ RCs

LCs2 1 RCs+ +
--------------------------------------- R L s

s2 R L s 1 LC+ +
---------------------------------------------------= = = =

Vout s  Ls 1+ Cs
R Ls 1+ + Cs
------------------------------------ Vin s =

G s 
Vout s 
Vin s 
------------------ Ls 1+ Cs

R Ls 1+ + Cs
------------------------------------ LCs2 1+

LCs2 RCs 1+ +
--------------------------------------- s2 1 LC+

s2 R L s 1 LC+ +
---------------------------------------------------= = = =
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Solutions to EndofChapter Exercises

8.

Network (a):

Let  and . For inverting op amps , and

thus

This network is a firstorder active lowpass filter.

Network (b):

Let  and . For inverting op-amps , and thus

This network is a firstorder active highpass filter.

R2R1

Vin s 
Vout s 

1 Cs

Vin s 

R11 Cs

R2

Vout s 

a  b 

z1 R1= z2 R2 1 Cs R2 1 Cs
R2 1 Cs+
--------------------------= =

Vout s 
Vin s 
------------------

z2
z1
-----–=

G s 
Vout s 
Vin s 
------------------

R2 1 Cs  R2 1 Cs+  –

R1
--------------------------------------------------------------------------

R2 1 Cs –

R1 R2 1 Cs+ 
------------------------------------------

R1C–

s 1 R2C+
--------------------------= = = =

z1 R1 1 Cs+= z2 R2=
Vout s 
Vin s 
------------------

z2
z1
-----–=

G s 
Vout s 
Vin s 
------------------

R2–

R1 1 Cs+
--------------------------

R2 R1 s–

s 1 R1C+
---------------------------= = =
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9.

At Node :

  (1)

At Node :

and since , we express the last relation above as

  (2)

At Node :

  (3)

R1

R2

R3

Vout s 
Vin s 

R4

R1 = 11.3 K
R2 = 22.6 K
R3=R4 = 68.1 K

C1=C2 = 0.01 F

V3
V2

V1

1 C1s

1 C2s

V1

V1 s 
R3

--------------
V1 s  Vout s –

R4
--------------------------------------+ 0=

1
R3
------ 1

R4
------+ 

 V1 s  1
R4
------Vout s =

V3

V3 s  V2 s –

R2
----------------------------------

V3 s 
1 C1s
----------------+ 0=

V3 s  V1 s 

V1 s  V2 s –

R2
---------------------------------- C1sV1 s + 0=

1
R2
------ C1s+ 

 V1 s  1
R2
------V2 s =

V2
V2 s  Vin s –

R1
------------------------------------

V2 s  V1 s –

R2
----------------------------------

V2 s  Vout s –

1 C2s
--------------------------------------+ + 0=

1
R1
------ 1

R2
------ C2s+ + 

 V2 s 
Vin s 

R1
---------------

V1 s 
R2

-------------- C2sVout s + +=
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From (1)

  (4)

From (2)

and with (4)
  (5)

By substitution of (4) and (5) into (3) we obtain

and thus

By substitution of the given values and after simplification we obtain

We use the MATLAB script below to plot this function.

w=1:10:10000; s=j.*w; Gs=7.83.*10.^7./(s.^2+1.77.*10.^4.*s+5.87.*10.^7);...
semilogx(w,abs(Gs)); xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');... 
title('Magnitude Vout/Vin vs. Radian Frequency'); grid

V1 s 
1 R4 

R3 R4+  R3R4
-----------------------------------------Vout s 

R3
R3 R4+ 

------------------------Vout s = =

V2 s  R2
1

R2
------ C1s+ 
 V1 s  1 R2C1s+ V1 s = =

V2 s 
R3 1 R2C1s+ 

R3 R4+ 
------------------------------------Vout s =

1
R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+ 
R3 R4+ 

------------------------------------Vout s 
Vin s 

R1
--------------- 1

R2
------

R3
R3 R4+ 

------------------------Vout s  C2sVout s + +=

1
R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+ 
R3 R4+ 

------------------------------------ 1
R2
------

R3
R3 R4+ 

------------------------– C2s– Vout s  1
R1
------Vin s =

G s 
Vout s 
Vin s 
------------------ 1

R1
1

R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+ 
R3 R4+ 

------------------------------------ 1
R2
------

R3
R3 R4+ 

------------------------– C2s–

----------------------------------------------------------------------------------------------------------------------------------------------= =

G s  7.83 107
s2 1.77 104s 5.87 107+ +
----------------------------------------------------------------------=
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The plot above indicates that this circuit is a secondorder lowpass filter.

100 101 102 103 104
0.4

0.6

0.8

1

1.2

1.4

Radian Frequency w

|V
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Chapter 7

State Variables and State Equations

his chapter is an introduction to state variables and state equations as they apply in circuit
analysis. The state transition matrix is defined, and the statespacetotransfer function
equivalence is presented. Several examples are presented to illustrate their application.

7.1 Expressing Differential Equations in State Equation Form
As we know, when we apply Kirchoff’s Current Law (KCL) or Kirchoff’s Voltage Law (KVL) in
networks that contain energystoring devices, we obtain integrodifferential equations. Also,
when a network contains just one such device (capacitor or inductor), it is said to be a firstorder
circuit. If it contains two such devices, it is said to be secondorder circuit, and so on. Thus, a first
order linear, timeinvariant circuit can be described by a differential equation of the form

(7.1)

A second order circuit can be described by a secondorder differential equation of the same form
as (7.1) where the highest order is a second derivative.

An nthorder differential equation can be resolved to  firstorder simultaneous differential
equations with a set of auxiliary variables called state variables. The resulting firstorder differen-
tial equations are called statespace equations, or simply state equations. These equations can be
obtained either from the nthorder differential equation, or directly from the network, provided
that the state variables are chosen appropriately. The state variable method offers the advantage
that it can also be used with nonlinear and timevarying devices. However, our discussion will
be limited to linear, timeinvariant circuits.

State equations can also be solved with numerical methods such as Taylor series and Runge
Kutta methods, but these will not be discussed in this text*. The state variable method is best
illustrated with several examples presented in this chapter. 

Example 7.1  

A series  circuit with excitation 

(7.2)

* These are discussed in Numerical Analysis using MATLAB and Excel, ISBN 9781934404034.

T

a1
dy
dt
------ a0 y t + x t =

n

RLC

vS t  e jt=
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is described by the integrodifferential equation

(7.3)

Differentiating both sides and dividing by  we obtain

(7.4)

or
(7.5)

Next, we define two state variables  and  such that

(7.6)
and

(7.7)

Then,
(7.8)

where  denotes the derivative of the state variable . From (7.5) through (7.8), we obtain the
state equations

(7.9)

It is convenient and customary to express the state equations in matrix* form. Thus, we write the
state equations of (7.9) as

(7.10)

We usually express (7.10) in a compact form as

(7.11)

where † is any input

* For a review of matrix theory, please refer to Appendix E.
† In this text, and in all Orchard Publications texts, the unit step function is denoted as .

Ri Ldi
dt
----- 1

C
---- i td

–

t

+ + e jt=

L

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i+ + 1

L
---je jt=

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i 1

L
---je jt+––=

x1 x2

x1 i=

x2
di
dt
----- dx1

dt
-------- x·1= = =

x·2 d2i dt2=

x·k xk

x·1 x2=

x·2
R
L
---x2–

1
LC
-------x1–

1
L
---je jt+=

x·1

x·2

0 1
1

LC
-------– R

L
---–

x1

x2

0
1
L
--- je jt u+=

x· Ax bu+=

u

u0

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 73
Copyright © Orchard Publications

Expressing Differential Equations in State Equation Form

 (7.12)

The output  is expressed by the state equation

(7.13)

where  is another matrix, and  is a column vector. 

In general, the state representation of a network can be described by the pair of the of the state
space equations

 (7.14)

The state space equations of (7.14) can be realized with the block diagram of Figure 7.1.

Figure 7.1. Block diagram for the realization of the state equations of (7.14)

We will learn how to solve the matrix equations of (7.14) in the subsequent sections.

Example 7.2  
A fourthrder network is described by the differential equation

(7.15)

where  is the output representing the voltage or current of the network, and  is any
input. Express (7.15) as a set of state equations.

Solution:
The differential equation of (7.15) is of fourthorder; therefore, we must define four state vari-
ables which will be used with the resulting four firstorder state equations. 

x· x·1

x·2

A  
0 1
1

LC
-------– R

L
---–

x= x1

x2

   b
0

1
L
--- je jt  and  u= any input= = =

y t 

y Cx du+=

C d

x· Ax bu+=

y Cx du+=

u b

A

C

d

x

+ +

++ y dtx·

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t + + + + u t =

y t  u t 
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We denote the state variables as , and , and we relate them to the terms of the given
differential equation as

(7.16)

We observe that

(7.17)

and in matrix form 

\ (7.18)

In compact form, (7.18) is written as
(7.19)

where

We can also obtain the state equations directly from given circuits. We choose the state variables
to represent inductor currents and capacitor voltages. In other words, we assign state variables to
energy storing devices. The examples below illustrate the procedure.

Example 7.3  

Write state equation(s) for the circuit of Figure 7.2, given that , and  is the unit
step function.

x1 x2 x3   x4

x1 y t = x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x·1 x2=

x·2 x3=

x·3 x4=

d 4y
dt4
--------- x·4 a0x1– a1x2 a2x3–– a3x4– u t += =

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t +=

x· Ax bu+=

x·

x·1

x·2

x·3

x·4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u=   u t =

vC 0  0= u0 t 
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Expressing Differential Equations in State Equation Form

Figure 7.2. Circuit for Example 7.3
Solution:
This circuit contains only one energystoring device, the capacitor. Therefore, we need only one
state variable. We choose the state variable to denote the voltage across the capacitor as shown
in Figure 7.3. For this example, the output is defined as the voltage across the capacitor.

Figure 7.3. Circuit for Example 7.3 with state variable x assigned to it
For this circuit,

and

By KVL,

or

Therefore, the state equations are

(7.20)

Example 7.4  

Write state equation(s) for the circuit of Figure 7.4 assuming , and the output  is
defined as .

Figure 7.4. Circuit for Example 7.4

+

R


+

CvS u0 t 
vC t  vout t =

+

R


+

C

+ 

i
vS u0 t 

vR t 
vC t  vout t  x= =

iR i iC C
dvC
dt

--------- Cx·= = = =

vR t  Ri RCx·= =

vR t  vC t + vS u0 t =

RCx· x+ vSu0 t =

x· 1
RC
--------x– vS u0 t +=

y x=

iL 0  0= y
y i t =

+


R

L

vSu0 t 

i t 
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Solution:

This circuit contains only one energystoring device, the inductor; therefore, we need only one
state variable. We choose the state variable to denote the current through the inductor as shown
in Figure 7.5. 

Figure 7.5. Circuit for Example 7.4 with assigned state variable x
By KVL,

or

or

Therefore, the state equations are

(7.21)

7.2 Solution of Single State Equations
If a circuit contains only one energystoring device, the state equations are written as

(7.22)

where , , , and  are scalar constants, and the initial condition, if nonzero, is denoted as

(7.23)

We will now prove that the solution of the first state equation in (7.22) is

(7.24)

Proof:

First, we must show that (7.24) satisfies the initial condition of (7.23). This is done by substitu-
tion of  in (7.24). Then, 

+


R

L

vS u0 t 
i t  x=

vR vL+ vS u0 t =

Ri Ldi
dt
-----+ vS u0 t =

Rx Lx·+ vS u0 t =

x· R
L
----x– 1

L
---vS u0 t +=

y x=

x· x u+=

y k1x k2u+=

  k1 k2

x0 x t0 =

x t  e
 t t0– 

x0 et e – u   d
t0

t

+=

t t0=

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 77
Copyright © Orchard Publications

Solution of Single State Equations

(7.25)

The first term in the right side of (7.25) reduces to  since

(7.26)

The second term of (7.25) is zero since the upper and lower limits of integration are the same.
Therefore, (7.25) reduces to  and thus the initial condition is satisfied.

Next, we must prove that (7.24) satisfies also the first equation in (7.22). To prove this, we dif-
ferentiate (7.24) with respect to  and we obtain

or

or
(7.27)

We observe that the bracketed terms of (7.27) are the same as the right side of the assumed solu-
tion of (7.24). Therefore, 

and this is the same as the first equation of (7.22).

In summary, if  and  are scalar constants, the solution of

(7.28)
with initial condition

(7.29)
is obtained from the relation

(7.30)

x t0  e
 t0 t0– 

x0 et e – u   d
t0

t0

+=

x0

e
 t0 t0– 

x0 e0x0 x0= =

x t0  x0=

t

x· t  d
dt
----- e

 t t0– 
x0  d

dt
----- et e – u   d

t0

t

 
 
 

+=

x· t  e
 t t0– 

x0 et e – u    et e – u     t=
+d

t0

t

+=

 e
 t t0– 

x0 et e – u   d
t0

t

+ ete t– u t +=

x· t   e
 t t0– 

x0 e t – u   d
t0

t

+ u t +=

x· x u+=

 

x· x u+=

x0 x t0 =

x t  e
 t t0– 

x0 et e – u   d
t0

t

+=
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Example 7.5  

Use (7.28) through (7.30) to find the capacitor voltage  of the circuit of Figure 7.6 for ,

given that the initial condition is 

Figure 7.6. Circuit for Example 7.5
Solution:

From (7.20) of Example 7.3, Page 75,

and by comparison with (7.28),

and

Then, from (7.30),

or
(7.31)

Assuming that the output  is the capacitor voltage, the output state equation is

(7.32)

7.3 The State Transition Matrix          
In Section 7.1, relation (7.14), we defined the state equations pair

(7.33)

vC t  t 0

vC 0  1 V=

+
 

+

0.5 F

R

2u0 t 
vC t 

2  C

x· 1
RC
--------x– vSu0 t +=

 1
RC
--------– 1–

2 0.5
---------------- 1–= = =

 2=

x t  e
 t t0– 

x0 et e – u   d
t0

t

+ e 1– t 0– 1 e t– e2u   d
0

t

+= =

e t– 2e t– e d
0

t

+ e t– 2e t– e  0

t
+ e t– 2e t– et 1– += ==

vC t  x t  2 e t–– u0 t = =

y

y t  x t  2 e t–– u0 t = =

x· Ax bu+=

y Cx du+=
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The State Transition Matrix

where for two or more simultaneous differential equations,  and  are  or higher order
matrices, and  and  are column vectors with two or more rows. In this section we will intro-

duce the state transition matrix , and we will prove that the solution of the matrix differential
equation 

(7.34)
with initial conditions

(7.35)
is obtained from the relation

(7.36)

Proof:

Let  be any  matrix whose elements are constants. Then, another  matrix denoted as
, is said to be the state transition matrix of (7.34), if it is related to the matrix  as the

matrix power series

(7.37)

where  is the  identity matrix.

From (7.37), we find that

(7.38)

Differentiation of (7.37) with respect to  yields

(7.39)

and by comparison with (7.37) we obtain

(7.40)

To prove that (7.36) is the solution of (7.34), we must prove that it satisfies both the initial con-
dition and the matrix differential equation. The initial condition is satisfied from the relation

(7.41)

where we have used (7.38) for the initial condition. The integral is zero since the upper and
lower limits of integration are the same.

A C 2 2
b d

eAt

x· Ax bu+=

x t0  x0=

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

A n n n n
 t  A

 t  eAt I At 1
2!
-----A2t2 1

3!
-----A3t3  1

n!
-----Antn+ + + + +=

I n n

 0  eA0 I A0 + + I= = =

t

' t  d
dt
-----eAt 0 A 1 A2t + ++ A A2t + += = =

d
dt
-----eAt AeAt=

x t0  e
A t0 t0– 

x0 e
At0 e A– bu   d

t0

t0

+ eA0x0 0+ Ix0 x0= = = =
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To prove that (7.34) is also satisfied, we differentiate the assumed solution

with respect to  and we use (7.40), that is,

Then,

or
(7.42)

We recognize the bracketed terms in (7.42) as , and the last term as . Thus, the expres-
sion (7.42) reduces to

In summary, if  is an  matrix whose elements are constants, , and  is a column vec-
tor with n elements, the solution of

(7.43)
with initial condition

(7.44)
is

(7.45)

Therefore, the solution of second or higher order circuits using the state variable method, entails

the computation of the state transition matrix , and integration of (7.45).

7.4 Computation of the State Transition Matrix 

Let  be an  matrix, and  be the  identity matrix. By definition, the eigenvalues ,
 of  are the roots of the nth order polynomial

(7.46)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(7.46) can be real (unequal or equal), or complex numbers.

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

t

d
dt
-----eAt AeAt=

x· t  Ae
A t t0– 

x0 AeAt e A– bu   d
t0

t

 eAte A– tbu t + +=

x· t  A e
A t t0– 

x0 eAt e A– bu   d
t0

t

+ eAte A– tbu t +=

x t  bu t 

x· t  Ax bu+=

A n n n 2 b

x· t  Ax bu+=

x0 x t0 =

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

eAt

eAt

A n n I n n i

i 1 2  n  = A

det A I–  0=
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Computation of the State Transition Matrix

Evaluation of the state transition matrix  is based on the CayleyHamilton theorem. This theo-
rem states that a matrix can be expressed as an  degree polynomial in terms of the
matrix  as

(7.47)

where the coefficients  are functions of the eigenvalues 

We accept (7.47) without proving it. The proof can be found in Linear Algebra and Matrix The-
ory textbooks.

Since the coefficients  are functions of the eigenvalues , we must consider the two cases dis-
cussed in Subsections 7.4.1 and 7.4.2 below.

7.4.1 Distinct Eigenvalues (Real of Complex)

If , that is, if all eigenvalues of a given matrix  are distinct, the coeffi-
cients  are found from the simultaneous solution of the following system of equations:

(7.48)

Example 7.6  

Compute the state transition matrix  given that

Solution:

We must first find the eigenvalues  of the given matrix . These are found from the expansion
of

For this example,

eAt

n 1– th
A

eAt a0I a1A a2A2  an 1– An 1–+ + + +=

ai 

ai 

1 2 3  n    A

ai

a0 a11 a21
2  an 1– 1

n 1–+ + + + e
1t

=

a0 a12 a22
2  an 1– 2

n 1–+ + + + e
2t

=



a0 a1n a2n
2  an 1– n

n 1–+ + + + e
nt

=

eAt

A 2– 1
0 1–

=

 A

det A I–  0=
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or

Therefore,
(7.49)

Next, we must find the coefficients  of (7.47). Since  is a  matrix, we only need to con-
sider the first two terms of that relation, that is,

(7.50)

The coefficients  and  are found from (7.48). For this example,

or

(7.51)

Simultaneous solution of (7.51) yields

(7.52)

and by substitution into (7.50),

or

(7.53)

In summary, we compute the state transition matrix  for a given matrix  using the following
procedure:

det A I–  det 2– 1
0 1–

 1 0
0 1

–
 
 
 

det 2– – 1
0 1– –

0= = =

2– –  1– –  0==

 1+   2+  0=

1 1  and  2 2–=–=

ai A 2 2

eAt a0I a1A+=

a0 a1

a0 a11+ e
1t

=

a0 a12+ e
2t

=

a0 a1 1– + e t–=

a0 a1 2– + e 2t–=

a0 2e t– e 2t––=

a1 e t– e 2t––=

eAt 2e t– e 2t––  1 0
0 1

e t– e 2t––  2– 1
0 1–

+=

eAt e 2t– e t– e 2t––

0 e t–
=

eAt A
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Computation of the State Transition Matrix

1. We find the eigenvalues  from . We can write  at once by sub-
tracting  from each of the main diagonal elements of . If the dimension of  is a 
matrix, it will yield two eigenvalues; if it is a  matrix, it will yield three eigenvalues, and
so on. If the eigenvalues are distinct, we perform steps 2 through 4; otherwise we refer to Sub-
section 7.4.2 below.

2. If the dimension of  is a  matrix, we use only the first 2 terms of the right side of the
state transition matrix 

(7.54)

If  matrix is a  matrix, we use the first 3 terms of (7.54), and so on.

3. We obtain the  coefficients from

We use as many equations as the number of the eigenvalues, and we solve for the coefficients
.

4. We substitute the  coefficients into the state transition matrix of (7.54), and we simplify.

Example 7.7  

Compute the state transition matrix  given that

(7.55)

Solution:

1. We first compute the eigenvalues from . We obtain  at once, by sub-
tracting  from each of the main diagonal elements of . Then,

 det A I–  0= A I– 
 A A 2 2

3 3

A 2 2

eAt a0I a1A a2A2  an 1– An 1–+ + + +=

A 3 3

ai

a0 a11 a21
2  an 1– 1

n 1–+ + + + e
1t

=

a0 a12 a22
2  an 1– 2

n 1–+ + + + e
2t

=



a0 a1n a2n
2  an 1– n

n 1–+ + + + e
nt

=

ai

ai

eAt

A
5 7 5–
0 4 1–
2 8 3–

=

det A I–  0= A I– 
 A
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(7.56)

and expansion of this determinant yields the polynomial

 (7.57)

We will use MATLAB roots(p) function to obtain the roots of (7.57).

p=[1  6  11  6]; r=roots(p); fprintf(' \n'); fprintf('lambda1 = %5.2f \t', r(1));...
fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))

lambda1 = 3.00   lambda2 = 2.00   lambda3 = 1.00

and thus the eigenvalues are

(7.58)

2. Since  is a  matrix, we use the first  terms of (7.54), that is,

(7.59)

3. We obtain the coefficients  from 

or

(7.60)

We will use the following MATLAB script for the solution of (7.60).

B=sym('[1  1  1; 1  2  4; 1  3  9]'); b=sym('[exp(t); exp(2*t); exp(3*t)]'); a=B\b; fprintf(' \n');...
disp('a0 = '); disp(a(1)); disp('a1 = '); disp(a(2)); disp('a2 = '); disp(a(3))

a0 = 
3*exp(t)-3*exp(2*t)+exp(3*t)
a1 = 
-5/2*exp(t)+4*exp(2*t)-3/2*exp(3*t)
a2 = 

det A I–  det
5 – 7 5–

0 4 – 1–
2 8 3– –

0= =

3 62 11 6–+– 0=

1 1= 2 2= 3 3=

A 3 3 3

eAt a0I a1A a2A2+ +=

a0 a1 and a2 

a0 a11 a21
2+ + e

1t
=

a0 a12 a22
2+ + e

2t
=

a0 a13 a23
2+ + e

3t
=

a0 a1 a2+ + et=

a0 2a1 4a2+ + e2t=

a0 3a1 9a2+ + e3t=
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Computation of the State Transition Matrix

1/2*exp(t)-exp(2*t)+1/2*exp(3*t)

Thus,

(7.61)

4. We also use MATLAB to perform the substitution into the state transition matrix, and to per-
form the matrix multiplications. The script is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)3*exp(2*t); a1 = 5/2*exp(t)3/2*exp(3*t)+4*exp(2*t);...
a2 = 1/2*exp(t)+1/2*exp(3*t)exp(2*t);...
A = [5  7  5;  0  4  1;  2  8  -3]; eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[-2*exp(t)+2*exp(2*t)+exp(3*t),  -6*exp(t)+5*exp(2*t)+exp(3*t),   
4*exp(t)-3*exp(2*t)-exp(3*t)]
[-exp(t)+2*exp(2*t)-exp(3*t),  -3*exp(t)+5*exp(2*t)-exp(3*t),   
2*exp(t)-3*exp(2*t)+exp(3*t)]
[-3*exp(t)+4*exp(2*t)-exp(3*t), -9*exp(t)+10*exp(2*t)-exp(3*t),   
6*exp(t)-6*exp(2*t)+exp(3*t)]

Thus,

7.4.2 Multiple (Repeated) Eigenvalues
In this case, we will assume that the polynomial of

(7.62)

has  roots, and  of these roots are equal. In other words, the roots are 

(7.63)

The coefficients  of the state transition matrix

(7.64)

are found from the simultaneous solution of the system of equations of (7.65) below.

a0 3et 3e2t– e3t+=

a1
5
2
---et– 4e2t 3

2
---e3t–+=

a2
1
2
---et e2t– 1

2
---e3t+=

eAt
2et– 2e2t e3t+ + 6– et 5e2t e3t+ + 4et 3e2t– e3t–

et– 2e2t e3t–+ 3et– 5e2t e3t–+ 2et 3e2t– e3t+

3et– 4e2t e3t–+ 9et– 10e2t e3t–+ 6et 6e2t– e3t+

=

det A I–  0=

n m

1 2= 3=  m,  m 1+  ,  n=

ai

eAt a0I a1A a2A2  an 1– An 1–+ + + +=
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(7.65)

Example 7.8  

Compute the state transition matrix  given that

Solution:

1. We first find the eigenvalues  of the matrix  and these are found from the polynomial of
. For this example,

and thus,

2. Since  is a  matrix, we only need the first two terms of the state transition matrix, that
is,

(7.66)

3. We find  and  from (7.65). For this example,

a0 a11 a21
2  an 1– 1

n 1–+ + + + e
1t

=

d
d1
--------- a0 a11 a21

2  an 1– 1
n 1–+ + + +  d

d1
--------e

1t
=

d 2

d1
2

-------- a0 a11 a21
2  an 1– 1

n 1–+ + + +  d 2

d1
2

--------e
1t

=



d m 1–

d1
m 1–

--------------- a0 a11 a21
2  an 1– 1

n 1–+ + + +  d m 1–

d1
m 1–

---------------e
1t

=

a0 a1m 1+ a2m 1+
2  an 1– m 1+

n 1–+ + + + e
m 1+ t

=



a0 a1n a2n
2  an 1– n

n 1–+ + + + e
nt

=

eAt

A 1– 0
2 1–

=

 A
det A I–  0=

det A I–  det 1– – 0
2 1– –

0= = 1– –  1– –  0=  1+ 2 0=

1 2 1–= =

A 2 2

eAt a0I a1A+=

a0 a1
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Computation of the State Transition Matrix

or

and by substitution with , we obtain

Simultaneous solution of the last two equations yields

(7.67)

4. By substitution of (7.67) into (7.66), we obtain 

or

(7.68)

We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix. To find out
how it is used, we invoke the help eig command.

We will first use MATLAB to verify the values of the eigenvalues found in Examples 7.6 through
7.8, and we will briefly discuss eigenvectors in the next section.

Example 7.6:

A= [2  1; 0  1]; lambda=eig(A)

lambda =
    -2
    -1

a0 a11+ e
1t

=

d
d1
--------- a0 a11+  d

d1
---------e

1t
=

a0 a11+ e
1t

=

a1 te
1t

=

1 2 1–= =

a0 a1– e t–=

a1 te t–=

a0 e t– te t–+=

a1 te t–=

eAt e t– te t–+  1 0
0 1

te t– 1– 0
2 1–

+=

eAt e t– 0

2te t– e t–
=

n n
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Example 7.7:

B = [5  7  5;  0  4  1;  2  8  3]; lambda=eig(B)

lambda =
    1.0000
    3.0000
    2.0000

Example 7.8:

C = [1  0; 2 1]; lambda=eig(C)

lambda =
    -1
    -1

7.5 Eigenvectors
Consider the relation

(7.69)

where  is an  matrix,  is a column vector, and  is a scalar number. We can express this
relation in matrix form as

(7.70)

We express (7.70) as
(7.71)

Then, (7.71) can be written as

(7.72)

The equations of (7.72) will have nontrivial solutions if and only if its determinant is zero*, that
is, if

* This is because we want the vector X in (7.71) to be a non-zero vector and the product  to be zero.

AX X=

A n n X 

a11 a12  a1n

a21 a22  a2n

   
an1 an2  ann

x1

x2


xn



x1

x2


xn

=

A I– X 0=

a11 – x1 a12x2  a1nxn

a21x1 a22 – x2  a2nxn

   
an1x1 an2x2  ann – xn

0=

A I– X
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Eigenvectors

(7.73)

Expansion of the determinant of (7.73) results in a polynomial equation of degree  in  and it
is called the characteristic equation.

We can express (7.73) in a compact form as

(7.74)

As we know, the roots  of the characteristic equation are the eigenvalues of the matrix , and
corresponding to each eigenvalue there is a non-trivial solution of the column vector , i.e.,

. This vector  is called eigenvector. Obviously, there is a different eigenvector for each
eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized
to unit length. This is done by dividing each component of the eigenvector by the square root of
the sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

In many engineering applications the unit eigenvectors are chosen such that  where

 is the transpose of the eigenvector , and  is the identity matrix.

Two vectors  and  are said to be orthogonal if their inner (dot) product is zero. A set of eigen-
vectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors)
and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-
Schmidt Orthogonalization Procedure; it is beyond the scope of this chapter to discuss this proce-
dure, and therefore it will not be discussed in this text. It can be found in Linear Algebra and
Matrix Theory textbooks.

The example below illustrates the relationships between a matrix , its eigenvalues, and eigen-
vectors.

Example 7.9  
Given the matrix

a. Find the eigenvalues of 

det

a11 –  a12  a1n

a21 a22 –   a2n

   
an1 an2  ann – 

0=

n 

det A I–  0=

 A
 X

X 0 X

X XT I=

XT X I

X Y

A

A
5 7 5–
0 4 1–
2 8 3–

=

A

www.ebooko.ir


Chapter 7  State Variables and State Equations

720 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

b. Find eigenvectors corresponding to each eigenvalue of 

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 7.7, relation (7.55), Page 714, where we found the
eigenvalues to be

b. We begin with

and we let

Then,

(7.75)

or

(7.76)

Equating corresponding rows and rearranging, we obtain

(7.77)

For , (7.77) reduces to

(7.78)

By Crame’s rule, or MATLAB, we obtain the indeterminate values

(7.79)

A

1 1= 2 2= 3 3=

AX X=

X
x1

x2

x3

=

5 7 5–
0 4 1–
2 8 3–

x1

x2

x3


x1

x2

x3

=

5x1 7x2 5x3–

0 4x2 x3–

2x1 8x2 3x3–

x1

x2

x3

=

5 – x1 7x2 5x3–

0 4 – x2 x3–

2x1 8x2 3 – x3–

0
0
0

=

 1=

4x1 7x2 5x3–+ 0=

3x2 x3– 0=

2x1 8x2 4x3–+ 0=

x1 0 0= x2 0 0= x3 0 0=
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Eigenvectors

Since the unknowns  are scalars, we can assume that one of these, say , is
known, and solve  and  in terms of . Then, we obtain , and . There-
fore, an eigenvector for  is

(7.80)

since any eigenvector is a scalar multiple of the last vector in (7.80).

Similarly, for  we obtain , and . Then, an eigenvector for  is

(7.81)

Finally, for we obtain , and . Then, an eigenvector for  is

(7.82)

c. We find the unit eigenvectors by dividing the components of each vector by the square root of
the sum of the squares of the components. These are:

The unit eigenvectors are

 (7.83)

We observe that for the first unit eigenvector the sum of the squares is unity, that is,

x1 x2  and x3  x2

x1 x3 x2 x1 2x2= x3 3x2=

 1=

X 1=

x1

x2

x3

=
2x2

x2

3x2

x2

2
1
3

2
1
3

= = =

 2= x1 x2= x3 2x2=  2=

X 2=

x1

x2

x3

=
x2

x2

2x2

x2

1
1
2

1
1
2

= = =

 3= x1 x– 2= x3 x2=  3=

X 3=

x1

x2

x3

=
x– 2

x2

x2

x2

1–
1
1

1–
1
1

= = =

22 12 32+ + 14=

12 12 22+ + 6=

1– 2 12 12+ + 3=

Unit X 1=

2
14

----------

1
14

----------

3
14

----------

= Unit X 2=

1
6

-------

1
6

-------

2
6

-------

= Unit X 3=

1–

3
-------

1
3

-------

1
3

-------

=
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(7.84)

and the same is true for the other two unit eigenvectors in (7.83).

7.6 Circuit Analysis with State Variables
In this section we will present two examples to illustrate how the state variable method is used in
circuit analysis.

Example 7.10  

For the circuit of Figure 7.7, the initial conditions are , and . Use the

state variable method to compute  and .

Figure 7.7. Circuit for Example 7.10
Solution:

For this example,

and

Substitution of given values and rearranging, yields

or

(7.85)

Next, we define the state variables  and . Then,

(7.86)

and

2
14

---------- 
  2 1

14
---------- 
  2 3

14
---------- 
  2

+ + 4
14
------ 1

14
------ 9

14
------+ + 1= =

iL 0  0= vC 0  0.5 V=

iL t  vC t 



+

R L

+
C1 

vS t  u0 t =

vC t 
i t 

1 4  H

4 3  F

i iL=

RiL L
diL

dt
------- vC+ + u0 t =

1
4
---diL

dt
------- 1– iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x·1
diL

dt
-------=
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Also,

and thus,

or
(7.87)

Therefore, from (7.85), (7.86), and (7.87), we obtain the state equations

and in matrix form,

(7.88)

We will compute the solution of (7.88) using

(7.89)

where

    (7.90)

First, we compute the state transition matrix . We find the eigenvalues from

Then,

Therefore,

The next step is to find the coefficients . Since  is a  matrix, we only need the first two
terms of the state transition matrix, that is,

(7.91)

x·2
dvC

dt
---------=

iL C
dvC

dt
---------=

x1 iL C
dvC

dt
--------- Cx·2

4
3
---x·2= = = =

x·2
3
4
---x1=

x·1 4x1– 4x2– 4+=

x·2
3
4
--- x1=

x·1

x·2

4– 4–
3 4 0

x1

x2

4
0

u0 t +=

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

A 4– 4–
3 4 0

= x0
iL 0 
vC 0 

0
1 2

= = b 4
0

=

eAt

det A I–  0=

det A I–  det 4– – 4–
3 4 –

0= = –  4– –  3+ 0= 2 4 3+ + 0=

1 1  and  2 3–=–=

ai A 2 2

eAt a0I a1A+=
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The constants  and  are found from

and with , we obtain

(7.92)

Simultaneous solution of (7.92) yields

(7.93)

We now substitute these values into (7.91), and we obtain

or

The initial conditions vector is the second vector in (7.90); then, the first term of (7.89) becomes

or

(7.94)

We also need to evaluate the integral on the right side of (7.89). From (7.90)

a0 a1

a0 a11+ e
1t

=

a0 a12+ e
2t

=

1 1  and  2 3–=–=

a0 a1– e t–=

a0 3a– 1 e 3t–=

a0 1.5e t– 0.5e 3t––=

a1 0.5e t– 0.5e 3t––=

eAt 1.5e t– 0.5e 3t––  1 0
0 1

0.5e t– 0.5e 2t––  4– 4–
3 4 0

+=

1.5e t– 0.5e 3t–– 0

0 1.5e t– 0.5e 3t––

2– e t– 2e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 0

+=

eAt 0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

=

eAtx0

0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

0
1 2

=

eAtx0
e t–– e 3t–+

0.75e t– 0.25e 3t––
=
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and denoting this integral as , we obtain

or

(7.95)

The integration in (7.95) is with respect to ; then, integrating the column vector under the
integral, we obtain

or

By substitution of these values, the solution of

is

Then,

(7.96)
and

(7.97)

Other variables of the circuit can now be computed from (7.96) and (7.97). For example, the
voltage across the inductor is

b 4
0

1
0

4= =

Int

Int
0.5– e t – – 1.5e 3 t – –+ 2– e t – – 2e 3 t – –+

3
8
---e t – – 3

8
---e

3 t – –
– 1.5e t – – 0.5e 3 t – ––

1
0

4 d
t0

t

=

Int
0.5– e t – – 1.5e 3 t – –+

3
8
---e t – – 3

8
---e

3 t – –
–

4 d
t0

t

=



Int 4 0.5– e t – – 0.5e 3 t – –+

0.375e t – – 0.125e 3 t – ––
 0=

t

=

Int 4 0.5– 0.5+
0.375 0.125–

4 0.5– e t– 0.5e 3t–+

0.375e t– 0.125e 3t––
– 4 0.5e t– 0.5– e 3t–

0.25 0.375– e t– 0.125e 3t–+
= =

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

x1

x2

e t–– e 3t–+

0.75e t– 0.25e 3t––
4 0.5e t– 0.5– e 3t–

0.25 0.375– e t– 0.125e 3t–+
+ e t– e– 3t–

1 0.75– e t– 0.25e 3t–+
= =

x1 iL e t– e– 3t–= =

x2 vC 1 0.75e– t– 0.25e 3t–+= =
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We use the MATLAB script below to plot the relation of (7.97). 

t=0:0.01:10; x2=10.75.*exp(t)+0.25.*exp(3.*t);...
plot(t,x2); grid

The plot is shown in Figure 7.8.

Figure 7.8. Plot for relation (7.97)

We can obtain the plot in Figure 7.8 with the Simulink StateSpace block with the unit step
function as the input using the Step block, and the capacitor voltage as the output displayed on
the Scope block as shown in the model of Figure 7.9 where for the StateSpace block Function
Block Parameters dialog box we have entered:

A: [4  4; 3/4  0]
B: [4  0]’
C: [0  1]
D: [ 0 ]
Initial conditions: [0  1/2]

Figure 7.9. Simulink model for Example 7.10

vL L
diL
dt
------- 1

4
--- d

dt
----- e t– e– 3t–  1

4
---e t––

3
4
---e 3t–+= = =
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0.5

0.6
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V
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ta
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V
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x2 vC 1 0.75e– t– 0.25e 3t–+= =
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The waveform for the capacitor voltage for the simulation time interval  seconds is

shown in Figure 7.10 where we observe that the initial condition  is also dis-
played.

Figure 7.10. Input and output waveforms for the model of Figure 7.9

The SimPowerSystems model for the circuit in Figure 7.7 is shown in Figure 7.11.

Figure 7.11. Model for the circuit in Figure 7.7. Scope 2 block displays the waveform in Fig.7.8.

Example 7.11  
A network is described by the state equation

(7.98)
where

            and  (7.99)

0 t 10 

vC 0  0.5 V=

x· Ax bu+=

A 1 0
1 1–

= x0
1
0

= b 1–
1

= u  t =
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Compute the state vector

Solution:

We compute the eigenvalues from

For this example,

Then,

Since  is a  matrix, we only need the first two terms of the state transition matrix to find
the coefficients , that is,

(7.100)

The constants  and  are found from

(7.101)

and with , we obtain

(7.102)

and simultaneous solution of (7.102) yields

By substitution of these values into (7.100), we obtain

(7.103)

The values of the vector  are found from

x x1

x2

=

det A I–  0=

det A I–  det 1 – 0
1 1 ––

0= = 1 –  1– –  0=

1 1  and  2 1–==

A 2 2
ai

eAt a0I a1A+=

a0 a1

a0 a11+ e
1t

=

a0 a12+ e
2t

=

1 1  and  2 1–==

a0 a1+ et=

a0 a– 1 e t–=

a0
et e t–+

2
---------------- tcosh= =

a1
et e t––

2
---------------- tsinh= =

eAt tcosh I tsinh A+ tcosh 1 0
0 1

tsinh 1 0
1 1–

+ tcosh tsinh+ 0
tsinh tcosh tsinh–

= ==

x
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(7.104)

Using the sifting property of the delta function we find that (7.104) reduces to

Therefore,

(7.105)

7.7 Relationship between State Equations and Laplace Transform
In this section, we will show that the state transition matrix can be computed from the Inverse
Laplace transform. We will also show that the transfer function can be found from the coefficient
matrices of the state equations.

Consider the state equation

(7.106)

Taking the Laplace of both sides of (7.106), we obtain

or
(7.107)

Multiplying both sides of (7.107) by , we obtain

(7.108)

Comparing (7.108) with

(7.109)

we observe that the right side of (7.108) is the Laplace transform of (7.109). Therefore, we can

compute the state transition matrix  from the Inverse Laplace of , that is, we can
use the relation

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+ eAtx0 eAt e A– b   d
0

t

+= =

x t  eAtx0 eAtb+ eAt x0 b+  eAt 1
0

1–
1

+
 
 
 

eAt 0
1

= = = =

tcosh tsinh+ 0
tsinh tcosh tsinh–

0
1

x1

x2

==

x
x1

x2

0
tcosh tsinh–

0

e t–
= = =

x· Ax bu+=

sX s  x 0 – AX s  bU s +=

sI A– X s  x 0  bU s +=

sI A–  1–

X s  sI A–  1– x 0  sI A–  1– bU s +=

x t  eAtx0 eAt e A– bu   d
0

t

+=

eAt sI A–  1–
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(7.110)

Next, we consider the output state equation 

(7.111)

Taking the Laplace of both sides of (7.111), we obtain

(7.112)
and using (7.108), we obtain

(7.113)

If the initial condition , (7.113) reduces to

(7.114)

In (7.114),  is the Laplace transform of the input ; then, division of both sides by 
yields the transfer function

 (7.115)

Example 7.12  
In the circuit of Figure 7.12, all initial conditions are zero. Compute the state transition matrix

 using the Inverse Laplace transform method.

Figure 7.12. Circuit for Example 7.12

Solution:

For this circuit,

and

Substitution of given values and rearranging, yields

eAt L 1– sI A–  1– =

y Cx du+=

Y s  CX s  dU s +=

Y s  C sI A–  1– x 0  C sI A–  1– b d+ U s +=

x 0  0=

Y s  C sI A–  1– b d+ U s =

U s  u t  U s 

G s  Y s 
U s 
----------- C sI A–  1– b d+= =

eAt



+

R L

+


C3 

vS t  u0 t =

vC t 
i t 

1 H

1 2  F

i iL=

RiL L
diL

dt
------- vC+ + u0 t =
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(7.116)

Now, we define the state variables

and

Then,
(7.117)

and

Also,
 (7.118)

and thus,

or
(7.119)

Therefore, from (7.117) and (7.119) we obtain the state equations

 (7.120)

and in matrix form,

(7.121)

By inspection,

(7.122)

Now, we will find the state transition matrix from

(7.123)
where

Then,

diL

dt
------- 3– iL vC– 1+=

x1 iL=

x2 vC=

x·1
diL

dt
------- 3– iL vC– 1+= =

x·2
dvC

dt
---------=

iL C
dvC

dt
--------- 0.5

dvC

dt
---------= =

x1 iL 0.5
dvC

dt
--------- 0.5x·2= = =

x·2 2x1=

x·1 3x1– x2– 1+=

x·2 2x1=

x·1

x·2

3– 1–
2 0

x1

x2

1
0

1+=

A 3– 1–
2 0

=

eAt L 1– sI A–  1– =

sI A–  s 0
0 s

3– 1–
2 0

– s 3+ 1
2– s

= =
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We find the Inverse Laplace of each term by partial fraction expansion. Thus,

Now, we can find the state variables representing the inductor current and the capacitor voltage
from

using the procedure of Example 7.11.

MATLAB provides two very useful functions to convert statespace (state equations), to transfer
function (sdomain), and vice versa. The function ss2tf (statespace to transfer function) con-
verts the state space equations

* (7.124)

to the rational transfer function form

(7.125)

This is used with the statement [num,den]=ss2tf(A,B,C,D,iu) where A, B, C, D are the matrices
of (7.124) and iu is  if there is only one input. The MATLAB help command provides the fol-
lowing information:

help ss2tf

 SS2TF  State-space to transfer function conversion.
    [NUM,DEN] = SS2TF(A,B,C,D,iu) calculates the
     transfer function:
                NUM(s)          -1
        G(s) = -------- = C(sI-A) B + D
                DEN(s)
    of the system:
        x = Ax + Bu

* We have used capital letters for vectors b and c to be consistent with MATLAB’s designations.

sI A–  1– adj sI A– 
det sI A– 
---------------------------- 1

s2 3s 2+ +
-------------------------- s 1–

2 s 3+

s
s 1+  s 2+ 

--------------------------------- 1–
s 1+  s 2+ 

---------------------------------

2
s 1+  s 2+ 

--------------------------------- s 3+
s 1+  s 2+ 

---------------------------------
= = =

eAt L 1– sI A–  1–  e t–– 2e 2t–+ e t–– e 2t–+

2e t– 2e 2t–– 2e t– e 2t––
= =

x t  eAtx0 eAt e A– bu   d
0

t

+=

x· Ax Bu+=

y Cx Du+=

G s  N s 
D s 
-----------=

1
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        y = Cx + Du
from the iu'th input. Vector DEN contains the coefficients of   the
denominator in descending powers of s. The numerator coefficients are
returned in matrix NUM with as many rows as there     are outputs y.

    See also TF2SS

The other function, tf2ss, converts the transfer function of (7.125) to the statespace equations
of (7.124). It is used with the statement [A,B,C,D]=tf2ss(num,den) where A, B, C, and D are
the matrices of (7.124), and num, den are  and  of (7.125) respectively. The MATLAB
help command provides the following information:

help tf2ss

 TF2SS  Transfer function to state-space conversion.
    [A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space 
    representation:

        x = Ax + Bu
        y = Cx + Du
    of the system:
                 NUM(s) 
        G(s) = --------
                 DEN(s)

from a single input. Vector DEN must contain the coefficients of the
denominator in descending powers of s. Matrix NUM must contain the
numerator coefficients with as many rows as there are outputs y. The
A,B,C,D matrices are returned in controller canonical form. This cal-
culation also works for discrete systems. To avoid confusion when using
this function with discrete systems, always use a numerator polynomial
that has been padded with zeros to make it the same length as the
denominator. See the User's guide for more details.

    See also SS2TF.

Example 7.13  
For the circuit of Figure 7.13, all initial conditions are zero.

Figure 7.13. Circuit for Example 7.13

N s  D s 


+

R L

+


C1 

vS t  u0 t =

vC t  vout t =
i t 

1 H

1 F
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a. Derive the state equations and express them in matrix form as 

b. Derive the transfer function

c. Verify your answers with MATLAB.

Solution:

a. The differential equation describing the circuit is

and with the given values,

or

We let

and

Then,

and

Thus, the state equations are

and in matrix form, 

(7.126)

b. The  circuit is shown in Figure 7.14.

x· Ax Bu+=

y Cx Du+=

G s  N s 
D s 
-----------=

Ri Ldi
dt
----- vC+ + u0 t =

i di
dt
----- vC+ + u0 t =

di
dt
----- i vC– u0 t +–=

x1 iL i= =

x2 vC vout= =

x·1
di
dt
-----=

x·2
dvc
dt

-------- x1= =

x·1 x1 x2– u0 t +–=

x·2 x1=

y x2=

x· Ax Bu+=
x·1

x·2

1– 1–
1 0

x1

x2

1
0

u0 t +=

y Cx Du+= y 0 1
x1

x 2
0 u0 t +=

s domain–
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Figure 7.14. Transformed circuit for Example 7.13

By the voltage division expression,

or 

Therefore,
(7.127)

c.
A = [1  1; 1  0]; B = [1  0]';  C = [0  1]; D = [0]; % The matrices of (7.126)
[num, den] = ss2tf(A, B, C, D, 1) % Verify coefficients of G(s) in (7.127)

num =
     0     0     1

den =
    1.0000    1.0000    1.0000

num = [0  0  1]; den = [1  1  1]; % The coefficients of G(s) in (7.127)
[A  B  C  D] = tf2ss(num, den) % Verify the matrices of (7.126)

A =
    -1    -1
     1     0

B =
     1
     0

C =
     0     1

D =
     0

The equivalence between the statespace equations of (7.126) and the transfer function of
(7.127) is also evident from the Simulink models shown in Figure 7.15 where for the State
Space block Function Block Parameters dialog box we have entered:


+

R L

+


C
1 

Vin s 

VC s  Vout s =

s

1 s

Vout s  1 s
1 s 1 s+ +
---------------------------Vin s =

Vout s 
Vin s 
------------------ 1

s2 s 1+ +
----------------------=

G s 
Vout s 
Vin s 
------------------ 1

s2 s 1+ +
----------------------= =
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A: [1  1; 3/4  0]
B: [1  0]’
C: [0  1]
D: [ 0 ]
Initial conditions: [0  0]

For the Transfer Fcn block Function Block Parameters dialog box we have entered:

Numerator coefficient: [ 1 ]
Denominator coefficient: [1  1  1]

Figure 7.15. Models to show the equivalence between relations (7.126) and (7.127)

After the simulation command is executed, both Scope 1 and Scope 2 blocks display the input
and output waveforms shown in Figure 7.15.

Figure 7.16. Waveforms displayed by Scope 1 and Scope 2 blocks for the models in Figure 7.15
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Summary

7.8 Summary

 An nthorder differential equation can be resolved to  firstorder simultaneous differential
equations with a set of auxiliary variables called state variables. The resulting firstorder dif-
ferential equations are called statespace equations, or simply state equations. 

 The statespace equations can be obtained either from the nthorder differential equation, or
directly from the network, provided that the state variables are chosen appropriately.

 When we obtain the state equations directly from given circuits, we choose the state variables
to represent inductor currents and capacitor voltages. 

 The state variable method offers the advantage that it can also be used with nonlinear and
timevarying devices.

 If a circuit contains only one energystoring device, the state equations are written as

where , , , and  are scalar constants, and the initial condition, if nonzero, is denoted
as

 If  and  are scalar constants, the solution of  with initial condition 
is obtained from the relation

 The solution of the state equations pair

where  and  are  or higher order matrices, and  and  are column vectors with two

or more rows, entails the computation of the state transition matrix , and integration of

 The eigenvalues , where , of an  matrix  are the roots of the nth order
polynomial

where  is the  identity matrix.

n

x· x u+=

y k1x k2u+=

  k1 k2

x0 x t0 =

  x· x u+= x0 x t0 =

x t  e
 t t0– 

x0 et e – u   d
t0

t

+=

x· Ax bu+=

y Cx du+=

A C 2 2 b d

eAt

x t  e
A t t0– 

x0 eAt e A– bu   d
t0

t

+=

i i 1 2  n  = n n A

det A I–  0=

I n n

www.ebooko.ir


Chapter 7  State Variables and State Equations

738 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

 The CayleyHamilton theorem states that a matrix can be expressed as an  degree
polynomial in terms of the matrix  as

where the coefficients  are functions of the eigenvalues .

 If all eigenvalues of a given matrix  are distinct, that is, if

the coefficients  are found from the simultaneous solution of the system of equations

 If some or all eigenvalues of matrix  are repeated, that is, if

the coefficients  of the state transition matrix are found from the simultaneous solution of the
system of equations

n 1– th
A

eAt a0I a1A a2A2  an 1– An 1–+ + + +=

ai 

A

1 2 3  n   

ai

a0 a11 a21
2  an 1– 1

n 1–+ + + + e
1t

=

a0 a12 a22
2  an 1– 2

n 1–+ + + + e
2t

=



a0 a1n a2n
2  an 1– n

n 1–+ + + + e
nt

=

A

1 2= 3=  m,  m 1+  ,  n=

ai

a0 a11 a21
2  an 1– 1

n 1–+ + + + e
1t

=

d
d1
--------- a0 a11 a21

2  an 1– 1
n 1–+ + + +  d

d1
--------e

1t
=

d 2

d1
2

-------- a0 a11 a21
2  an 1– 1

n 1–+ + + +  d 2

d1
2

--------e
1t

=



d m 1–

d1
m 1–

--------------- a0 a11 a21
2  an 1– 1

n 1–+ + + +  d m 1–

d1
m 1–

---------------e
1t

=

a0 a1m 1+ a2m 1+
2  an 1– m 1+

n 1–+ + + + e
m 1+ t

=



a0 a1n a2n
2  an 1– n

n 1–+ + + + e
nt

=
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Summary

 We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix.

 A column vector  that satisfies the relation

where  is an  matrix and  is a scalar number, is called an eigenvector.

 There is a different eigenvector for each eigenvalue.

 Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit
length. This is done by dividing each component of the eigenvector by the square root of the
sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

 Two vectors  and  are said to be orthogonal if their inner (dot) product is zero.

 A set of eigenvectors constitutes an orthonormal basis if the set is normalized (expressed as
unit eigenvectors) and these vector are mutually orthogonal.

 The state transition matrix can be computed from the Inverse Laplace transform using the
relation 

 If  is the Laplace transform of the input  and  is the Laplace transform of the
output , the transfer function can be computed using the relation

 

 MATLAB provides two very useful functions to convert statespace (state equations), to
transfer function (s-domain), and vice versa. The function ss2tf (statespace to transfer func-
tion) converts the state space equations to the transfer function equivalent, and the function
tf2ss, converts the transfer function to statespace equations.

n n

X

AX X=

A n n 

X Y

eAt L 1– sI A–  1– =

U s  u t  Y s 
y t 

G s  Y s 
U s 
----------- C sI A–  1– b d+= =
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7.9 Exercises
1. Express the integrodifferential equation below as a matrix of state equations where

 are constants.

2. Express the matrix of the state equations below as a single differential equation, and let
.

3. For the circuit below, all initial conditions are zero, and  is any input. Write state equa-
tions in matrix form.

4. In the circuit below, all initial conditions are zero. Write state equations in matrix form.

5. In the below, . Use the state variable method to find  for .

k1 k2  and k3 

dv2

dt2
-------- k3

dv
dt
------ k2v k1 v td

0

t

+ + + 3tsin 3tcos+=

x y  y t =

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
1– 2– 3– 4–

x1

x2

x3

x4



0
0
0
1

u t +=

u t 

R 

L+


C

u t 

R 

C1
1  1 H

2 F 2 F

C2

Vp tu0 t cos

L 

iL 0  2 A= iL t  t 0

R 

L+


10u0 t 

2 
2 H
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Exercises

6. Compute the eigenvalues of the matrices , , and  below.

Hint: One of the eigenvalues of matrix C is .

7. Compute  given that

Observe that this is the same matrix as  of Exercise 6.

8. Find the solution of the matrix state equation  given that

9. In the circuit below, , and .

a. Write state equations in matrix form.

b. Compute  using the Inverse Laplace transform method.

c. Find  and  for .

A B C

A 1 2
3 1–

= B a 0
a– b

= C
0 1 0
0 0 1
6– 11– 6–

=

1–

eAt

A
0 1 0
0 0 1
6– 11– 6–

=

C

x· Ax bu+=

A 1 0
2– 2

=    b 1
2

=    x0
1–
0

=    u  t =    t0 0=   

iL 0  0= vC 0  1 V=

eAt

iL t  vC t  t 0

R L
C

3 4   4 3  F
4 H
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7.10 Solutions to EndofChapter Exercises

1. Differentiating the given integrodifferential equation with respect to  we obtain

or
  (1)

We let

Then, 

and by substitution into (1)

and thus the state equations are

and in matrix form

2. Expansion of the given matrix yields

            

Letting  we obtain

t

dv3

dt3
-------- k3

dv2

dt2
-------- k2

dv
dt
------ k1v+ + + 3 3t 3 3tsin–cos 3 3t 3tsin–cos = =

dv3

dt3
-------- k3

dv2

dt2
--------–= k2– dv

dt
------ k1– v 3 3t 3tsin–cos +

v x1= dv
dt
------ x2 x1

·= = dv2

dt2
-------- x3 x2

·= =

dv3

dt3
-------- x3

·
=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos +=

x1
· x2=

x2
· x3=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos +=

x1
·

x2
·

x3
·

0 1 0
0 0 1
k1– k2– k– 3

x1

x2

x3


0
0
1

3 3t 3tsin–cos +=

x1
· x2= x2

· x3= x3
· x2= x4

· x– 1 2x2– 3x3– 4x4– u t +=

x y=

dy4

dt4
-------- 4 dy3

dt3
-------- 3dy2

dt2
-------- 2dy

dt
------ y+ + ++ u t =
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Solutions to EndofChapter Exercises

3.

We let  and . By KCL,  or

or

Also,

Then,
 and 

and in matrix form

4.

We let , , and . By KCL,

or 

or
  (1)

By KVL,

R 

L+ C
u t 

iC
iT iL vC

+

iL x1= vC x2= iT iL iC+=

u t  vC–

R
---------------------- iL C

dvC
dt

---------+=

u t  x2–

R
--------------------- x1 Cx2

·+=

x2 Lx1
·

=

x1
· 1

L
---x2= x2

· 1
C
----x1–

1
RC
--------x2–

1
RC
--------u t +=

x1
·

x2
·

0 1 L
1– C 1– RC

x1

x2

 0
1 RC

u t +=

R 

C1
1  1 H

2 F 2 F

C2

Vp tu0 t cos

L 

+
vC1

iL

+


vC2

vC1

iL x1= vC1 x2= vC2 x3=

vC1 Vp tu0 t cos–

1
------------------------------------------------- 2

dvC1
dt

------------ iL+ + 0=

x2 Vp tu0 t cos– 2x2
· x1+ + 0=

x2
· 1

2
---x1– 1

2
---x2– 1

2
---Vp tu0 t cos+=
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or 

or 
  (2)

Also,

or

or
  (3)

Combining (1), (2), and (3) into matrix form we obtain

We will create a Simulink model with  and output . The model is shown below
where for the StateSpace block Function Block Parameters dialog box we have entered:

A: [0   1  1; 1/2  1/2  0; 1/2  0  0]
B: [0  1/2  0]’
C: [0  0  1]
D: [ 0 ]
Initial conditions: [0  0  0]

and for the Sine Wave block Function Block Parameters dialog box we have entered:

Amplitude: 1 
Phase: pi/2

The input and output waveforms are shown below.

vC1 L
diL
dt
------- vC2+=

x2 1x1
· x3+=

x1
· x2 x3–=

iL C
dvC2

dt
------------=

x1 2x3
·=

x3
· 1

2
---x1=

x1
·

x2
·

x3
·

0 1 1–
1– 2 1– 2 0
1 2 0 0

x1

x2

x3


0

1 2
0

Vp tu0 t cos+=

Vp 1= y x3=
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Solutions to EndofChapter Exercises

5.

From (7.21) of Example 7.4, Page 76,

For this exercise,  and . Then,

and denoting the current  as the output  we obtain

6.
a.

R 

L+


10u0 t 

2 

2 H

x· R
L
----x– 1

L
---vS u0 t +=

 R– L 1–= = b 10 1 L  5= =

x t  e
 t t0– 

x0 et e – u   d
t0

t

+=

e 1– t 0– 2 e t– e5u0   d
0

t

+ 2e t– 5e t– e d
0

t

+==

2e t– 5e t– et 1– + 2e t– 5 5– e t–+ 5 3e t–– u0 t = ==

iL y

y t  x t  5 3e t–– u0 t = =

A 1 2
3 1–

= det A I–  det 1 2
3 1–

 1 0
0 1

–
 
 
 

det 1 – 2
3 1– –

0= = =

1 –  1– –  6– 0=
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and thus

b.

and thus

c.

and it is given that . Then,

and thus

7.
a. Matrix  is the same as Matrix C in Exercise 6. Then,

and since  is a  matrix the state transition matrix is

  (1)
Then,

1– –  2 6–+ + 0=

2 7=

1 7= 2 7–=

B a 0
a– b

= det B I–  det a 0
a– b

 1 0
0 1

–
 
 
 

det a – 0
a– b –

0= = =

a –  b –  0=

1 a= 2 b=

C
0 1 0
0 0 1
6– 11– 6–

= det C I–  det
0 1 0
0 0 1
6– 11– 6–


1 0 0
0 1 0
0 0 1

–

 
 
 
 
 

=

det
– 1 0
0 – 1
6– 11– 6 ––

0==

2 6– –  6– 11–  – – 3 62 11 6+ + + 0= =

1 1–=

3 62 11 6+ + +
 1+ 

---------------------------------------------- 2 5 6+ +  1+   2+   3+  0= =

1 1–= 2 2–= 1 3–=

A

1 1–= 2 2–= 1 3–=

A 3 3

eAt a0I a1A a2A2+ +=
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Solutions to EndofChapter Exercises

syms t; A=[1  1  1; 1  2  4; 1  3  9];...
a=sym('[exp(t); exp(2*t); exp(3*t)]'); x=A\a; fprintf(' \n');...
disp('a0 = '); disp(x(1)); disp('a1 = '); disp(x(2)); disp('a2 = '); disp(x(3))

a0 = 
3*exp(-t)-3*exp(-2*t)+exp(-3*t)
a1 = 
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)
a2 = 
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)

Thus, 

Now, we compute  of (1) with the following MATLAB script:

syms t; a0=3*exp(t)3*exp(2*t)+exp(3*t); a1=5/2*exp(t)4*exp(2*t)+3/2*exp(3*t);...
a2=1/2*exp(t)-exp(2*t)+1/2*exp(3*t); A=[0 1 0; 0 0 1; 6  11  6]; fprintf(' \n');...
eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[3*exp(-t)-3*exp(-2*t)+exp(-3*t),   5/2*exp(-t)-4*exp(-2*t)+3/
2*exp(-3*t),     1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)]
[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t),  -5/2*exp(-t)+8*exp(-
2*t)-9/2*exp(-3*t),  -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp(-3*t), 5/2*exp(-t)-16*exp(-
2*t)+27/2*exp(-3*t),   1/2*exp(-t)-4*exp(-2*t)+9/2*exp(-3*t)]

Thus,

a0 a11 a21
2+ + e

1t
= a0 a1– a2+ e t–=

a0 a12 a22
2+ + e

2t
= a0 2a1– 4a2+ e 2t–=

a0 a13 a23
2+ + e

3t
= a0 3a1– 9a2+ e 3t–=

a0 3e t– 3e 2t–– 3e 3t–+=

a1 2.5e t– 4e 2t–– 1.5e 3t–+=

a2 0.5e t– e 2t–– 0.5e 3t–+=

eAt

eAt
3e t– 3e 2t–– e 3t–+ 2.5e t– 4e 2t–– 1.5e 3t–+ 0.5e t– e 2t–– 0.5e 3t–+

3– e t– 6e 2t– 3e 3t––+ 2.5– e t– 8e 2t– 4.5e 3t––+ 0.5– e t– 2e 2t– 1.5e 3t––+

3e t– 12e 2t–– 9e 3t–+ 2.5e t– 16e 2t–– 13.5e 3t–+ 0.5e t– 4e 2t–– 4.5e 3t–+

=
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8.

  (1)

We use the following MATLAB script to find the eigenvalues  and .

A=[1  0; 2  2]; lambda=eig(A); fprintf(' \n');...
fprintf('lambda1 = %4.2f  \t',lambda(1)); fprintf('lambda2 = %4.2f  \t',lambda(2))

lambda1 = 2.00  lambda2 = 1.00

Next,

Then,

and

By substitution into (1) we obtain

and thus

A 1 0
2– 2

=    b 1
2

=    x0
1–
0

=    u  t =    t0 0=   

x t  eA t 0– x0 eAt e A– bu   d
0

t

+ eAtx0 eAt e A– b   d
0

t

+= =

eAtx0 eAtb+ eAt x0 b+  eAt 1–
0

1
2

+
 
 
 

eAt 0
2

== ==

1 2

a0 a11+ e
1t

= a0 a1+ et=

a0 a12+ e
2t

= a0 2a1+ e2t=

a0 2et e2t–= a1 e2t et–=

eAt a0I a1A+ 2et e2t–  1 0
0 1

e2t et–  1 0
2– 2

+= =

2et e2t– 0

0 2et e2t–

e2t et– 0

2e– 2t 2et+ 2e2t 2et–
+ et 0

2et 2e2t– e2t
==

x t  eAt 0
2

et 0

2et 2e2t– e2t

0
2

 0

2e2t
= = =

x1 0= x2 2e2t=
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Solutions to EndofChapter Exercises

9.

We let
Then,

a.

or
  (1)

Also,

or
  (2)

From (1) and (2)

and thus

b.

R L
C

3 4   4 3  F4 H

iLiR
iC+

 vC 0  1 V=

iL 0  0=
vC

x1 iL= x2 vC=

iR iL iC+ + 0=

vC
R
------ iL C

vC
dt
------+ + 0=

x2
3 4
--------- x1

4
3
---x2

·+ + 0=

x2
· 3

4
---– x1 x2–=

vL vC L
diL
dt
------- 4x1

· x2= = = =

x1
· 1

4
---x

2
=

x1
·

x2
·

0 1 4
3– 4 1–

x1

x2

=

A 0 1 4
3– 4 1–

=

eAt L 1– sI A–  1– =

sI A–  s 0
0 s

0 1 4
3– 4 1–

– s 1– 4
3 4 s 1+

= =

 det sI A–  det s 1– 4
3 4 s 1+

s2 s 3 16+ += s 1 4+  s 3 4+ = = =
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We use MATLAB to find  with the script below.

syms s t  %  Must have Symbolic Math Toolbox installed
Fs1=(s+1)/(s^2+s+3/16); Fs2=(1/4)/(s^2+s+3/16); Fs3=(3/4)/(s^2+s+3/16);...
Fs4=s/(s^2+s+3/16);...
fprintf(' \n'); disp('a11 = '); disp(simple(ilaplace(Fs1))); disp('a12 = ');...
disp(simple(ilaplace(Fs2)));...
disp('a21 = '); disp(simple(ilaplace(Fs3))); disp('a22 = '); disp(simple(ilaplace(Fs4)))

a11 = 
-1/2*exp(-3/4*t)+3/2*exp(-1/4*t)
a12 = 
1/2*exp(-1/4*t)-1/2*exp(-3/4*t)
a21 = 
-3/2*exp(-1/4*t)+3/2*exp(-3/4*t)
a22 = 
3/2*exp(-3/4*t)-1/2*exp(-1/4*t)

Thus,

c.

and thus for ,

adj sI A–  adj s 1– 4
3 4 s 1+

s 1+ 1 4
3– 4 s

= =

sI A–  1– 1

---adj sI A–  1

s 1 4+  s 3 4+ 
----------------------------------------------- s 1+ 1 4

3– 4 s
= =

s 1+
s 1 4+  s 3 4+ 

----------------------------------------------- 1 4
s 1 4+  s 3 4+ 

-----------------------------------------------

3– 4
s 1 4+  s 3 4+ 

----------------------------------------------- s
s 1 4+  s 3 4+ 

-----------------------------------------------
=

eAt L 1– sI A–  1– =

eAt 1.5e 0.25t– 0.5e 0.75t–– 0.5e 0.25t– 0.5e 0.75t––

1.5– e 0.25t– 1.5e 0.75t–+ 0.5– e 0.25t– 1.5e 0.75t–+
=

x t  eA t 0– x0 eAt e A– bu   d
0

t

+ eAtx0 0+ eAt 0
1

0
0

+
 
 
 

= = =

1.5e 0.25t– 0.5e 0.75t–– 0.5e 0.25t– 0.5e 0.75t––

1.5– e 0.25t– 1.5e 0.75t–+ 0.5– e 0.25t– 1.5e 0.75t–+

0
1

0.5e 0.25t– 0.5e 0.75t––

0.5– e 0.25t– 1.5e 0.75t–+
==

t 0

x1 iL 0.5e 0.25t– 0.5e 0.75t––= = x2 vC 0.5– e 0.25t– 1.5e 0.75t–+= =
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Chapter 8

Frequency Response and Bode Plots

his chapter discusses frequency response in terms of both amplitude and phase. This topic
will enable us to determine which frequencies are dominant and which frequencies are vir-
tually suppressed. The design of electric filters is based on the study of the frequency

response. We will also discuss the Bode method of linear system analysis using two separate plots;
one for the magnitude of the transfer function, and the other for the phase, both versus fre-
quency. These plots reveal valuable information about the frequency response behavior.

Note: Throughout this text, the common (base 10) logarithm of a number  will be denoted as
 while its natural (base e) logarithm will be denoted as . However, we should remem-

ber that in MATLAB the  function displays the natural logarithm, and the common (base
10) logarithm is defined as .

8.1 Decibel Defined

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels ( ). For instance, we say that an amplifier has  power gain or a transmission line
has a power loss of  (or gain ). If the gain (or loss) is , the output is equal to the
input. We should remember that a negative voltage or current gain  or  indicates that there

is a  phase difference between the input and the output waveforms. For instance, if an ampli-
fier has a gain of  (dimensionless number), it means that the output is  out-of-phase
with the input. For this reason we use absolute values of power, voltage and current when these
are expressed in  terms to avoid misinterpretation of gain or loss. 

By definition,

(8.1)

Therefore,

 represents a power ratio of  

 represents a power ratio of 
 represents a power ratio of 
 represents a power ratio of 
 represents a power ratio of 

Also,

T

x
x log x ln

x log
10 x log

dB 10 dB
7 dB 7–  dB 0 dB

AV AI

180
100– 180

dB

dB 10 Pout
Pin
---------log=

10 dB 10

10n dB 10n

20 dB 100
30 dB 1 000
60 dB 1 000 000 
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 represents a power ratio of approximately 
 represents a power ratio of approximately 
 represents a power ratio of approximately 

From these, we can estimate other values. For instance,  which is equivalent
to a power ratio of approximately Likewise,  and this is
equivalent to a power ratio of approximately .

Since  and , if we let  the  values for the voltage
and current ratios become:

(8.2)

and
(8.3)

Example 8.1  

Compute the gain in  for the amplifier shown in Figure 8.1.

Figure 8.1. Amplifier for Example 8.1

Solution:

Example 8.2  

Compute the gain in  for the amplifier shown in Figure 8.2 given that .

Figure 8.2. Amplifier for Example 8.2.
Solution:

1 dB 1.25
3 dB 2
7 dB 5

4 dB 3 dB 1 dB+=

2 1.25 2.5= 27 dB 20 dB 7 dB+=

100 5 500=

y x2log 2 xlog= = P V 2 R I 2R= = R 1= dB

dBv 10 Vout
Vin
----------

2
log 20 Vout

Vin
----------log= =

dBi 10 Iout
Iin
--------

2
log 20 Iout

Iin
--------log= =

dBW

Pin Pout

1 w 10 w

dBW 10
Pout
Pin
---------log 10 10

1
------log 10 10log 10 1 10 dBW= = = = =

dBV 2log 0.3=

Vin Vout

1 v 2v

dBV 20
Vout
Vin
----------log 20 2

1
---log 20 0.3log 20 0.3 6 dBV= = = = =
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Bandwidth and Frequency Response

8.2 Bandwidth and Frequency Response

Electric and electronic circuits, such as filters and amplifiers, exhibit a band of frequencies over
which the output remains nearly constant. Consider, for example, the magnitude of the output
voltage  of an electric or electronic circuit as a function of radian frequency  as shown in
Figure 8.3.

Figure 8.3. Definition of the bandwidth.

As shown in Figure 8.3, the bandwidth is  where  and  are the lower and

upper cutoff frequencies respectively. At these frequencies,  and these two

points are known as the  or half-power points. They derive their name from the fact

that since power , for  and for  or  the

power is , that is, it is “halved”. Alternately, we can define the bandwidth as the frequency
band between half-power points. 

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 8.4.

Figure 8.4. Amplifier with partial output feedback

Figure 8.5 shows an amplifier where the entire output is fed back to the input.

Figure 8.5. Amplifier with entire output feedback

Vout 

Vout1

0.707

Bandwith


1 2

BW 2 1–= 1 2

Vout 2 2 0.707= =

3 dB down

p v2 R i2R= = R 1= v 0.707 Vout= i 0.707 Iout=

1 2

GAIN AMPLIFIER

FEEDBACK CIRCUIT

INPUT OUTPUT

+

GAIN AMPLIFIERINPUT OUTPUT

FEEDBACK PATH

+
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The symbol  (Greek capital letter sigma) inside the circle indicates the summing point where the
output signal, or portion of it, is combined with the input signal. This summing point may be also
indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the summing
point implies positive feedback which means that the output, or portion of it, is added to the input.
On the other hand, the negative () sign implies negative feedback which means that the output, or
portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feed-
back since positive feedback causes circuit instability.

8.3 Octave and Decade

Let us consider two frequencies  and  defining the frequency interval , and let

(8.4)

If these frequencies are such that , we say that these frequencies are separated by one

octave and if , they are separated by one decade.

Let us now consider a transfer function  whose magnitude is evaluated at , that is,

 (8.5)

Taking the log of both sides of (8.5) and multiplying by 20, we obtain 

or
(8.6)

Relation (8.6) is an equation of a straight line in a semilog plot with abscissa  where

and  shown in Figure 8.6.

With these concepts in mind, we can now proceed to discuss Bode Plots and Asymptotic Approxi-
mations.
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Bode Plot Scales and Asymptotic Approximations

Figure 8.6. Straight line with slope 

8.4 Bode Plot Scales and Asymptotic Approximations

Bode plots are magnitude and phase plots where the abscissa (frequency axis) is a logarithmic

(base 10) scale, and the radian frequency  is equally spaced between powers of  such as ,

, ,  and so on. 

The ordinate (  axis) of the magnitude plot has a scale in  units, and the ordinate of the
phase plot has a scale in degrees as shown in Figure 8.7.

Figure 8.7. Magnitude and phase plots

It is convenient to express the magnitude in  so that a transfer function , composed of
products of terms can be computed by the sum of the  magnitudes of the individual terms. For
example,
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and the Bode plots then can be approximated by straight lines called asymptotes.

8.5  Construction of Bode Plots when the Zeros and Poles are Real

Let us consider the transfer function 

(8.7)

where  is a real constant, and the zeros  and poles  are real numbers. We will consider com-

plex zeros and poles in the next section. Letting  in (8.7) we obtain

(8.8)

Next, we multiply and divide each numerator factor  by  and each denominator factor

 by  and we obtain:

(8.9)

Letting

(8.10)

we can express (8.9) in  magnitude and phase form,

(8.11)

(8.12)
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Construction of Bode Plots when the Zeros and Poles are Real

The constant  can be positive or negative. Its magnitude is  and its phase angle is  if
, and  if . The magnitude and phase plots for the constant  are shown in Fig-

ure 8.8.

Figure 8.8. Magnitude and phase plots for the constant K

For a zero of order , that is,  at the origin, the Bode plots for the magnitude and phase are
as shown in Figures 8.9 and 8.10 respectively.

For a pole of order , that is,  at the origin, the Bode plots are as shown in Fig-
ures 8.11 and 8.12 respectively.

Next, we consider the term .

The magnitude of this term is

(8.13)

and taking the log of both sides and multiplying by  we obtain

(8.14)

It is convenient to normalize (8.14) by letting

(8.15)
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Figure 8.9. Magnitude for zeros of Order n at the origin

Figure 8.10. Phase for zeros of Order n at the origin

Then, (8.14) becomes

(8.16)
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Construction of Bode Plots when the Zeros and Poles are Real

Figure 8.11. Magnitude for poles of Order n at the origin

Figure 8.12. Phase for poles of Order n at the origin

For  the first term of (8.16) becomes . For , this term becomes approx-

imately  and this has the same form as  which is shown in
Figure 8.9 for , , and .

The frequency at which two asymptotes intersect each other forming a corner is referred to as the
corner frequency. Thus, the two lines defined by the first term of (8.16), one for  and the
other for  intersect at the corner frequency .

The second term of (8.16) represents the ordinate axis intercept defined by this straight line.

The phase response for the term  is found as follows:
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(8.17)
and

(8.18)
Then,

(8.19)

Figure 8.13 shows plots of the magnitude of (8.16) for , , , and .

Figure 8.13. Magnitude for zeros of Order n for 

As shown in Figure 8.13, a quick sketch can be obtained by drawing the straight line asymptotes

given by  and  for  and  respectively. 

The phase angle of (8.19) is . Then, with (8.18) and letting 

(8.20)
we obtain

(8.21)

and
(8.22)

At the corner frequency  we obtain  and with (8.20)
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Construction of Bode Plots when the Zeros and Poles are Real

(8.23)

Figure 8.14 shows the phase angle plot for (8.19).

Figure 8.14. Phase for zeros of Order n for 

The  magn i tude  and  phase  p lo t s  f o r   a re  s im i l a r  to  those  o f

 except for a minus sign. In this case (8.16) becomes

(8.24)
and (8.20) becomes

(8.25)

The plots for (8.24) and (8.25) are shown in Figures 8.15 and 8.16 respectively.
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Figure 8.15. Magnitude for poles of Order n for 

Figure 8.16. Phase for poles of Order n for 

8.6  Construction of Bode Plots when the Zeros and Poles are Complex

The final type of terms appearing in the transfer function  are quadratic term of the form

 whose roots are complex conjugates. In this case, we express the complex conjugate
roots as
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Construction of Bode Plots when the Zeros and Poles are Complex

(8.26)

and letting
(8.27)

and
(8.28)

by substitution into (8.26) we obtain

(8.29)

Next, we let
(8.30)

Then,

(8.31)

The magnitude of (8.31) is

(8.32)

and taking the log of both sides and multiplying by  we obtain

(8.33)

As in the previous section, it is convenient to normalize (8.33) by dividing by  to yield a func-

tion of the normalized frequency variable  such that

(8.34)

Then, (8.33) is expressed as

or

(8.35)
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and if , this term reduces to approximately  and this can be plotted as a straight line
increasing at . Using these two straight lines as asymptotes for the magnitude curve
we see that the asymptotes intersect at the corner frequency . The exact shape of the curve
depends on the value of  which is called the damping coefficient.

A plot of (8.35) for , , and  is shown in Figure 8.17.

Figure 8.17. Magnitude for zeros of 

The phase shift associated with  is also simplified by the substitution 
and thus

(8.36)

The two asymptotic relations of (8.36) are

(8.37)

and

u2 1» 10 u4log
40 dB decade

u 1=



 0.2=  0.4 =  0.707=

Zeros of (n
2-2)+j2n

u = /n, n = 1

10logn
4+10log{(1-u2)2+42u2}

-20

-10

0

10

20

30

40

0.01 0.10 1.00 10.00 100.00

Frequency  u (r/s)

M
ag

ni
tu

de
 in

 d
B

=0.707

=0.2
=0.4

10 n
4log 10 1 u2

– 
2

42u2
+ log+

n
2 2

–  j2n+ u  n

 u  2u

1 u2
–

-------------- 
 1–

tan=

 u 
u 0
lim 2u

1 u2
–

-------------- 
 1–

tan
u 0
lim 0= =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 815
Copyright © Orchard Publications

Construction of Bode Plots when the Zeros and Poles are Complex

(8.38)

At the corner frequency ,  and

(8.39)

A plot of the phase for , , and  is shown in Figure 8.18.

Figure 8.18. Phase for zeros of 

The magnitude and phase plots for

are similar to those of

except for a minus sign. In this case, (8.35) becomes

(8.40)

and (8.36) becomes
(8.41)
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A plot of (8.40) for , , and  is shown in Figure 8.19.

Figure 8.19. Magnitude for poles of 

A plot of the phase for , , and  is shown in Figure 8.20.

Figure 8.20. Phase for poles of 
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Construction of Bode Plots when the Zeros and Poles are Complex

Example 8.3  

For the circuit shown in Figure 8.21

a. Compute the transfer function .

b. Construct a straight line approximation for the magnitude of the Bode plot.

c. From the Bode plot obtain the values of  at  and .
Compare these values with the actual values.

d. If , use the Bode plot to compute the output .

Figure 8.21. Circuit for Example 8.3.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 8.22.

Figure 8.22. Circuit for Example 8.3 in 

By the voltage division expression,

Therefore, the transfer function is

(8.42)

b. Letting  we obtain

or in standard form
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(8.43)

Letting the magnitude of (8.43) be denoted as , and expressing it in decibels we obtain

(8.44)

We observe that the first term on the right side of (8.44) is a constant whose value is
. The second term is a straight line with slope equal to .

For  the third term is approximately zero and for  it decreases with slope
equal to  Likewise, for  the fourth term is approximately zero and
for  it also decreases with slope equal to 

For Bode plots we use semilog paper. Instructions to construct semilog paper with Microsoft
Excel are provided in Appendix F.

In the Bode plot of Figure 8.23 the individual terms are shown with dotted lines and the sum of
these with a solid line. 

Figure 8.23. Magnitude plot of (8.44)

c. The plot of Figure 8.23 shows that the magnitude of (8.43) at  is approximately
 and at  is approximately . The actual values are found as follows:
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At , (8.43) becomes

and using the MATLAB script

g30=0.011*30j/((1+0.3j)*(1+0.03j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g30));...
fprintf('magdB = %6.2f dB',20*log10(abs(g30))); fprintf(' \n'); fprintf(' \n')

we obtain

mag = 0.32   magdB = -10.01 dB 

Therefore,

and

Likewise, at , (8.43) becomes

and using MATLAB script

g4000=0.011*4000j/((1+40j)*(1+4j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g4000));...
fprintf('magdB = %6.2f dB',20*log10(abs(g4000))); fprintf(' \n'); fprintf(' \n')

we obtain

mag = 0.27    magdB = -11.48 dB

Therefore, 

and 

d. From the Bode plot of Figure 8.23, we see that the value of  at  is approxi-

mately . Then, since in general , and that  implies , we
have

and therefore

If we wish to obtain a more accurate value, we substitute  into (8.43) and with the
following MATLAB script:

 30 r s=

G j30  0.011 j30
1 j0.3+  1 j0.03+ 

--------------------------------------------------=
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g5000=0.011*5000j/((1+50j)*(1+5j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g5000));...
fprintf('phase = %6.2f deg.',angle(g5000)*180/pi); fprintf(' \n'); fprintf(' \n')

and we we obtain

mag = 0.22     phase = -77.54 deg. 

Then,

and in the 

We can use the MATLAB function bode(sys) to draw the Bode plot of a Linear Time Invari-
ant (LTI) System where sys = tf(num,den) creates a continuous-time transfer function sys
with numerator num and denominator den, and tf creates a transfer function. With this func-
tion, the frequency range and number of points are chosen automatically. The function
bode(sys,{wmin,wmax}) draws the Bode plot for frequencies between wmin and wmax (in
radians/second) and the function bode(sys,w) uses the user-supplied vector w of frequencies,
in radians/second, at which the Bode response is to be evaluated. To generate logarithmically
spaced frequency vectors, we use the command logspace(first_exponent,last_exponent,
number_of_values). For example, to generate plots for 100 logarithmically evenly spaced

points for the frequency interval , we use the statement logspace(1,2,100).

The bode(sys,w) function displays both magnitude and phase. If we want to display the mag-
nitude only, we can use the bodemag(sys,w) function.

MATLAB requires that we express the numerator and denominator of  as polynomials of
 in descending powers. 

Let us plot the transfer function of Example 8.3 using MATLAB.

From (8.42),

and the MATLAB script to generate the magnitude and phase plots is as follows:

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

However, since for this example we are interested in the magnitude only, we will use the script

num=[0 1100 0]; den=[1 1100 10^5]; sys=tf(num,den);...
w=logspace(0,5,100); bodemag(sys,w); grid

and upon execution, MATLAB displays the plot shown in Figure 8.24.

G j5000  0.011 j5000 
1 j50+  1 j5+ 

----------------------------------------- 0.22 77.54–= =

Vout max A 10 0.22 10 2.2 V= = =

t domain–
vout t  2.2 5000t 77.54– cos=

10 1–  102 r s 

G s 
s

G s  1100s

s2 1100s 105
+ +

-----------------------------------------=
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 8.24. Bode plot for Example 8.3.

Example 8.4  

For the circuit in Example 8.3

a. Draw a Bode phase plot.

b. Using the Bode phase plot estimate the frequency where the phase is zero degrees.

c. Compute the actual frequency where the phase is zero degrees.

d. Find  if  and  is the value found in part (c).

Solution:

a. From (8.43) of Example 8.3

(8.45)

and in magnitudephase form

where

For 

vout t  vin t  10 t 60+ cos= 

G j  0.011j
1 j 100+  1 j 1000+ 

----------------------------------------------------------------------=

G j  0.011 j
1 j 100+  1 j 1000+ 

----------------------------------------------------------------------------  – – =

 90= –  100 1–tan–= –  1000 1–tan–=

 100=
– 11–tan– 45–= =
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For 

The straight-line phase angle approximations are shown in Figure 8.25.

Figure 8.25.  Bode plot for Example 8.4.

Figure 8.26 shows the magnitude and phase plots generated with the following MATLAB
script:

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

b. From the Bode plot of Figure 8.25 we find that the phase is zero degrees at approximately

c. From (8.45)

and in magnitudephase form

 1000=

– 11–tan– 45–= =

-180

-135

-90

-45

0

45

90

135

180

 90=

101
100 102

105104
103

    – –=

–  1000 1–tan–=

–  100 1–tan–=

 310 r s=

G j  0.011j
1 j 100+  1 j 1000+ 

----------------------------------------------------------------------=

G j  0.011 90

1 j 100+   100 1–tan 1 j 1000+   1000 1–tan
---------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 8.26. Bode plots for Example 8.4 generated with the MATLAB bode function

The phase will be zero when

This is a trigonometric equation and we will solve it for  with the solve(equ) MATLAB
function as follows:

syms w; x=solve(atan(w/100)+atan(w/1000)pi/2)

ans =
  316.2278

Therefore, 

d. Evaluating (8.45) at  we obtain:

(8.46)

and with the MATLAB script

Gj316=0.011*316.23j/((1+316.23j/100)*(1+316.23j/1000)); fprintf(' \n');...
fprintf('magGj316 = %5.2f \t', abs(Gj316));...
fprintf('phaseGj316 = %5.2f deg.', angle(Gj316)*180/pi)

we obtain

 100 1–tan  1000 1–tan+ 90=



 316.23 r s=

 316.23 r s=

G j316.23  0.011 j316.23 
1 j316.23 100+  1 j316.23 100 0+ 

-----------------------------------------------------------------------------------------------=
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magGj316 = 1.00  phaseGj316 = -0.00 deg.

We are given that  and with , we obtain

The phase angle of the input voltage is given as  and with  we find
that the phase angle of the output voltage is

and thus

or

8.7 Corrected Amplitude Plots

The amplitude plots we have considered thus far are approximate. We can make the straight line
more accurate by drawing smooth curves connecting the points at one-half the corner frequency

, the corner frequency  and twice the corner frequency  as shown in Figure 8.27.

At the corner frequency , the value of the amplitude  in  is

(8.47)

where the plus (+) sign applies to a first order zero, and the minus () to a first order pole.
Similarly,

(8.48)

and
(8.49)

As we can seen from Figure 8.27, the straight line approximations, shown by dotted lines, yield
 at half the corner frequency and at the corner frequency. At twice the corner frequency, the

straight line approximations yield  because  and  are separated by one octave which

is equivalent to  per decade. Therefore, the corrections to be made are  at half the
corner frequency ,  at the corner frequency , and  at twice the corner fre-

quency .

Vin 10 V= G j316.23  1=

Vout G j316.23  Vin 1 10= 10 V= =

in 60=  j316.23  0=

out in  j316.23 + 60 0+ 60= ==

Vout 10 60=

vout t  10 316.23t 60+ cos=

n 2 n 2n

n A dB

AdB  n=
20 1 j+log 20 2log 3 dB= = =

AdB  n 2=
20 1 j 2+log 20 5

4
---log 0.97 dB 1 dB= = =

AdB  2n=
20 1 j2+log 20 5log 6.99 dB 7 dB= = =

0 dB
6 dB n 2n

3 dB 1 dB
n 2 3 dB n 1 dB

2n
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Corrected Amplitude Plots

The corrected amplitude plots for a first order zero and first order pole are shown by solid lines in
Figure 8.27.

Figure 8.27. Corrections for magnitude Bode plots

The corrections for straightline amplitude plots when we have complex poles and zeros require
different type of correction because they depend on the damping coefficient . Let us refer to the
plot in Figure 8.28.

We observe that as the damping coefficient  becomes smaller and smaller, larger and larger
peaks in the amplitude occur in the vicinity of the corner frequency . We also observe that

when , the amplitude at the corner frequency  lies below the straight line approxi-
mation.
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Figure 8.28. Magnitude Bode plots with complex poles

We can obtain a fairly accurate amplitude plot by computing the amplitude at four points near the
corner frequency  as shown in Figure 8.28.

The amplitude plot of Figure 8.28 is for complex poles. In analogy with (8.30), i.e., the plot in Fig-
ure 8.28 above, we obtain

which was derived earlier for complex zeros, the transfer function for complex poles is

(8.50)

where C is a constant.

Dividing each term of the denominator of (8.50) by  we obtain

and letting  and , we obtain

Magnitude for Poles of 1/((n
2-2)+j2n

u = /n, n = 1

10logn
410log{(1-u2)2+42u2}

-40
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0
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20

0.01 0.10 1.00 10.00 100.00

Frequency  u (r/s)

M
ag

ni
tu

de
 in

 d
B

=0.707

=0.2

=0.4

n

G s  s2 2ns n
2

+ +=

G s  C

s2 2ns n
2

+ +
----------------------------------------=

n

G s  C

n
2

------ 1

s n 2 2 s n  1+ +
----------------------------------------------------------------=

C n
2 K= s j=
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Corrected Amplitude Plots

(8.51)

As before, we let . Then (8.51) becomes

(8.52)

and in polar form,
(8.53)

The magnitude of (8.53) in  is

(8.54)

and the phase is

(8.55)

In (8.54) the term  is constant and thus the amplitude , as a function of frequency, is
dependent only the second term on the right side. Also, from this expression, we observe that as

,

(8.56)

and as ,
(8.57)

We are now ready to compute the values of  at points , , , and  of the plot of Figure
8.29.

At point 1, the corner frequency  corresponds to . Then, from (8.54)

(8.58)

G j  K

1  n 2– j2 n+
----------------------------------------------------------------=

 n u=

G ju  K

1 u2
– j2u+

--------------------------------=

G ju  K

1 u2
– j2u+ 

-------------------------------------------=

dB

AdB 20 G ju log 20 Klog 20 1 u2
– j2u+ log–= =

20 Klog 20 1 u2
– 

2
42u2

+log– 20 K 10 u4 2u2 22 1–  1+ + log–log==

 u  2u

1 u2
–

--------------
1–

tan–=

20 Klog AdB

u 0

10– u4 2u2 22 1–  1+ + log 0

u 
10– u4 2u2 22 1–  1+ + log 40 ulog–

AdB 1 2 3 4

n u 1=

AdB n 2  AdB
u
2
--- 
  10– u4 2u2 22 1–  1+ + log u 1 2=

= =

10 1
16
------ 2 1

4
--- 22 1–  1+ +log 10 1

16
------ 2 1

2
---– 1+ +log–=–=

10 2 0.5625+ log–=
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and for ,

Figure 8.29. Corrections for magnitude Bode plots with complex poles when 

To find the amplitude at point 2, in (8.54) we let  and we form the magnitude in .
Then,

(8.59)

We now recall that the logarithmic function is a monotonically increasing function and therefore
(8.59 has a maximum when the absolute magnitude of this expression is maximum. Also, the
square of the absolute magnitude is maximum when the absolute magnitude is maximum. 

The square of the absolute magnitude is

 0.4=

AdB n 2 
point 1

10 0.42 0.5625+ log– 1.41 dB= =

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

n 2 n0 dBmax

Point 1 at  n 2=

Point 2 at  max= Point 3 at  n=

Point 4 at  0 dB=

 0.4=

K 1= dB

AdB point 2
20 1

1  n 2– j2 n+
----------------------------------------------------------------log=
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Corrected Amplitude Plots

(8.60)

or

(8.61)

To find the maximum, we take the derivative with respect to  and we set it equal to zero, that
is,

(8.62)

The expression of (8.62) will be zero when the numerator is set to zero, that is,

(8.63)

Of course, we require that the value of  must be a nonzero value. Then,

or

from which
(8.64)

provided that  or  or . 

The  value of the amplitude at point  is found by substitution of (8.64) into (8.54), that is,

(8.65)

and for 

1

1  n 2– 
2

4  n 2+
--------------------------------------------------------------------------

1

1 22 n
2– 4 n

4+ 42
2
n

2+
---------------------------------------------------------------------------------------



4 n
2 43 n

4– 82 n
2–

1  n 2– 
2

4   n 2+
 
 
 

2
---------------------------------------------------------------------------------------- 0=

 n
2  4 42 n

2– 82
–  0=



4 42 n
2– 82

– 0=

42  n
2 4 82

–=

max  n 1 22
–= =

1 22
– 0  1 2  0.707

dB 2

AdB max  10– u4 2u2 22 1–  1+ + log
u 1 2–=

=

10 1 22
– 

2
2 1 22

–  22 1–  1+ + log–=

10 42 1 2
–  log–=

 0.4=

AdB max  10 4 0.42 1 0.42
–  log– 2.69 dB= =
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The  value of the amplitude at point  is found by substitution of  into
(8.54). Then,

(8.66)

and for 

Finally, at point , the  value of the amplitude crosses the  axis. Therefore, at this point
we are interested not in  but in the location of  in relation to the corner fre-

quency . at this point we must have from (8.57)

and since , it follows that 

or

Solving for  and making use of  we obtain

From (8.67),

therefore, if we already know the frequency at which the  amplitude is maximum, we can com-
pute the frequency at point  from

(8.67)

Example 8.5  

For the circuit in Figure 8.30,

dB 3  n u 1= = =

AdB n  10– u4 2u2 22 1–  1+ + log u 1=
=

10 1 2 22 1–  1+ + log–=

10 42 log– 20 2 log–==

 0.4=
AdB n  20 2 0.4 log– 1.94 dB= =

4 dB 0 dB
AdB 0 dB  0 dB

n

0 dB 10– u4 2u2 22 1–  1+ + log=

1log 0=

u4 2u2 22 1–  1+ + 1=

u4 2u2 22 1– + 0=

u2 u2 2 22 1– +  0=

u2 2 22 1– + 0=

u u  n=

0 dB n 2 1 22
– =

max n 1 22
–=

dB
4

0 dB 2max=
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Corrected Amplitude Plots

Figure 8.30. Circuit for Example 8.5.

a. Compute the transfer function 

b. Find the corner frequency  from .

c. Compute the damping coefficient .

d. Construct a straight line approximation for the magnitude of the Bode plot.

e. Compute the amplitude in  at one-half the corner frequency , at the frequency 

at which the amplitude reaches its maximum value, at the corner frequency , and at the

frequency  where the  amplitude is zero. Then, draw a smooth curve to connect these
four points.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 8.31 where
, , and .

Figure 8.31. Circuit for Example 8.5 in 

and by the voltage division expression,

Therefore, the transfer function is

(8.68)

+


vinu0 t 

R

C

L

0.2 

40 mF

10 mH
+


vout t 

G s 

n G s 



dB n 2 max

n

0 dB dB

s domain–

R 1= Ls 0.05s= 1 Cs 25 s=

+


Vin s 

R

C

L

0.2 
25 s

0.01s
+
 Vout s 

s domain–

Vout s  25 s
0.2 0.01s 25 s+ +
--------------------------------------------- Vin s =

G s 
Vout s 
Vin s 
------------------ 25

0.01s2 0.2s 25+ +
-------------------------------------------- 2500

s2 20s 2500+ +
--------------------------------------= = =
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b. From (8.50),
(8.69)

and from (8.68) and (8.69)  or 

c. From (8.68) and (8.69) . Then, the damping coefficient  is

(8.70)

d. For , the straight line approximation lies along the  axis, whereas for , the

straight line approximation has a slope of . The corner frequency  was found in part

(b) to be  The  amplitude plot is shown in Figure 8.32.

Figure 8.32. Amplitude plot for Example 8.5
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e. From (8.61),

where from (8.74)  and thus . Then,

and this value is indicated as Point 1 on the plot of Figure 8.32.

Next, from (8.64)

Then,

Therefore, from (8.65)

and this value is indicated as Point 2 on the plot of Figure 8.32.

The  amplitude at the corner frequency is found from (8.66), that is,

Then,

and this value is indicated as Point 3 on the plot of Figure 8.32.

Finally, the frequency at which the amplitude plot crosses the  axis is found from (8.67),
that is,

or

This frequency is indicated as Point 4 on the plot of Figure 8.32.

The amplitude plot of Figure 8.32 reveals that the given circuit behaves as a low pass filter. 

Using the transfer function of (8.68) with the MATLAB script below, we obtain the Bode
magnitude plot shown in Figure 8.33.

num=[0 0 2500]; den=[1 20 2500]; sys=tf(num,den); w=logspace(0,5,100); bodemag(sys,w)

AdB n 2  10 2 0.5625+ log–=

 0.2= 2 0.04=

AdB n 2  10 0.04 0.5625+ log–= 10 0.6025 log– 2.2 dB= =

max n 1 22
–=

max 50 1 2 0.04– 50 0.92 47.96 rad s= = =

AdB max  10 42 1 2
–  log– 10 0.16  0.96  log– 8.14 dB= ==

dB

AdB n  20 2 log–=

AdB n  20 2 0.2 log– 7.96 dB= =

0 dB

0 dB 2max=

0 dB 2 47.96 67.83 rad s= =
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Figure 8.33. Bode plot for Example 8.5 using the MATLAB bodemag function
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Summary

8.8 Summary

 The decibel, denoted as dB, is a unit used to express the ratio between two amounts of power,
ge n e r a l l y  .  B y  d e f i n i t i on ,  t he  n u m b e r  o f   i s  o b t a i n e d  f r o m

. It can also be used to express voltage and current ratios provided

that the voltages and currents have identical impedances. Then, for voltages we use the
e x p r e s s i o n  ,  a n d  f o r  c u r r e n t s  w e  u s e  t h e  e x p r e s s i o n

 The bandwidth, denoted as , is a term generally used with electronic amplifiers and filters.
For low-pass filters the bandwidth is the band of frequencies from zero frequency to the cutoff
frequency where the amplitude fall to  of its maximum value. For high-pass filters the
bandwidth is the band of frequencies from  of maximum amplitude to infinite frequency.
For amplifiers, band-pass, and band-elimination filters the bandwidth is the range of frequen-
cies where the maximum amplitude falls to  of its maximum value on either side of the
frequency response curve. 

 If two frequencies  and  are such that , we say that these frequencies are sepa-

rated by one octave and if , they are separated by one decade.

 Frequency response is a term used to express the response of an amplifier or filter to input sinu-
soids of different frequencies. The response of an amplifier or filter to a sinusoid of frequency

 is completely described by the magnitude  and phase  of the transfer func-
tion.

 Bode plots are frequency response diagrams of magnitude and phase versus frequency .

 In Bode plots the -  frequencies, denoted as , are referred to as the corner frequencies.

 In Bode plots, the transfer function is expressed in linear factors of the form  for the zero

(numerator) linear factors and  for the pole linear factors. When quadratic factors with
complex roots occur in addition to the linear factors, these quadratic factors are expressed in

the form .

 In magnitude Bode plots with quadratic factors the difference between the asymptotic plot and
the actual curves depends on the value of the damping factor . But regardless of the value of

, the actual curve approaches the asymptotes at both low and high frequencies.

Pout Pin dB

dBw 10 Pout Pin 10log=

dBv 20 Vout Vin 10log=

dBi 20 Iout Iin 10log=

BW

0.707
0.707

0.707

1 2 2 21=

2 101=

 G j  G j 



3 dB n

j zi+

j pi+

j 2 j2n n
2

+ +
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 In Bode plots the corner frequencies  are easily identified by expressing the linear terms as

 and  for the zeros and poles respectively. For quadratic factor the

c o r n e r  f r e q u e n c y   a p p e a r s  i n  t h e  e x p r e s s i o n   o r

 In both the magnitude and phase Bode plots the frequency (abscissa) scale is logarithmic. The
ordinate in the magnitude plot is expressed in  and in the phase plot is expressed in degrees.

 In magnitude Bode plots, the asymptotes corresponding to the linear terms of the form
 and  have a slope  where the positive slope applies to

zero (numerator) linear factors, and the negative slope applies to pole (denominator) linear
factors.

 In magnitude Bode plots, the asymptotes corresponding to the quadratic terms of the form

 have a slope  where the positive slope applies to zero
(numerator) quadratic factors, and the negative slope applies to pole (denominator) quadratic
factors.

 In phase Bode plots with linear factors, for frequencies less than one tenth the corner fre-
quency we assume that the phase angle is zero. At the corner frequency the phase angle is

. For frequencies ten times or greater than the corner frequency, the phase angle is
approximately  where the positive angle applies to zero (numerator) linear factors, and
the negative angle applies to pole (denominator) linear factors.

 In phase Bode plots with quadratic factors, the phase angle is zero for frequencies less than one
tenth the corner frequency. At the corner frequency the phase angle is . For frequencies
ten times or greater than the corner frequency, the phase angle is approximately  where
the positive angle applies to zero (numerator) quadratic factors, and the negative angle applies
to pole (denominator) quadratic factors.

 Bode plots can be easily constructed and verified with the MATLAB function bode(sys)
function. With this function, the frequency range and number of points are chosen automati-
cally. The function bode(sys),{wmin,wmax}) draws the Bode plot for frequencies between
wmin and wmax (in radian/second) and the function bode(sys,w) uses the user-supplied vec-
tor w of frequencies, in radian/second, at which the Bode response is to be evaluated. To gen-
e ra te  l oga r i thmica l l y  spaced  f r equency  vec to r s ,  we  u se  the  command  log-
space(first_exponent,last_exponent, number_of_values). 

n

zi j zi 1+  pi j pi 1+ 

n j 2 j2n n
2

+ +

j n 2 j2 n 1+ +

dB

j zi 1+  j pi 1+  20 dB decade
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45
90
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Exercises

8.9 Exercises

1. For the transfer function

a. Draw the magnitude Bode plot and find the approximate maximum value of  in .

b. Find the value of  where  for 

c. Check your plot with the plot generated with MATLAB.

2. For the transfer function of Exercise 1:

a. Draw a Bode plot for the phase angle and find the approximate phase angle at ,
, , and 

b. Compute the actual values of the phase angle at the frequencies specified in (a).

c. Check your magnitude plot of Exercise 1 and the phase plot of this exercise with the plots
generated with MATLAB.

3. For the circuit below:

a. Compute the transfer function.
b. Draw the Bode amplitude plot for 
c. From the plot of part (b) determine the type of filter represented by this circuit and esti-

mate the cutoff frequency.

d. Compute the actual cutoff frequency of this filter.

e. Draw a straight line phase angle plot of .

f. Determine the value of  at the cutoff frequency from the plot of part (c).

g. Compute the actual value of  at the cutoff frequency.

G s  105 s 5+ 
s 100+  s 5000+ 

------------------------------------------------=

G j  dB

 G j  1=  5 r s

 30 r s=
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+
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8.10  Solutions to EndofChapter Exercises

1. a.

The corner frequencies are at , , and . The asymptotes
are shown as solid lines. 

G j  105 j 5+ 
j 100+  j 5000+ 

-------------------------------------------------------- 105 5 1 j 5+ 
100 1 j 100+  5000 1 j 5000+ 
-------------------------------------------------------------------------------------------------------------= =

1 j 5+ 
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Solutions to EndofChapter Exercises

From this plot we observe that  for the interval 

b. By inspection,  at 

2. From the solution of Exercise 1,

and in magnitude-phase form

that is,  where , , and 

The corner frequencies are at , , and  where at those
frequencies , , and  respectively. The asymptotes are shown as
solid lines.

From the phase plot we observe that , , , and
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20 G j log 0 dB=  9.85 104 r s=

G j  1 j 5+ 
1 j 100+  1 j 5000+ 

--------------------------------------------------------------------------=

G j  1 j 5+ 
1 j 100+  1 j 5000+ 

--------------------------------------------------------------------------------  – – =

    – –=   51–tan= –  1001–tan–= –  50001–tan–=

 5 r s=  100 r s=  5000 r s=

 45= – 45–= – 45–=

 30 r s  60  50 r s  53  100 r s  38
 5000 r s  39– 

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

Ph
as

e 
an

gl
e 

in
 d

eg
re

es

 r s 
100 101 102 103

104 105

  51–tan=

–  1001–tan–=

–  50001–tan–=

  

www.ebooko.ir


Chapter 8  Frequency Response and Bode Plots

840 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

b. We use the MATLAB script below for the computations.

theta_g30=(1+30j/5)/((1+30j/100)*(1+30j/5000));...
theta_g50=(1+50j/5)/((1+50j/100)*(1+50j/5000));...
theta_g100=(1+100j/5)/((1+100j/100)*(1+100j/5000));...
theta_g5000=(1+5000j/5)/((1+5000j/100)*(1+5000j/5000));...
printf(' \n');...
fprintf('theta30r = %5.2f deg. \t', angle(theta_g30)*180/pi);...
fprintf('theta50r = %5.2f deg. ', angle(theta_g50)*180/pi);...
fprintf(' \n');...
fprintf('theta100r = %5.2f deg. \t', angle(theta_g100)*180/pi);...
fprintf('theta5000r = %5.2f deg. ', angle(theta_g5000)*180/pi);...
fprintf(' \n')

and we obtain

theta30r = 63.49 deg. theta50r = 57.15 deg.  
theta100r = 40.99 deg. theta5000r = -43.91 deg.

Thus, the actual values are

c. The Bode plot generated with MATLAB is shown below.

syms s; expand((s+100)*(s+5000))

ans =
s^2+5100*s+500000

num=[0  10^5  5*10^5]; den=[1  5.1*10^3  5*10^5];...
w=logspace(0,5,10^4); bode(num,den,w)

G j30  1 j30 5+ 
1 j30 100+  1 j30 5000+ 

------------------------------------------------------------------------------ 63.49= =

G j50  1 j50 5+ 
1 j50 100+  1 j50 5000+ 

------------------------------------------------------------------------------ 57.15= =

G j100  1 j100 5+ 
1 j100 100+  1 j100 5000+ 

------------------------------------------------------------------------------------ 40.99= =

G j5000  1 j5000 5+ 
1 j5000 100+  1 j5000 5000+ 

------------------------------------------------------------------------------------------ 43.91– = =
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Solutions to EndofChapter Exercises

3.  a.
The equivalent  circuit is shown below. 

By the voltage division expression,

and

  (1)

 b. From (1) with ,

  (2)

From (8.53),

s domain–

+

Vin s 

1

25 s

0.25s
+



Vout s 

Vout s  1 25 s+
0.25s 1 25 s+ +
----------------------------------------- Vin s =

G s 
Vout s 
Vin s 
------------------ s 25+

0.25s2 s 25+ +
------------------------------------- 4 s 25+ 

s2 4s 100+ +
--------------------------------= = =

s j=

G j  4 j 25+ 

–
2 4j 100+ +

-----------------------------------------=
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  (3)

and from (1) and (3) , , and , .

Following the procedure of page 8-26 we let . The numerator of (2) is a

linear factor and thus we express it as . Then (2) is written as

or

  (4)

The amplitude of  in  is

  (5)

The asymptote of the first term on the right side of (5) has a corner frequency of  and
rises with slope of . The second term has a corner frequency of  and
rises with slope of . The amplitude plot is shown below.

c. The plot above indicates that the circuit is a low-pass filter and the  cutoff frequency
 occurs at approximately .
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Solutions to EndofChapter Exercises

d. The actual cutoff frequency occurs where

At this frequency (2) is written as

and considering its magnitude we obtain

We will use MATLAB to find the four roots of this equation.

syms w; solve(w^4216*w^210000)

ans =
[  2*(27+1354^(1/2))^(1/2)]  [ -2*(27+1354^(1/2))^(1/2)]
[  2*(27-1354^(1/2))^(1/2)]  [ -2*(27-1354^(1/2))^(1/2)]

w1=2*(27+1354^(1/2))^(1/2)

w1 =
   15.9746

w2=-2*(27+1354^(1/2))^(1/2)

w2 =
 -15.9746

w3=2*(27-1354^(1/2))^(1/2)

w3 =
   0.0000 + 6.2599i

w4=-2*(27-1354^(1/2))^(1/2)

w4 =

G jc  G j  max 2 1 2  0.70= = =

G jc 
100 4jC+

100 C–
2  4j+

------------------------------------------=

1002 4C 2+

100 C–
2 

2
4C 2+

----------------------------------------------------------- 1
2

-------=

2 1002 4C 2+  100 C–
2 

2
4C 2+=

20000 32C
2

+ 10000 200C
2

– C
4 16C

2
+ +=

C
4 216C

2
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    -0.0000 - 6.2599i

From these four roots we accept only the first, that is, 

e. From (4)

and

For a first order zero or pole not at the origin, the straight line phase angle plot approxima-
tions are as follows:

I. For frequencies less than one tenth the corner frequency we assume that the phase angle
is zero. For this exercise the corner frequency of  is  and thus for

 the phase angle is zero as shown on the Bode plot below.

II  For frequencies ten times or greater than the corner frequency, the phase angle is
approximately . The numerator phase angle  is zero at one tenth the corner
frequency, it is  at the corner frequency, and  for frequencies ten times or greater
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Solutions to EndofChapter Exercises

the corner frequency. For this exercise, in the interval  the phase angle
is zero at  and rises to  at .

III As shown in Figure 8.20, for complex poles the phase angle is zero at zero frequency,
 at the corner frequency and approaches  as the frequency becomes large.

The phase angle asymptotes are shown on the plot of the previous page.

f. From the plot of the previous page we observe that the phase angle at the cutoff frequency
is approximately 

g. The exact phase angle at the cutoff frequency  is found from (1) with .

We need not simplify this expression; we will use the MATLAB script below.

g16=(64j+100)/((16j)^2+64j+100); angle(g16)*180/pi

ans =
 -125.0746

This value is about twice as that we observed from the asymptotic plot of the previous
page. Errors such as this occur because of the high non-linearity between frequency inter-
vals. Therefore, we should use the straight line asymptotes only to observe the shape of the
phase angle. It is best to use MATLAB as shown below.

num=[0  4  100]; den=[1  4 100]; w=logspace(0,2,1000);bode(num,den,w)

2.5  250 r s 
2.5 r s 90 250 r s

90– 180–

63–

c 16 r s= s j16=

G j16  4 j16 25+ 

j16 2 4 j16  100+ +
-----------------------------------------------------=
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Chapter 9

Self and Mutual Inductances  Transformers

his chapter begins with the interactions between electric circuits and changing magnetic
fields. It defines self and mutual inductances, flux linkages, induced voltages, the dot con-
vention, Lenz’s law, and magnetic coupling. It concludes with a detailed discussion on trans-

formers.

9.1 SelfInductance
About 1830, Joseph Henry, while working at the university which is now known as Princeton,
found that electric current flowing in a circuit has a property analogous to mechanical momentum
which is a measure of the motion of a body and it is equal to the product of its mass and velocity,
i.e., . In electric circuits this property is sometimes referred to as the electrokinetic momentum
and it is equal to the product of  where  is the current analogous to velocity and the selfinduc-
tance  is analogous to the mass . About the same time, Michael Faraday visualized this prop-
erty in a magnetic field in space around a current carrying conductor. This electrokinetic momen-
tum is denoted by the symbol  that is,

(9.1)

Newton’s second law states that the force necessary to change the velocity of a body with mass 
is equal to the rate of change of the momentum, i.e.,

 (9.2)

where  is the acceleration. The analogous electrical relation says that the voltage  necessary to
produce a change of current in an inductive circuit is equal to the rate of change of electrokinetic
momentum, i.e,

(9.3)

9.2 The Nature of Inductance
Inductance is associated with the magnetic field which is always present when there is an electric
current. Thus when current flows in an electric circuit, the conductors (wires) connecting the
devices in the circuit are surrounded by a magnetic field. Figure 9.1 shows a simple loop of wire

T
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L M



 Li=

M

F d
dt
----- Mv  Mdv
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------ Ma= = =
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v d
dt
----- Li  Ldi
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-----= =
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and its magnetic field which is represented by the small loops. The direction of the magnetic field
(not shown) can be determined by the lefthand rule if conventional current flow is assumed, or
by the righthand rule if electron current flow is assumed. The magnetic field loops are circular in
form and are called lines of magnetic flux. The unit of magnetic flux is the weber (Wb). 

Figure 9.1. Magnetic field around a current carrying wire 

In a loosely wound coil of wire such as the one shown in Figure 9.2, the current through the
wound coil produces a denser magnetic field and many of the magnetic lines link the coil several
times. 

Figure 9.2. Magnetic field around a current carrying wound coil 

The magnetic flux is denoted as  and, if there are  turns and we assume that the flux  passes
through each turn, the total flux denoted as  is called flux linkage. Then,

(9.4)

By definition, a linear inductor one in which the flux linkage is proportional to the current
through it, that is,

(9.5)

where the constant of proportionality  is called inductance in webers per ampere.
We now recall Faraday’s law of electromagnetic induction which states that

(9.6)

and from (9.3) and (9.5),
(9.7)

 N 


 N=

 Li=

L

v d
dt
------=

v Ldi
dt
-----=
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Lenz’s Law

9.3 Lenz’s Law
Heinrich F. E. Lenz was a German scientist who, without knowledge of the work of Faraday and
Henry, duplicated many of their discoveries nearly simultaneously. The law which goes by his
name, is a useful rule for predicting the direction of an induced current. Lenz’s law states that:

Whenever there is a change in the amount of magnetic flux linking an electric circuit, an induced
voltage of value directly proportional to the time rate of change of flux linkages is set up tending
to produce a current in such a direction as to oppose the change in flux.

To understand Lenz’s law, let us consider the transformer shown in Figure 9.3.

Figure 9.3. Basic transformer construction

Here, we assume that the current in the primary winding has the direction shown and it produces
the flux  in the direction shown in Figure 9.3 by the arrow below the dotted line. Suppose that
this flux is decreasing. Then in the secondary winding there will be a voltage induced whose cur-
rent will be in a direction to increase the flux. In other words, the current produced by the
induced voltage will tend to prevent any decrease in flux. Conversely, if the flux produced by the
primary winding in increasing, the induced voltage in the secondary will produce a current in a
direction which will oppose an increase in flux.

9.4 Mutually Coupled Coils
Consider the inductor (coil) shown in Figure 9.4. 

Figure 9.4. Magnetic lines linking a coil 
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There are many magnetic lines of flux linking the coil  with  turns but for simplicity, only
two are shown in Figure 9.4. The current  produces a magnetic flux . Then by (9.4) and
(9.5), we obtain

(9.8)

and by Faraday’s law of (9.6), in terms of the selfinductance ,

(9.9)

Next, suppose another coil  with  turns is brought near the vicinity of coil  and some lines
of flux are also linking coil  as shown in Figure 9.5.

Figure 9.5. Lines of flux linking two coils

It is convenient to express the flux  as the sum of two fluxes  and , that is,

 (9.10)

where the linkage flux  is the flux which links coil  only and not coil , and the mutual flux

 is the flux which links both coils  and . We have assumed that the linkage and mutual
fluxes  and  link all turns of coil  and the mutual flux  links all turns of coil .

The arrangement above forms an elementary transformer where coil  is called the primary wind-

ing and coil  the secondary winding.

In a linear transformer the mutual flux  is proportional to the primary winding current  and
since there is no current in the secondary winding, the flux linkage in the secondary winding is by
(9.8),
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Mutually Coupled Coils

(9.11)

where  is the mutual inductance (in Henries) and thus the opencircuit secondary winding
voltage  is

(9.12)

In summary, when there is no current in the secondary winding the voltages are

 (9.13)

Next, we will consider the case where there is a voltage in the secondary winding producing cur-
rent  which in turn produces flux  as shown in Figure 9.6.

Figure 9.6. Flux in secondary winding

Then in analogy with (9.8) and (9.9)

 (9.14)

and by Faraday’s law in terms of the selfinductance  

(9.15)

If another coil  with  turns is brought near the vicinity of coil , some lines of flux are also

linking coil  as shown in Figure 9.7. 

2 N221 M21i1= =
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v2
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dt
-------- N2

d21
dt

----------- M21
di1

dt
-------= = =

v1 L1
di1
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-------=   and  v2 M21

di1
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  if  i1 0  and  i2 0=
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dt
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d22
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-------= = =

L1 N1 L2

L1

www.ebooko.ir


Chapter 9  Self and Mutual Inductances  Transformers

96 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Figure 9.7. Lines of flux linking open primary coil 

Following the same procedure as above, we express the flux  as the sum of two fluxes  and
 that is,

(9.16)

where the linkage flux  is the flux which links coil  only and not coil , and the mutual flux

 is the flux which links both coils  and . As before, we have assumed that the linkage and

mutual fluxes link all turns of coil  and the mutual flux links all turns of coil .

Since there is no current in the primary winding, the flux linkage in the primary winding is

(9.17)

where  is the mutual inductance (in Henries) and thus the opencircuit primary winding volt-

age  is

(9.18)

In summary, when there is no current in the primary winding, the voltages are

 (9.19)

We will see later that

(9.20)

The last possible arrangement is shown in Figure 9.8 where  and also .
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Mutually Coupled Coils

Figure 9.8. Flux linkages when both primary and secondary currents are present

The total flux  linking coil  is

(9.21)

and the total flux  linking coil  is

 (9.22)

and since , we express (9.21) and (9.22) as

(9.23)
and

(9.24)

Differentiating (9.23) and (9.24) and using (9.13), (9.14), (9.19) and (9.20) we obtain:

(9.25)

In (9.25) the voltage terms

are referred to as selfinduced voltages and the terms

are referred to as mutual voltages.
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In our previous studies we used the passive sign convention as a basis to denote the polarity (+)
and () of voltages and powers. While this convention can be used with the selfinduced voltages,
it cannot be used with mutual voltages because there are four terminals involved. Instead, the
polarity of the mutual voltages is denoted by the dot convention. To understand this convention,
we first consider the transformer circuit designations shown in Figures 9.9(a) and 9.9(b) where
the dots are placed on the upper terminals and the lower terminals respectively. 

Figure 9.9. Arrangements where the mutual voltage has a positive sign

These designations indicate the condition that a current  entering the dotted (undotted) termi-
nal of one coil induce a voltage across the other coil with positive polarity at the dotted (undot-
ted) terminal of the other coil. Thus, the mutual voltage term has a positive sign. Following the
same rule we see that in the circuits of Figure 9.10 (a) and 9.10(b) the mutual voltage has a nega-
tive sign.

Figure 9.10. Arrangements where the mutual voltage has a negative sign

Example 9.1  

For the circuit of Figure 9.11 find  and  if

a.  and 

b.  and 

c.  and 
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Mutually Coupled Coils

Figure 9.11. Circuit for Example 9.1
Solution:

a. Since both currents  and  are constants, their derivatives are zero, i.e., 

and thus

b. The dot convention in the circuit of Figure 9.11 shows that the mutual voltage terms are posi-
tive and thus

c.

Example 9.2  

For the circuit of Figure 9.12 find the opencircuit voltage  for  given that .
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Figure 9.12. Circuit for Example 9.2

Solution:

For 

Also,

where  is the forced response component of  and it is obtained from

and  is the natural response component of  and it is obtained from

Then,

and with the initial condition

we obtain 

Therefore, 

and in accordance with the dot convention,
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Establishing Polarity Markings

9.5 Establishing Polarity Markings
In our previous discussion and in Examples 9.1 and 9.2, the polarity markings (dots) were given.
There are cases, however, when these are not known. The following method is generally used to
establish the polarity marking in accordance with the dot convention.

Consider the transformer and its circuit symbol shown in Figure 9.13.

Figure 9.13. Establishing polarity markings

We recall that the direction of the flux  can be found by the righthand rule which states that if
the fingers of the right hand encircle a winding in the direction of the current, the thumb indi-
cates the direction of the flux. Let us place a dot at the upper end of  and assume that the cur-
rent  enters the top end thereby producing a flux in the clockwise direction shown. Next, we
want the current in  to enter the end which will produce a flux in the same direction, in this
case, clockwise. This will be accomplished if the current  in  enters the lower end as shown
and thus we place a dot at that end.

Example 9.3  

For the transformer shown in Figure 9.14, find  and .

Solution:

Let us first establish the dot positions as discussed above. Since the current  has a negative sign,
it leaves the upper terminal, or equivalently, enters the lower terminal and thus we enter a dot at
the lower terminal. The dotted circuit now is as shown in Figure 9.15.

i 

L1 L2

M

L1 L2

i2



L1

i1

L2

i2 L2

v1 v2

i2
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Figure 9.14. Network for Example 9.3

Figure 9.15.  Figure for Example 9.3 with dotted markings

The current  enters the upper terminal on the left side and  leaves the upper terminal on the
right side, the fluxes oppose each other. Therefore,

Example 9.4  

For the network in Figure 9.16 find the voltage ratio .*

Solution:

The dots are given to us as shown. Now, we arbitrarily assign currents  and  as shown in Fig-
ure 9.17 and we write mesh equations for each mesh.

* Henceforth we will be using bolded capital letters to denote phasor quantities.

+



+



i1 2 377t Asin= i2 5– 377cos t A=

v1 v2

M 2 H=

L2L1

3 H 4 H



+



+



i1 2 377t Asin= i2 5– 377cos t A=

v1 v2

M 2 H=

L2L1

3 H 4 H



i1 i2

v1 L1
di1
dt
------- M

di2
dt
-------– 2262 377tcos 3770 377t Vsin–= =

v2 M
di1
dt
-------– L2

di2
dt
-------+ 1508 377tcos– 7540 377t Vsin+= =

V2 V1

I1 I2
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Figure 9.16. Circuit for Example 9.4

Figure 9.17. Mesh currents for the circuit of Example 9.4

With this current assignments  leaves the dotted terminal of the right mesh and therefore the
mutual voltage has a negative sign. Then,

Mesh 1:

or
(9.26)

Mesh 2:

or
(9.27)

We will find the ratio  using the MATLAB script below where

Z=[0.5+18.85j  18.85j; 18.85j  500+37.7j]; V=[120 0]'; I=Z\V;...
fprintf(' \n'); fprintf('V1 = %7.3f V \t', abs(18.85j*I(1))); fprintf('V2 = %7.3f V \t', abs(500*I(2)));...
fprintf('Ratio V2/V1 = %7.3f \t',abs((500*I(2))/(18.85j*I(1))))

V1 = 120.093 V   V2 = 119.753 V   Ratio V2/V1 =   0.997

That is,

(9.28)





+



Vin 120 0=

R

0.5 

500  

RLDV2

M 50 mH=

50 mH 100 mH
 377 r s=

L1 L2





V1





+



Vin 120 0=

R1

0.5 

500  

RLD
V2

M 50 mH=

50 mH 100 mH
 377 r s=

L1

L2I1 I2

V1





I2

R1I1 jL1I1 jMI2–+ Vin=

0.5 j18.85+ I1 j18.85I2– 120 0=

jMI1 jL2I2 RLOAD I2+ +– 0=

j18.85I1– 1000 j37.7+ I2+ 0=

V2 V1

V1 jL1I1 j18.85I1= =

V2
V1
------ 119.75

120.09
---------------- 0.997= =
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and thus the magnitude of  is practically the same as the magnitude of . However,

we suspect that  will be out of phase with . We can find the phase of  by adding the
following statement to the MATLAB script above.

fprintf('Phase V2= %6.2f deg', angle(500*I(2))*180/pi)

Phase V2=  -0.64 deg

This is a very small phase difference from the phase of  and thus we see that both the magni-

tude and phase of  are essentially the same as that of .

If we increase the load resistance  to  we will find that again the magnitude and phase of
 are essentially the same as that of . Therefore, the transformer of this example is an iso-

lation transformer, that is, it isolates the load from the source and the value of  appears across
the load even though the load changes. An isolation transformer is also referred to as a 1:1 trans-
former.

If in a transformer the secondary winding voltage is considerably higher than the input voltage,
the transformer is referred to as a stepup transformer. Conversely, if the secondary winding volt-
age is considerably lower than the input voltage, the transformer is referred to as a stepdown
transformer.

9.6  Energy Stored in a Pair of Mutually Coupled Inductors
We know that the energy stored in an inductor is

(9.29)

In the transformer circuits shown in Figure 9.18, the stored energy is the sum of the energies sup-
plied to the primary and secondary terminals. From (9.25),

(9.30)

VLD V2= Vin

VLD Vin VLD

Vin

VLOAD Vin

RLD 1 K
VLOAD Vin

Vin

W t  1
2
---Li2 t =

v1 L1
di1
dt
------- M

di2
dt
-------+=

v2 M
di1
dt
------- L2

di2
dt
-------+=
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Figure 9.18. Transformer circuits for computation of the energy

and after replacing  with  and  in the appropriate terms, the instantaneous power deliv-
ered to these terminals are:

(9.31)

Next, let us suppose that at some reference time , both currents  and  are zero, that is,

(9.32)

In this case, there is no energy stored, and thus

(9.33)

Now, let us assume that at time , the current  is increased to some finite value, while  is still
zero. In other words, we let

(9.34)
and

(9.35)

Then, the energy accumulated at this time is

(9.36)

and since , then  and also . Therefore, from (9.31) and (9.36) we
obtain

(9.37)

Finally, let us at some later time , maintain  at its previous value, and increase  to a finite
value, that is, we let





v2L1 L2





v1

i2
i1

(a)





v2L1 L2





v1

i2i1

(b)

M M

v2 M
di1
dt
-------=

for both
circuits

M M12 M21

p1 v1i1= L1
di1
dt
------- M12

di2
dt
-------+ 

  i1=

p2 v2i2= M21
di1
dt
------- L2

di2
dt
-------+ 

  i2=

t0 i1 i2

i1 t0  i2 t0  0= =

W t0  0=

t1 i1 i2

i1 t1  I1=

i2 t1  0=

W1 p1 p2+  td
t0

t1

=

i2 t1  0= p2 t1  0= di2 dt 0=

W1 L1i1
i1d

dt
------- td

t0

t1

 L1 i1 i1d
t0

t1


1
2
---L1I1

2= = =

t2 i1 i2
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(9.38)
and

(9.39)

During this time interval,  and using (9.31) the energy accumulated is

(9.40)

Therefore, the energy stored in the transformer from  to  is from (9.37) and (9.40),

(9.41)

Now, let us reverse the order in which we increase  and . That is, in the time interval
, we increase  so that  while keeping . Then, at , we keep

 while we increase  so that . Using the same steps in equations (9.33) through
(9.40), we obtain

(9.42)

Since relations (9.41) and (9.42) represent the same energy, we must have

(9.43)

and thus we can express (9.41) and (9.42) as 

(9.44)

Relation (9.44) was derived with the dot markings of Figure 9.18 which is repeated below as Fig-
ure 9.19 for convenience.

Figure 9.19. Transformer circuits of Figure 9.18

i1 t2  I1=

i2 t2  I2=

di1 dt 0=

W2 p1 p2+  td
t1

t2

= M12I1
di2
dt
------- L2i2

di2
dt
-------+ 

  td
t1

t2

=

M12I1 L2i2+ di2
t1

t2

 M12I1I2
1
2
---L2I2

2+==

t0 t2

W t0

t2 1
2
---L1I1

2 M12I1I2
1
2
---L2I2

2+ +=

i1 i2

t0 t t1  i2 i2 t1  I2= i1 0= t t2=

i2 I2= i1 i1 t2  I1=

W t0

t2 1
2
---L1I1

2 M21I1I2
1
2
---L2I2

2+ +=

M12 M21 M= =

W t0

t2 1
2
---L1I1

2 MI1I2
1
2
---L2I2

2+ +=





v2L1 L2





v1

i2i1

(a)





v2L1 L2





v1

i2i1

(b)

M
v2 M

di1

dt
-------=

for both
circuits

M
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However, if we repeat the above procedure for the dot markings of the circuit of network 9.20 we
will find that

Figure 9.20. Transformer circuits with different dot arrangement from Figure 9.19

(9.45)

and relations (9.44) and (9.45) can be combined to a single relation as

(9.46)

where the sign of  is positive if both currents enter the dotted (or undotted) terminals, and it is
negative if one current enters the dotted (or undotted) terminal while the other enters the undot-
ted (or dotted) terminal.

The currents  and  are assumed constants and represent the final values of the instantaneous
values of the currents  and  respectively. We may express (9.46) in terms of the instantaneous
currents as

(9.47)

Obviously, the energy on the left side of (9.47) cannot be negative for any values of , , , ,
or . Let us assume first that  and  are either both positive or both negative in which case
their product is positive. Then, from (9.47) we see that the energy would be negative if

(9.48)

and the magnitude of the  is greater than the sum of the other two terms on the right side of
that expression. To derive an expression relating the mutual inductance M to the selfinduc-
tances  and , we add and subtract the term  on the right side of (9.47), and we
complete the square. This expression then becomes





v2L1 L2





v1

i2i1

(a)





v2L1 L2





v1

i2i1

(b)

M
v2 M–

di1

dt
-------=

for both
circuits

M

W t0

t2 1
2
---L1I1

2 M– I1I2
1
2
---L2I2

2+=

W t0

t2 1
2
---L1I1

2 M I1I2
1
2
---L2I2

2+=

M

I1 I2

i1 i2

W t0

t2 1
2
---L1i1

2 M i1i2
1
2
---L2i2

2+=

i1 i2 L1 L2

M i1 i2

W t0

t2 1
2
---L1i1

2 1
2
---L2i2

2 Mi1i2–+=

Mi1i2

L1 L2 L1L2i1i2
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(9.49)

We now observe that the first term on the right side of (9.49) could be very small and could
approach zero, but it can never be negative. Therefore, for the energy to be positive, the second
and third terms on the right side of (9.48) must be such that  or

(9.50)

Expression (9.50) indicates that the mutual inductance can never be larger than the geometric
mean of the inductances of the two coils between which the mutual inductance exists.

Note: The inequality in (9.49) was derived with the assumption that  and  have the same
algebraic sign. If their signs are opposite, we select the positive sign of (9.47) and we find that
(9.50) holds also for this case.

The ratio  is known as the coefficient of coupling and it is denoted with the letter , that
is, 

(9.51)

Obviously  must have a value between zero and unity, that is, . Physically,  provides a
measure of the proximity of the primary and secondary coils. If the coils are far apart, we say that
they are loosecoupled and  has a small value, typically between  and . For closecoupled
circuits,  has a value of about . Power transformers have a  between  and . The
value of  is exactly unity only when the two coils are coalesced into a single coil.

Example 9.5  

For the transformer of Figure 9.21 compute the energy stored at  if:

a.  and 

b.  and 

c.  and 

W t0

t2 1
2
--- L1i1 L2i2– 

2
L1L2i1i2 Mi1i2–+=

L1L2 M

M L1L2

i1 i2

M L1L2 k

k M
L1L2

----------------=

k 0 k 1  k

k 0.01 0.1
k 0.5 k 0.90 0.95
k

t 0=

i1 50 mA= i2 25 mA=

i1 0= i2 20 377t sin mA=

i1 15 377tcos  mA= i2 40 377t 60+ sin  mA=
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Figure 9.21. Transformer for Example 9.5
Solution:
Since the currents enter the dotted terminals, we use (9.47) with the plus (+) sign for the mutual
inductance term, that is,

(9.52)

Then,

a.

b.
Since  and , it follows that

c.

9.7 Circuits with Linear Transformers
A linear transformer is a fourterminal device in which the voltages and currents in the primary
coils are linearly related.

The transformer shown in figure 9.22 a linear transformer. This transformer contains a voltage
source in the primary, a load resistor in the secondary, and the resistors  and  represent the
resistances of the primary and secondary coils respectively. Moreover, the primary is referenced to
directly to ground, but the secondary is referenced to a DC voltage source  and thus it is said
that the secondary of the transformer has a DC isolation.





v2L1 L2

M = 20 mH





v1

i2i1

50 mH50 mH

W t  1
2
---L1i1

2 Mi1i2
1
2
---L

2
i2
2+ +=

W t 0=
0.5 50 10 3– 50 10 3– 

2
 20 10 3– 50 10 3– 25 10 3–+=

                              + 0.5 50 10 3– 25 10 3– 
2

 103 10 6–  J 103 J= =

i1 0= i2 20 377tsin t 0=
0= =

W t 0=
0=

W t 0=
0.5 50 10 3– 15 10 3– 

2
 20 10 3– 15 10 3– 40 10 3– 60 sin+=

                              + 0.5 50 10 3– 40 10 3– 60 sin 
2

 46 10 6–  J 46 J= =

R1 R2

V0
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Figure 9.22. Transformer with DC isolation

Application of KVL around the primary and secondary circuits yields the loop equations

* (9.53)

and we see that the instantaneous values of the voltages and the currents are not affected by the
presence of the DC voltage source  since we would have obtained the same equations had we
let .

Example 9.6  

For the transformer shown in Figure 9.23, find the total response of  for  given that

. Use MATLAB to sketch  for .

Figure 9.23. Transformer for Example 9.6
Solution:
The total response consists of the summation of the forced and natural responses, that is,

* The mutual inductance terms  and  have a negative sign since the current  is leaving the dotted ter-

minal of the transformer secondary.
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L1 L2

M

v1 i2i1
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R2

RLD vout

V0 (DC)

vin R1i1 L1
di1
dt
------- M

di2
dt
-------–+=

0 M
di1
dt
-------– L2

di2
dt
------- R2 RLD+ + +=

M
di2
dt
------- M

di1
dt
------- i2

V0

V0 0=

i2 t 0

i1 0  i2 0  0= = i2 0 t 5 s 




L1 L2
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R2

RLD
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24 V DC
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I1
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(9.54)

and since the applied voltage is constant (DC), no steadystate (forced) voltage is produced in
the secondary and thus .

For  the domain circuit is shown in Figure 9.24.

Figure 9.24. The domain circuit for the transformer of Example 9.6 for 

The loop equations for this transformer are

(9.55)

Since we are interested only in , we will use Cramer’s rule.

or

and by partial fraction expansion,

(9.56)

from which

(9.57)

(9.58)

i2T i2f i2n+=

i2f 0=

t 0 s







2s
100 200 

24 s

vout s 3s 5s
I1 s  I2 s 

1000
vin s 

s t 0

3s 100+ I1 s  2sI2 s – 24 s=

2sI1 s  5s 1200+ I2 s +– 0=

I2 s 

I2 s 

3s 100+ 24 s
2s– 0

3s 100+ 2s–
2s– 5s 1200+

---------------------------------------------------- 48
11s2 4100s 120000+ +
-------------------------------------------------------- 4.36

s2 372.73s 10909.01+ +
-----------------------------------------------------------= = =

I2 s  4.36
s 340.71+  s 32.02+ 

---------------------------------------------------------=

I2 s  4.36
s 340.71+  s 32.02+ 

---------------------------------------------------------=
r1

s 340.71+
-------------------------

r2
s 32.02+
----------------------+=

r1
4.36

s 32.02+
----------------------

s 340.71–=

0.01–= =

r2
4.36

s 340.71+
-------------------------

s 32.02–=

0.01= =
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By substitution into (9.56), we obtain

(9.59)

and taking the Inverse Laplace of (9.59) we obtain

(9.60)

Using the following MATLAB script we obtain the plot shown on Figure 9.25.

t=0: 0.001: 0.2; i2n=0.01.*(exp(32.02*t)exp(340.71.*t)); plot(t,i2n); grid

Figure 9.25. Plot for the secondary current of the transformer of Example 9.6

Example 9.7  

For the transformer of Figure 9.26, find the steadystate (forced) response of .

Figure 9.26. Circuit for Example 9.7

I2 s  0.01
s 32.02+
---------------------- 0.01–

s 340.71+
-------------------------+=

i2n 0.01 e 32.02t– e 340.71t–– =

i2n 0.01 e 32.02t– e 340.71t–– =

vout









10 

170 377t Vcos

vout
vin 100 

2 H

3 H 5 H

0.1 F
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Solution:

The domain equivalent circuit is shown in Figure 9.27.

We could use the same procedure as in the previous example, but it is easier to work with the
transfer function .

Figure 9.27. The sdomain equivalent circuit for Example 9.7

The loop equations for the transformer of Figure 9.27 are:

(9.61)

and by Cramer’s rule,

or

From Figure 9.27 we observe that

(9.62)

and 
(9.63)

s

G s 
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2s 1 0.1s+ I1 s – 5s 100 1 0.1s+ + I2 s + 0=

I2 s 

3s 10 1 0.1s+ +  Vin s 
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---------------------------------------------------------------------------------------------------------=
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------------------------------------------------------------------------
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-------------------------------------------------------------------=
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-------------------------------------------------------------------
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-------------------------------------------------------------------= = =
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The input is a sinusoid, that is,

and since we are interested in the steadystate response, we let

and thus

From (9.63) we obtain:

or
(9.64)

and in the domain,
(9.65)

The expression of (9.65) indicates that the transformer of this example is a stepdown trans-
former.

9.8 Reflected Impedance in Transformers
In this section, we will see how the load impedance of the secondary can be reflected into the pri-
mary.

Let us consider the transformer phasor circuit of Figure 9.28. We assume that the resistance of the
primary and secondary coils is negligible.

Figure 9.28. Circuit for the derivation of reflected impedance

By KVL the loops equations in phasor notation are:

(9.66)
or

(9.67)

vin 170 377t Vcos=

s j j377= =

Vin s  Vin j = 170 0=

Vout j  2.56 106– 91+
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-------------------------------------------------------------------------------------------------------------170 0 4.35 108– 0

4.52– 106 j5.36 107–
-------------------------------------------------------------= =

Vout j  4.35 108 180
5.38 107 94.82–
------------------------------------------------- 43.5 180

5.38 94.82–
---------------------------------- 8.09 274.82 8.09 85.18–= = = =

t
vout t  8.09 377t 85.18– cos=









M

VS

V2V1
I2I1

L1 L2 VLD
ZLD

jL1I1 jMI2– VS=

I2
jL1I1 VS–

jM
------------------------------=
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and
(9.68)

or
(9.69)

Equating the right sides of (9.67) and (9.69) we obtain:

(9.70)

Solving for  we obtain:

(9.71)

and dividing  by  we obtain the input impedance  as

(9.72)

The first term on the right side of (9.72) represents the reactance of the primary. The second term
is a result of the mutual coupling and it is referred to as the reflected impedance. It is denoted as ,
i.e., 

(9.73)

From (9.73), we make two important observations:

1. The reflected impedance  does not depend on the dot locations on the transformer. For
instance, if either dot in the transformer of the previous page is placed on the opposite termi-
nal, the sign of the mutual term changes from  to . But since  varies as , its sign
remains unchanged.

2. Let . Then, we can express (9.73) as

(9.74)

To express (9.74) as the sum of a real and an imaginary component, we multiply both numerator
and denominator by the complex conjugate of the denominator. Then,

(9.75)
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---------------------------------------=
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M M– ZR M 2
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-------------------------------------------------= =
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2M2RLD
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The imaginary part of (9.75) represents the reflected reactance and we see that it is negative.
That is, the reflected reactance is opposite to that of the net reactance  of the second-
ary. Therefore, if  is a capacitive reactance whose magnitude is less than , or if it is an
inductive reactance, then the reflected reactance is capacitive. However, if  is a capacitive
reactance whose magnitude is greater than , the reflected reactance is inductive. In the case
where the magnitude of  is capacitive and equal to , the reflected reactance is zero and
the transformer operates at resonant frequency. In this case, the reflected impedance is purely real
since (9.75) reduces to

(9.76)

Example 9.8  

In the transformer circuit of Figure 9.29,  represents the internal impedance of the voltage
source .

Find:

a.

b.

c.

d.

e.

Figure 9.29. Transformer for Example 9.8
Solution:
a. From (9.72)

XLD L2+

XLD L2

XLD

L2

XLD L2

ZR
2M 2

RLD
---------------=

ZS

VS

Zin

I1

I2

V1

V2

200 mH








100 mH

VS

V2V1 I2I1

L1 L2
VLDZLD

ZS

2 

300 mH

 377 r s=
VS 120 0= ZLD 10 j7540


------------ –=

Zin
VS
I1
------ jL1

2M 2

jL2 ZLD+
----------------------------+= =
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The Ideal Transformer

and we must add  to it. Therefore, for the transformer of this example,

b.

c.  By KVL

or

d.

e.

9.9 The Ideal Transformer
An ideal transformer is one in which the coefficient of coupling is almost unity, and both the pri-
mary and secondary inductive reactances are very large in comparison with the load impedances.
The primary and secondary coils have many turns wound around a laminated ironcore and are
arranged so that the entire flux links all the turns of both coils.

An important parameter of an ideal transformer is the turns ratio  which is defined as the ratio of
the number of turns on the secondary, , to the number of turns of the primary , that is,

(9.77)

The flux produced in a winding of a transformer due to a current in that winding is proportional to
the product of the current and the number of turns on the winding. Therefore, letting  be a con-
stant of proportionality which depends on the physical properties of the transformer, for the pri-
mary and secondary windings we have:

Zs 2 =

Zin jL1
2M 2

jL2 ZLD+
---------------------------- 2+ + j75.4 142129 0.01

j113.1 10 j20–+
----------------------------------------- 2+ +==

3.62 j60.31+ 60.42 86.56 ==

I1
VS
Zin
------- 120 0
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----------------------------------------- 1.98 86.56 A–= = =

jMI1– jL2 ZLD+  I2+ 0=

I2
jM

jL2 ZLD+
----------------------------I1

j37.7
j113.1 10 j20–+
-----------------------------------------1.98 86.56– 74.88 3.04

93.64 83.87
---------------------------------- 0.8 80.83–  A= = ==

V1 jL1I1 jM I2– 75.4 90 1.98 86.56– 37.7 90 0.8 80.83– –= =

149.29 3.04 30.15 9.17– 149.08 j7.92 30.15– j4.8–+ 118.9 1.5  V= ==

V2 ZLD I2 10 j20– 0.8 80.83–  22.36 63.43– 0.8 80.83–  17.89 144.26V–= = = =

a
N2 N1

a
N2
N1
------=
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(9.78)

The constant  is the same for the primary and secondary windings because we have assumed
that the same flux links both coils and thus both flux paths are identical. We recall from (9.8) and
(9.14) that

(9.79)

Then, from (9.78) and (9.79) we obtain:

(9.80)

or

(9.81)

Therefore,
(9.82)

From (9.69),
(9.83)

or
(9.84)

and since , (9.84) reduces to

(9.85)

For the case of unity coupling,
(9.86)

or
(9.87)

and by substitution of (9.87) into (9.85) we obtain:

(9.88)

11 N1i1=

22 N2i2=



1 N111 L1i1= =

2 N222 L2i2= =

N111 L1i1 N1
2i1= =

N222 L2i2 N2
2i2= =

L1 N1
2=

L2 N2
2=

L2
L1
------

N2
N1
------ 

 
2

a2= =

I2
jMI1

jL2 ZLD+ 
---------------------------------=

I2
I1
---- jM

jL2 ZLD+ 
---------------------------------=

jL2 ZLD»

I2
I1
---- jM

jL2
------------ M

L2
------= =

k M
L1L2

---------------- 1= =

M L1L2=

I2
I1
----

L1L2
L2

-----------------
L1
L2
------= =
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The Ideal Transformer

From (9.82) and (9.88), we obtain the important relation

(9.89)

Also, from (9.77) and (9.89),
(9.90)

and this relation indicates that if , the current  is larger than .

The primary and secondary voltages are also related to the turns ratio . To find this relation, we
define the secondary or load voltage  as

(9.91)

and the primary voltage  across  as

(9.92)
From (9.72),

(9.93)

and for 

Then, (9.93) becomes

(9.94)

Next, from (9.82)
(9.95)

Substitution of (9.95) into (9.94) yields

(9.96)

and if we let , both terms on the right side of (9.96) become infinite and we obtain an
indeterminate result. To work around this problem, we combine these terms and we obtain:

and as , 

I2
I1
---- 1

a
---=

N1I1 N2I2=

N2 N1 I2 I1

a
V2

V2 ZLD I2=

V1 L1

V1 ZinI1=

Zin
Vs
I1
------ jL1

2M
2

jL2 ZLD+
----------------------------+= =

k 1=
M2 L1L2=

Zin jL1
2L1L2

jL2 ZLD+
----------------------------+=

L2 a2L1=

Zin jL1
2a2L1

2

ja2L1 ZLD+
---------------------------------+=

jL1 

Zin
2a2L1

2 jL1ZLD 2a2L1
2+ +–

ja2L1 ZLD+
---------------------------------------------------------------------------

jL1ZLD

ja2L1 ZLD+
---------------------------------= =

jL1 
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(9.97)

Finally, substitution of (9.97) into (9.92) yields

(9.98)

and by division of (9.91) by (9.98) we obtain:

(9.99)
or

(9.100)

also, from the current and voltage relations of (9.88) and (9.99),

(9.101)

that is, the voltamperes of the secondary and the primary are equal.

An ideal transformer is represented by the network of Figure 9.30.

Figure 9.30. Ideal transformer representation

9.10  Impedance Matching
An ideal (ironcore) transformer can be used as an impedance level changing device. We recall
from basic circuit theory that to achieve maximum power transfer, we must adjust the resistance
of the load to make it equal to the resistance of the voltage source. But this is not always possible.
A power amplifier for example, has an internal resistance of several thousand ohms. On the other
hand, a speaker which is to be connected to the output of a power amplifier has a fixed resistance
of just a few ohms. In this case, we can achieve maximum power transfer by inserting an ironcore
transformer between the output of the power amplifier and the input of the speaker as shown in
Figure 9.31 where .

Zin
ZLD

a2
---------=

V1
ZLD

a2
---------I1=

V2
V1
------

ZLDI2

ZLD a2 I1

--------------------------- a2 1
a
--- a= = =

V2
V1
------ a=
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i2i1 1:a
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Simplified Transformer Equivalent Circuit

Figure 9.31. Transformer used as impedance matching device

Let us suppose that in Figure 9.31 the amplifier internal impedance is  and the imped-
ance of the speaker is only . We can find the appropriate turns ratio  using (9.97),
that is,

(9.102)

or

or
(9.103)

that is, the number of turns in the primary must be 100 times the number of the turns in the sec-
ondary.

9.11 Simplified Transformer Equivalent Circuit
In analyzing networks containing ideal transformers, it is very convenient to replace the trans-
former by an equivalent circuit before the analysis. Consider the transformer circuit of Figure
9.32.

Figure 9.32. Circuit to be simplified
From (9.97)

The input impedance seen by the voltage source  in the circuit of Figure 9.32 is









i1 i21:a
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Power

80000 
8  N2 N1 a=

Zin
ZLD

a2
---------=

a
N2
N1
------ ZLD

Zin
--------- 8
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--------------- 1
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--------------- 1
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---------= = = = =
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------ 100=








ZLD
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ZS

V1 V2

L1 L2
I2I1

VLD

1:a

Zin
ZLD

a2
---------=

VS
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(9.104)

and thus the circuit of Figure 9.32 can be replaced with the simplified circuit shown in Figure
9.33.

Figure 9.33. Simplified circuit for the transformer of Figure 9.32

The voltages and currents can now be found from the simple series circuit of Figure 9.33.

9.12 Thevenin Equivalent Circuit
Let us consider again the circuit of Figure 9.32. This time we want to find the Thevenin equiva-
lent to the left of the secondary terminals and replace the primary by its Thevenin equivalent at
points  and  as shown in Figure 9.34. 

Figure 9.34. Circuit for the derivation of Thevenin’s equivalent

If we open the circuit at points  and  as shown in Figure 9.34, we find the Thevenin voltage as
. Since the secondary is now an open circuit, we have , and also 

because . Since no voltage appears across ,  and . Then,

(9.105)

We will find the Thevenin impedance  from the relation

(9.106)

The short circuit current  is found from

Zin ZS
ZLD

a2
---------+=
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V1 V2 a=
I1 aI2=

ZLD a2

x y








ZLD
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1:a x

y





x y
VTH VOC Vxy= = I2 0= I1 0=

I1 aI2= ZS V1 VS= V2 oc aV1 aVS= =
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----------=
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Thevenin Equivalent Circuit

* (9.107)

and by substitution into (9.106),

The Thevenin equivalent circuit with the load connected to it is shown in Figure 9.35.

Figure 9.35. The Thevenin equivalent of the transformer circuit in Figure 9.34

The circuit of Figure 9.35 was derived with the assumption that the dots are placed as shown in
Figure 9.34. If either dot is reversed, we simply replace  by .

Example 9.9  

For the circuit of Figure 9.36, find .

Figure 9.36. Circuit for Example 9.9

Solution:
We will replace the given circuit with its Thevenin equivalent. First, we observe that the dot in
the secondary has been reversed, and therefore we will replace  by . The Thevenin equivalent
is obtained by multiplying  by , dividing the dependent source by , and multiplying the

 resistor by . With these modifications we obtain the circuit of Figure 9.37.

* Since  and  or  it follows that  also.
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a
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---------= = = =
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Figure 9.37. The Thevenin equivalent of the circuit of Example 9.9

Now, by application of KCL

or

Other equivalent circuits can be developed from the equations of the primary and secondary volt-
ages and currents.

Consider for example, the linear transformer circuit of Figure 9.38.

Figure 9.38. Linear transformer

From (9.30), the primary and secondary voltages and currents are:
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Thevenin Equivalent Circuit

(9.108)

and these equations are satisfied by the equivalent circuit shown in Figure 9.39.

Figure 9.39. Network satisfying the expressions of (9.108)

If we rearrange the equations of (9.108) as

(9.109)

we find that these equations are satisfied by the circuit of Figure 9.40.

Figure 9.40. Network satisfying the expressions of (9.109)

Additional equivalent circuits are shown in Figure 9.41 and they are useful in the computations of
transformer parameters computations from the open and shortcircuit tests, efficiency, and volt-
age regulation which will be discussed in subsequent sections in this chapter.

v1 L1
di1
dt
------- M

di2
dt
-------+=

v2 M
di1
dt
------- L2

di2
dt
-------+=









v1 v2

i2i1

M
di2
dt
-------

L1 L2

M
di1
dt
-------



v1 L1 M– 
di1
dt
------- M

di1
dt
-------

di2
dt
-------+ 

 +=

v2 M
di1
dt
-------

di2
dt
-------+ 

  L2 M– 
di2
dt
-------+=





v1
v2

i2i1

M

L1 M– L2 M– 

www.ebooko.ir


Chapter 9  Self and Mutual Inductances  Transformers

936 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Figure 9.41. Other transformer equivalent circuits

9.13 Autotransformer
An autotransformer is a special transformer that shares a common winding, and can be configured
either as a stepdown or stepup transformer as shown in Figure 9.42.

Figure 9.42. Stepdown and stepup centertapped autotransformers

Autotransformers are not used in residential, commercial, or industrial applications because a
break in the common winding may result in equipment damage and / or personnel injury.

A variac is an adjustable autotransformer, that is, its secondary voltage can be adjusted from zero
to a maximum value y a wiper arm that slides over the common winding as shown in Figure 9.43.
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Transformers with Multiple Secondary Windings

Figure 9.43. Variac

9.14 Transformers with Multiple Secondary Windings
Some transformers are constructed with a common primary winding and two or more secondary
windings. These transformers are used in applications hen there is a need for two or more different
secondary voltages with a common primary voltage. Figure 9.44 shows a transformer with one pri-
mary and two secondary windings.

Figure 9.44. Transformer with common primary winding and two secondary windings

9.15 Transformer Tests
The analysis of the ideal transformer model provides approximate values. A practical transformer
is shown in Figure 9.44 and makes provisions for core (hysteresis and eddy current l)* losses, wind-
ing losses, and magnetic flux leakages. The resistances  and  are the resistances of the pri-
mary and secondary windings respectively, the reactances  and  represent the leakage flux
of the primary and secondary windings respectively, the resistance  is for the core loses, and
the reactance , referred to as the magnetizing reactance, represents the transformer’s main
flux.

* Exercise 11 at the end of this chapter provides a brief discussion and a method for the computation of hysteresis
and eddy current losses,
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Figure 9.45. Equivalent circuit for practical transformer

Figure 9.46 shows the equivalent circuit in Figure 9.45 with the secondary quantities referred to
the primary. 

Figure 9.46. Equivalent circuit for practical transformer with secondary quantities referred to the primary

The resistance  in the primary winding and the resistance  in the secondary winding are
read with an Ohmmeter. The other quantities are determined by the opencircuit and shortcir-
cuit tests described below.

I.  OpenCircuit Test

The opencircuit test, also referred to as the noload test, is used to determine the reactance
 n the primary winding, the core resistance , and the magnetizing reactance . For

this test, the secondary is left open, and an ammeter, a voltmeter, and a wattmeter are con-
nected as shown in Figure 9.47.

Figure 9.47. Configuration for transformer opencircuit test
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Transformer Tests

In Figure 9.47, the value of the applied voltage  is set at its rated value*, and the voltmeter,

ammeter, and wattmeter readings, denoted as , , and  respectively, are measured
and recorded. Then,

(9.110)

from which
(9.111)

The magnitude of the admittance  in the excitation branch consisting of the parallel con-
nection of  and  is found from

(9.112)

where  and , and the phase angle  is found using the relation

(9.113)

from which
(9.114)

Then,
(9.115)

II.  ShortCircuit Test

The shortcircuit test is used to determine the magnitude of the series impedances referred to
the primary side of the transformer denoted as  For this test, the secondary is shorted, and
an ammeter, a voltmeter, and a wattmeter are connected as shown in Figure 9.48.

Figure 9.48. Configuration for transformer shortcircuit test

* It is important to use rated values so that the impedances and admittances will not have different values at dif-
ferent voltages.
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In Figure 9.48, the value of the applied voltage  is considerably less than the rated value of the
transformer. It is set at a value such that the primary current denoted as  is the rated pri-

mary current value, and the voltmeter, ammeter, and wattmeter readings, denoted as , ,
and  respectively, are measured and recorded. Then,

(9.116)

and the phase angle  is found using the relation

(9.117)

from which
(9.118)

Then,
(9.119)

Example 9.10  

The opencircuit and shortcircuit tests on a , ,  transformer pro-
duced the data shown in Table 9.1.

The highvoltage side of this transformer is connected to a generator via a long transmission line,
and the transmission line impedance is estimated to be . A  load at

 lagging power factor is connected to the lowvoltage side of the transformer, and it is desired
that the voltage across the  load be . Compute the terminal voltage  of the
generator connected to the left end of the transmission line.

Solution:
The equivalent circuit of this system is shown in Figure 9.49, and all quantities are referred to the
primary side.

TABLE 9.1 Open and ShortCircuit data for transformer in Example 9.10

Test Voltage (V) Current (A) Power (W)
Opencircuit 2400 37 1100

Shortcircuit 450 8.2 1600

VS

IRated

VSC ISC

PSC

ZSC
VSC
ISC
----------=

SC

SCcos
PSC

VSC ISC
-----------------------=

SC arc
PSC

VSC ISC
-----------------------cos=
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XSC ZSC SCcos=

100 KVA 13.2 2.4 KV 60 Hz

Zline 10 j35 += 75 KW

0.8
75 KW 2 300 V VGEN
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Transformer Tests

Figure 9.49. Circuit for Example 9.10

For this transformer, the ratio  is

(9.120)

From the shortcircuit test,
(9.121)

and
(9.122)

Then,
(9.123)

The load current  referred to the primary is 

(9.124)

The excitation current  referred to the primary is 

(9.125)

and its phase angle  is

(9.126)

and since in a real transformer the angle of the current lags the angle of the voltage, we accept
, and thus

(9.127)

Therefore, the generator voltage  must be 
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or
(9.128)

9.16 Efficiency

Efficiency, denoted as , is a dimensionless quantity defined as 

(9.129)

or in terms of the output and losses

(9.130)

The losses in a transformer are the summation of the core losses (hysteresis and eddy currents),
and copper losses caused by the resistance of the conducting material of the coils, generally made
of copper. The core losses can be obtained from the transformer equivalent circuit in Figure 9.50.
 

Figure 9.50. Transformer equivalent circuit for computation of the core losses

Thus, the core losses  are found from the relation

(9.131)

The copper losses can be obtained from the transformer equivalent circuit in Figure 9.51.

Figure 9.51. Transformer equivalent circuit for computation of the copper losses
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Efficiency

Thus, the copper losses  are found from the relation

(9.132)

Therefore, using equation (9.130), we obtain

(9.133)

The efficiency varies with the load current , and to find the maximum efficiency we differenti-

ate (9.133) with respect to the load current * and we obtain

(9.134)

(9.135)

or
(9.136)

and after simplification,
(9.137)

That is, the efficiency attains its maximum value at that load at which the constant (core) losses
are equal to the losses that vary with the load, i.e., the copper losses.

Example 9.11  

A ,  transformer has an equivalent series impedance 

referred to the lowvoltage side, and a core loss  at rated terminal voltage. Find:

a. The value of the load current  which will produce the maximum efficiency

b. The  output at maximum efficiency.

Solution: 
a. From relation (9.137),

* The quantities  and  are constant.

PR

PR Req2I2
2=


POUT

POUT PLOSS+
----------------------------------

V2I2 2cos

V2I2 2cos GC2V2
2 Req2I2

2+ +
------------------------------------------------------------------------= =

I2

I2

V2 2cos

d
dI2
-------

V2I2 2cos GC2V2
2 Req2I2

2+ +  V2 2cos V2 2 2Req2I2+cos  V2I2 2cos–

V2I2 2cos GC2V2
2 Req2I2

2+ + 
2

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0= =

V2I2 2cos GC2V2
2 Req2I2

2+ +  V2 2cos V2 2 2Req2I2+cos  V2I2 2cos–

V2I2 2cos GC2V2
2 Req2I2

2+ + 
2

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0=

V2I2 2cos GC2V2
2 Req2I2

2+ +  V2 2 2Req2I2+cos – I2 0=

GC2V2
2 Req2I2

2=

1000 KVA 13.2 / 4.16 KV Zeq 1 j4.2 +=

2500 w

I2

KVA

ReqI2
2 GCV2

2 2500= =
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and with , we find that the maximum efficiency occurs when , and with
(9.133) we find that the efficiency is

Figure 9.52 is a plot of the efficiency versus the load current, and we observe that the maxi-
mum efficiency occurs when the load current  is .

The plot in Figure 9.51 was produced with the MATLAB script below.

i2=0:1:150; eff=4.16.*0.8.*i2./(4.16.*0.8.*i2+2.5+i2.^2./1000); plot(i2,eff); grid;...
xlabel('Load Current I2 (A)'); ylabel('Efficiency'); ...
title('Efficiency vs Load Current, Example 9.11')

Figure 9.52. Efficiency vs. load current for the transformer in Example 9.11

b. At maximum efficiency the  output is

Req 1 = I2 50 A=


V2I2 2cos

V2I2 2cos GC2V2
2 Req2I2

2+ +
------------------------------------------------------------------------ 4160 50 0.8

4160 50 0.8 2500 2500+ +
-------------------------------------------------------------------------- 0.97  or  97%= = =

I2 50 A

KVA

4.16 KV 50 A 208 KVA=
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Efficiency

It is reasonable to assume that whenever a transformer is intended to operate continuously, it
should be designed to operate at its maximum efficiency at rated load. However, the loads sup-
plied by the transformer vary from time to time, but in most cases follow the same pattern day
after day. Thus, a more meaningful measure is a energy efficiency, denoted as , for the entire
day, and it is defined as 

(9.138)

where  and .

Allday efficiency is defined as the ratio of energy output to energy input for a 24hour period.

Example 9.12  

A , ,  transformer is in operation 24 hours a day. The loads during the
day are:

a.  at  for 3 hours

b.  at  for 5 hours

c. No load for 16 hours

Using the transformer equivalent circuit in Figure 9.53 where

and 

compute the allday efficiency.

Figure 9.53. Transformer equivalent circuit for Example 9.12

Solution:

W

W

POUT td
t1

t2



POUT td
t1

t2

 PC td
t1

t2

 PR td
t1

t2

+ +

----------------------------------------------------------------------------=

PC core losses= PR copper losses=

 10KVA 2400 / 240 60 Hz

10 KVA pf 1.0=

 6 KVA pf 0.8=

Yeq1 GC1 jBm1+ 12.5 j28.6   1––= =

Zeq1 Req1 jXeq1+ 8.4 j13.7 += =

I1

V1

Zeq1

V2
Yeq1

I2
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The allday efficiency is readily found by evaluating the integrals in equation (9.138). Thus,
denoting the energy as , we obtain

(9.139)

The core losses  are the same for the entire 24hour period and using (9.131) we obtain

and the energy  dissipated during the 24hour period is 

(9.140)

For the 3hour period the energy dissipated due to copper losses is

(9.141)

For the 5hour period the energy dissipated due to copper losses is

(9.142)

For the 16hour period the energy dissipated due to copper losses is zero, that is,

(9.143)

and from (9.141) through (9.143),

(9.144)

Therefore, from (9.138) we find that allday efficiency is

9.17 Voltage Regulation
The voltage regulation in a transformer is based on rated voltage and rated current at the second-
ary terminal. Accordingly, a transformer operates at rated conditions when the following condi-
tions are satisfied.

(9.145)

W

WOUT 10000 1.0  3 6000 0.8  5 0 16+ + 54 000 watt-hours = =

PC

PC GC2V2
2 GC1V1

2 12.5 10 6–  2400 2 72 w= = = =

WC

WC 72 24 1728 watt-hours= =

WR 3 hr–
10 KVA
2.4 KV

--------------------- 
  2

Req1 3  10
2.4
------- 

  2
8.4 3 437.5 w h–= = =

WR 5 hr–
6 KVA
2.4 KV
------------------ 
  2

Req1 5  6
2.4
------- 

  2
8.4 5 262.5 w h–= = =

WR 16 hr– 0 w h–=

WR 24 hr– 437.5 262.5 0+ +  w 700 w-h= =

W
54000

54000 1728 700+ +
------------------------------------------------ 0.957= =

V2 V2 rated =
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Voltage Regulation

(9.146)

(9.147)

While the relation in (9.147) defines the turns ratio, the primary terminal voltage under rated
conditions is not exactly  under normal operating conditions and thus it cannot be
computed as . Its actual value can be computed from a transformer equivalent circuit
such as the one shown in Figure 9.52, Page 945, from which

(9.148)

and we must remember that  and  are the transformer rated values. Relation (9.148) can also
be expressed as 

(9.149)

if we use the equivalent circuit in Figure 9.50, Page 942. 

The relations in (9.148) and (9.149) are phasor quantities. However, the transformer regulation,
denoted as , is defined in terms of the magnitudes of  as computed from relation (9.148) or
(9.149), and the magnitude of rated secondary voltage  as

(9.150)

The transformer voltage regulation can also be expressed in terms of the noload and fullload
voltages as

(9.151)

where  represents the condition where the transformer operates under rated conditions, that
is,  and  are the rated values defined in (9.145) and (9.146), and  represents the condi-
tion where the load is disconnected in which case , and the output voltage  attains the
value .

Obviously, the transformer regulation depends on the power factor of the load. In Figure 9.53, a
resistive load is represented by the phasor diagram (a), an inductive load is represented by the
phasor diagram (b), and a capacitive load is represented by the phasor diagram (c).

I2 I2 rated  KVA rated 
V2 rated 

--------------------------------= =

Turns ratio a
V1 rated 
V2 rated 
-------------------------= =

V1 rated 

V1 aV2=

V1 aV2 Zeq1
I2
a
----+=

V2 I2

V1 a V2 Zeq2 I2+ =

 V1

V2


V1 aV2–

aV2
----------------------

V1 a V2–

V2
--------------------------= =


V2 No Load  V2 Full Load –

V2 Full Load 
-----------------------------------------------------------------------------

V2 NL V2 FL–

V2 FL
-------------------------------= =

V2 FL

V2 I2 V2 NL

I2 0= V2

V1 a
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When pu values are used the transformer ratio is unity. that is, . This is because the pu val-
ues are the same regardless of which side there are referred to, e.g., . Accordingly,
whenever pu values are use, the voltage regulation expression in (9.150) above, reduces to
(9.152) below.

(9.152)

Figure 9.54. Transformer voltage regulation dependence on load power factor

Example 9.13  

An equivalent circuit of a , ,  transformer is shown in Figure 9.55 where

and 

Compute the voltage regulation if the transformer operates at rated load and  lagging.

Figure 9.55. Transformer equivalent circuit for Example 9.13

Solution:

The voltage regulation is defined as in relation (9.150). Therefore we need to find the value of 
using relation (9.148). We choose the secondary rated voltage  as our reference.
The magnitude of the rated current  is found from (9.146), that is,

a 1=

Zeq1 Zeq2=

pu
V1 V2–

V2
-------------------

V1
V2
------ 1–= =

(a) (b) (c)

I2 I2

I2

V2 V2 V2

1
a---V1

1
a---V1

1
a---V1

Zeq2I2 Zeq2I2
Zeq2I2

 10KVA 2400 / 240 60 Hz

Yeq1 GC1 jBm1+ 12.5 j28.6   1––= =

Zeq1 Req1 jXeq1+ 8.4 j13.7 += =

pf 08=

I1

V1

Zeq1

V2
Yeq1

I2

V1

V2 240 0 V=

I2
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and since , the power factor angle is , and thus

and since , 

Also,

and it is given that

Then, from (9.148)

The voltage regulation is computed using only the magnitudes of the voltages  and . Thus
from (9.150)

9.18 Transformer Modeling with Simulink / SimPowerSystems

The MathWorks™ Simulink / SimPowerSystems libraries include singlephase and threephase
transformer blocks. In this section we will model a singlephase transformer circuit, and in Chap-
ter 11 we will model a threephase transformer circuit. Introductions to Simulink and SimPower-
Systems are presented in Appendices B and C respectively.

Example 9.14  
We begin the creation of our model by performing the following steps:

1. At the MATLAB command prompt we enter powerlib and the SimPowerSystems library
blocks window appears as shown in Figure 9.56.

2. At the upper left corner we click File>New>Model and the window shown in Figure 9.57
appears.

I2
KVA rated 

V2 rated 
-------------------------------- 10 KVA

0.24 KV
--------------------- 41.7 A= = =

pf cos 0.8= =  0.8 1–cos 36.9= =

I2 41.7 36.9– 33.4 j25.0–= =

a 10 1 10= =
I2
a
---- 33.4 j25.0–

10
----------------------------- 3.34 j2.50–= =

aV2 2400 0 V=

Zeq1 8.4 j13.7 +=

V1 aV2 Zeq1
I2
a
----+ 2400 8.4 j13.7+  3.34 j2.50–  2462 j25+=+ 2462 0.58= = =

V1 V2


V1 aV2–

aV2
---------------------- 2462 2400–

2400
------------------------------ 0.0258  or  2.58%= = =
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3. From the powerlib library in Figure 9.56, we drag the following blocks into the blank window
in Figure 9.57

Figure 9.56. The powerlib library

Figure 9.57. Window for new model

a. powergui

b. Electrical Sources: Choose AC Voltage Source

c. Elements: Choose Parallel RLC Load, Ground (copy 4 times), Linear Transformer

d. Measurements: Current Measurement, Voltage Measurement

e. From the Simulink Commonly Used Blocks: Scope (copy once)

When all the blocks are dragged, the new model window will appears as shown in Figure 9.58.

Next, we perform the following steps:

a. We doubleclick the Linear Transformer block and on the Block Parameters window we
uncheck the Three windings transformer option. The transformer now appears as a two
winding transformer.
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b. We doubleclick the Parallel RLC Load and on the Block Parameters window we set the
Capacitive reactive power Qc to zero. The block now is reduced to a parallel RL block.
We rotate this block with Format>Rotate Block>Counterclockwise.

c. We interconnect the blocks and we rename them as shown in the model in Figure 9.59.

d. The parallel  load is assumed to be a  lagging load.

Figure 9.58. The blocks for the model for Example 9.14

40 KW / 30 KVAR pf 0.8=
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Figure 9.59. The model for Example 9.14

By default, the calculations are performed using the pu method but the parameters will automati-
cally be converted if we change from pu to SI or vice versa. The Block Parameters for the trans-
former block are in pu values are shown in Figure 9.60. These values were obtained in the solution
of Exercise 9.8 at the end of this chapter.
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Figure 9.60. The Block Parameters dialog box for the transformer of the model in Figure 9.59

Before we issue the Simulation Start command for the model in Figure 9.59, we click Simula-
tion>Configuration Parameters>Solver, and we select the ode23b(stiff/TRBDF2) parameter.
After the simulation command is executed the Scope 1 and Scope 2 blocks display the waveforms
in Figures 9.61 and 9.62 respectively, noting that amplitudes are in peak values, i.e.,

.Peak RMS 2=
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Figure 9.61. Waveform for the primary winding current

Figure 9.62. Waveform for the voltage across the load

The SimPowerSystems/Measurements library includes the Multimeter block which is now added
to the model and the new model is shown in Figure 9.63. We doubleclick the Multimeter block
and we observe that the left pane in the dialog box in Figure 9.64 displays 6 Available Measure-
ments and as Ub (Parallel RLC Load), Uw1 and Uw2 (Primary and Secondary Winding Volt-
ages), Iw1 and Iw2 (Primary and Secondary Winding Currents), and Imag (Magnetization Cur-
rent). The last 5 measurement are displayed because in the Block Parameters dialog box for the
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Linear Transformer block in Figure 9.60, in the Measurements parameter we selected the All
voltages and currents option.

Figure 9.63. The model for Example 9.13 with the added Multimeter block

In the Multimeter dialog box in Figure 9.64, the Available Measurements in the left pane were
highlighted to be selected, and were copied to the Selected Measurements pane on the right side
by clicking the  icon. The dialog box was then updated by clicking the Update button, and
with the Plot selected measurements parameter selected, the Simulation Start command was
issued producing the plots of the selected measurements shown in Figure 9.65, and we observed
that the number  inside the Multimeter block was changed to .

As we have seen, with the use of the Multimeter block it was not necessary to use the Scope 1
and Scope 2 blocks since the primary current and the load voltage waveforms are also shown in
Figure 9.65.

The output port of a Multimeter block can also be connected to a Scope block with multiple axes
through a Demux block as shown in the SimPowerSystems documentation demo. It can be
accessed by typing power_compensated at the MATLAB command prompt.

An example with a centered tapped transformer (3winding) demo is also provided in the Sim-
PowerSystems documentation. It can be accessed by typing power_transformer at the MATLAB
command prompt

> >

0 6
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Figure 9.64. The Multimeter block dialog box
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Figure 9.65. Waveforms for the six measurements provided by the Measurements block in Figure 9.63
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9.19 Summary
 Inductance is associated with the magnetic field which is always present when there is an elec-

tric current. 

 The magnetic field loops are circular in form and are called lines of magnetic flux.

 The magnetic flux is denoted as  and the unit of magnetic flux is the weber (Wb).

 If there are  turns and we assume that the flux  passes through each turn, the total flux
denoted as  is called flux linkage. Then,

 A linear inductor one in which the flux linkage is proportional to the current through it, that
is,

where the constant of proportionality  is called inductance in webers per ampere.

 Faraday’s law of electromagnetic induction states that

 Lenz’s law states that whenever there is a change in the amount of magnetic flux linking an
electric circuit, an induced voltage of value directly proportional to the time rate of change of
flux linkages is set up tending to produce a current in such a direction as to oppose the change
in flux.

 A linear transformer is a fourterminal device in which the voltages and currents in the pri-
mary coils are linearly related.

 In a linear transformer, when there is no current in the secondary winding the voltages are

 In a linear transformer, when there is no current in the primary winding, the voltages are



N 


 N=

 Li=

L

v d
dt
------=

v1 L1
di1

dt
-------=   and  v2 M21

di1

dt
-------=

  if  i1 0  and  i2 0=

v2 L2
di2

dt
-------=   and  v1 M12

di2

dt
-------=

  if  i1 0=   and  i2 0
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Summary

 In a linear transformer, when there is a current in both the primary and secondary windings,
the voltages are

 The voltage terms

are referred to as selfinduced voltages.

 The voltage terms

are referred to as mutual voltages.

 The polarity of the mutual voltages is denoted by the dot convention. If a current  entering
the dotted (undotted) terminal of one coil induces a voltage across the other coil with positive
polarity at the dotted (undotted) terminal of the other coil, the mutual voltage term has a pos-
itive sign. If a current  entering the undotted (dotted) terminal of one coil induces a voltage
across the other coil with positive polarity at the dotted (undotted) terminal of the other coil,
the mutual voltage term has a negative sign.

 If the polarity (dot) markings are not given, they can be established by using the righthand
rule which states that if the fingers of the right hand encircle a winding in the direction of the
current, the thumb indicates the direction of the flux. Thus, in an ideal transformer with pri-
mary and secondary windings  and  and currents  and  respectively, we place a dot at
the upper end of  and assume that the current  enters the top end thereby producing a flux
in the clockwise direction. Next, we want the current in  to enter the end which will pro-
duce a flux in the same direction, in this case, clockwise.

 The energy stored in a pair of mutually coupled inductors is given by

where the sign of  is positive if both currents enter the dotted (or undotted) terminals, and it
is negative if one current enters the dotted (or undotted) terminal while the other enters the
undotted (or dotted) terminal.

v1 L1
di1
dt
------- M

di2
dt
-------+=

v2 M
di1
dt
------- L2

di2
dt
-------+=

L1
di1
dt
-------  and  L2

di2
dt
-------

M
di1
dt
-------  and  M

di2
dt
-------

i

i

L1 L2 i1 i2

L1 i1

L2

W t0

t2 1
2
---L1i1

2 M i1i2
1
2
---L

2
i2
2+=

M
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 The ratio 

is known as the coefficient of coupling and  provides a measure of the proximity of the pri-
mary and secondary coils. If the coils are far apart, we say that they are loosecoupled, and  has
a small value, typically between  and . For closecoupled circuits,  has a value of about

. Power transformers have a  between  and . The value of  is exactly unity only
when the two coils are coalesced into a single coil.

 If the secondary of a linear transformer is referenced to a DC voltage source , it is said that
the secondary has DC isolation.

 In a linear transformer, the load impedance of the secondary can be reflected into the primary
can be reflected into the primary using the relation

where  is referred to as the reflected impedance.

 An ideal transformer is one in which the coefficient of coupling is almost unity, and both the
primary and secondary inductive reactances are very large in comparison with the load imped-
ances. The primary and secondary coils have many turns wound around a laminated ironcore
and are arranged so that the entire flux links all the turns of both coils.

 In an ideal transformer number of turns on the primary  and the number of turns on the sec-

ondary  are related to the primary and secondary currents  and  respectively as

 An important parameter of an ideal transformer is the turns ratio  which is defined as the
ratio of the number of turns on the secondary, , to the number of turns of the primary ,
that is,

 In an ideal transformer the turns ratio  relates the primary and secondary currents as

k M
L1L2

----------------=

k
k

0.01 0.1 k
0.5 k 0.90 0.95 k

V0

ZR
2M 2

jL2 ZLD+
----------------------------=

ZR

N1

N2 I1 I2

N1I1 N2I2=

a
N2 N1

a
N2
N1
------=

a

I2
I1
---- 1

a
---=
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Summary

 In an ideal transformer the turns ratio  relates the primary and secondary voltages as

 In an ideal transformer the voltamperes of the primary and the secondary are equal, that is,

 An ideal transformer can be used as an impedance matching device by specifying the appropri-
ate turns ratio . Then,

 In analyzing networks containing ideal transformers, it is very convenient to replace the trans-
former by an equivalent circuit before the analysis. One method is presented in Section 9.11.

 An ideal transformer can be replaced by a Thevenin equivalent as discussed in Section 9.12. 

 Four transformer equivalent circuits are shown in Figure 9.41 and they are useful in the com-
putations of transformer parameters computations from the open and shortcircuit tests, effi-
ciency, and voltage regulation. 

 An autotransformer is a special transformer that shares a common winding, and can be config-
ured either as a stepdown or stepup transformer as shown in Figure 9.42.

 Autotransformers are not used in residential, commercial, or industrial applications because a
break in the common winding may result in equipment damage and / or personnel injury.

 A variac is an adjustable autotransformer, that is, its secondary voltage can be adjusted from
zero to a maximum value y a wiper arm that slides over the common winding as shown in Fig-
ure 9.43.

 Some transformers are constructed with a common primary winding and two or more second-
ary windings. These transformers are used in applications hen there is a need for two or more
different secondary voltages with a common primary voltage. 

 The transformer opencircuit test, also referred to as the noload test, is used to determine the
reactance  n the primary winding, the core resistance , and the magnetizing reactance

. For this test, the secondary is left open, and an ammeter, a voltmeter, and a wattmeter are
connected as shown in Figure 9.47.

 The transformer shortcircuit test is used to determine the magnitude of the series impedances
referred to the primary side of the transformer denoted as  For this test, the secondary is
shorted, and an ammeter, a voltmeter, and a wattmeter are connected as shown in Figure 9.48.

a

V2
V1
------ a=

V2I2 V1I1=

N2 N1 a=

Zin
ZLD

a 2
---------=

XP RC

XM

ZSC
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 Efficiency, denoted as , is a dimensionless quantity defined as 

or in terms of the output and losses

 The losses in a transformer are the summation of the core losses (hysteresis and eddy cur-
rents), and copper losses caused by the resistance of the conducting material of the coils, gen-
erally made of copper. 

 Energy efficiency, denoted as , for the entire day, and it is defined as 

where  and .

 Allday efficiency is defined as the ratio of energy output to energy input for a 24hour period.

 The transformer voltage regulation, denoted as , is defined in terms of the magnitudes of 
as computed from relation (9.148) or (9.149), and the magnitude of rated secondary voltage

 as

The transformer voltage regulation can also be expressed in terms of the noload and full
load voltages as

where  represents the condition where the transformer operates under rated conditions,
that is,  and  are the rated values defined in (9.145) and (9.146), and  represents
the condition where the load is disconnected in which case , and the output voltage

 attains the value .




POUT
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-------------
PIN PLOSS–

PIN
----------------------------- 1

PLOSS
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---------------–= = =


POUT

POUT PLOSS+
---------------------------------- 1

PLOSS
POUT PLOSS+
----------------------------------–= =

W

W

POUT td
t1

t2



POUT td
t1

t2

 PC td
t1

t2

 PR td
t1

t2

+ +

----------------------------------------------------------------------------=

PC core losses= PR copper losses=

 V1

V2


V1 aV2–

aV2
----------------------

V1 a V2–

V2
--------------------------= =


V2 No Load  V2 Full Load –

V2 Full Load 
-----------------------------------------------------------------------------

V2 NL V2 FL–

V2 FL
-------------------------------= =

V2 FL

V2 I2 V2 NL

I2 0=

V2 V1 a
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Summary

 The MathWorks Simulink / SimPowerSystems libraries include singlephase and threephase
transformer blocks. A model with a singlephase transformer is presented in this chapter.
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9.20  Exercises

1. For the transformer below find  for .

2. For the transformer below find the phasor currents  and .

3. For the network below find the transfer function .

4. For the transformer below find the average power delivered to the  resistor.

v2 t 0





M 1 H=

1 H 2 H

2 

i 4u0 t  A=

v2L1 L2

I1 I2




10 0 V

I1 I2

2 

1 

j1  j8 

M j1 =

j10–  

G s  VOUT s  VIN s =

+


VOUT s 
VIN s 

1  1 

1 

0.5 H

1 H

1 H

1 H

0.5 H

0.5 H

+



4 





2  8 

4 

1:2

vS 4 3t Vcos=

vS
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Exercises

5. Replace the transformer below by a Thevenin equivalent and then compute  and 

6. For the circuit below compute the turns ratio  so that maximum power will be delivered to
the  resistor.

7. The recorded open and shortcircuit test data for a , ,  transformer
are as follows:

Opencircuit test with input to the low side: , , 

Shortcircuit test with input to the high side: , , 

Compute the parameters for the approximate equivalent circuit shown below.

8. Repeat Exercise 7 above using perunit values.

9. Using the data in Exercise 7 above, compute the voltage regulation for power factor 0.8 lead-
ing using perunit values.

10. Using the data in Exercise 7 above, compute the efficiency for power factor 0.8 lagging at half
load using perunit values.

V1 V2 I1  I2








 

2 j3 +

12 0

V1

1:5
I1 I2

V2 100 j75–  

a
10 K



 12 0 V

1:a4 

10 K

 10KVA 2400 / 240 60 Hz

240 V 0.75 A 72 W

80.5 V 5 A 210 W

I1

V1

Zeq1

V2
Yeq1

I2
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11. As mentioned earlier, the core losses in a transformer consist of hysteresis losses and eddy cur-
rent losses. The hysteresis loss is computed a

where the factor  and the exponent  vary with the core material used,  is the volume of

the core,  is the frequency in Hz, and  is the magnetic flux density.

The eddy current loss is approximated by the relation

where  is the thickness of the laminated cores, and the other variables are as in the hysteresis
loss expression above.

Since for a given core the volume  and the thickness  of the laminated cores are constant,
it is convenient to lump together the hysteresis losses and eddy current losses as core losses

, that is,

Now, suppose that the total core losses (hysteresis and eddy current) for a transformer core are
 at . If the maximum flux density  remains unchanged while the fre-

quency increases to , the total core losses increase to . Compute the hys-
teresis and eddy current losses for both frequencies.

Ph kh f Bmax
n

=

kh n 
f B

Pe ke2 f 2 Bmax
2=



 

PC

PC Ph Pe+ khf Bmax
n kef2 Bmax

2+= =

500 W f1 25 Hz= Bmax

f2 50 Hz= 1400 W
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Solutions to EndofChapter Exercises

9.21 Solutions to EndofChapter Exercises
1.

Application of KVL in the primary yields

  (1)

The total solution of  is the sum of the forced component  and the natural response ,
i.e.,

From (1) we find that , and  is found from the characteristic equation

 from which  and thus . Then,

  (2)

Since we are not told otherwise, we will assume that  and from (2)  or
 and by substitution into (2)

The voltage  is found from

and since ,





M 1 H=

1 H 2 H
2 

i 4u0 t  A=

v2
L1 L2 







M 1 H=

1 H 2 H
v2

L1 L2

vIN 8u0 t  V=

2 

i1

i vIN

2i1 L1
di1
dt
-------+ 8u0 t =

1
di1
dt
------- 2i1+ 8= t 0

i1 i1f i1n

i1 i1f i1n+=

i1f 8 2 4= = i1n

s 2+ 0= s 2–= i1n Ae 2t–=

i1 4 Ae 2t–+=

i1 0  0= 0 4 Ae0+=

A 4–=

i1 4 1 4e 2t–– =

v2

v2 M
di1
dt
------- L2

di2
dt
-------+=

i2 0=

v2 1
di1
dt
------- d

dt
----- 4 1 4e 2t––   8e 2t–  V= = =
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2.

The mesh equations for primary and secondary are:

By Cramer’s rule,

where

Thus,

Check with MATLAB:

Z=[1+j j; j 22j]; V=[10 0]'; I=Z\V;
fprintf('magI1 = %5.2f A \t', abs(I(1))); fprintf('phaseI1 = %5.2f deg ',angle(I(1))*180/pi);...
fprintf(' \n');...
fprintf('magI2 = %5.2f A \t', abs(I(2))); fprintf('phaseI2 = %5.2f deg ',angle(I(2))*180/pi);...
fprintf(' \n')

magI1 =  5.66 A   phaseI1 = -45.00 deg  
magI2 =  2.00 A   phaseI2 = 90.00 deg




10 0 V

I1 I2

2 

1 

j1  j8 

M j1 =

j10–  

1 j1+  I1 j1 I2– 10 0=

j1 I1– 2 j2–  I2+ 0=

I1 D1 = I2 D2 =

 1 j1+  j1–
j1– 2 j2– 

5= =

D1
10 0 j1–

0 2 j2– 
20 1 j– = =

D2
1 j1+  10 0

j1– 0
j10= =

I1
20 1 j– 

5
--------------------- 4 1 j–  4 2 45 A–= = =

I2
j10
5

-------- j2 2 90 A= = =
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Solutions to EndofChapter Exercises

3.

We will find  from . The three mesh equations in matrix form are:

We will use MATLAB to find the determinant  of the  matrix.

syms s
delta=[s+1  0.5*s  0.5*s; 0.5*s  s+1  0.5*s;  0.5*s  0.5*s  s+1]; det_delta=det(delta)

det_delta =
9/4*s^2+3*s+1

d3=[s+1  0.5*s  0.5*s;  0.5*s  s+1  0.5*s;  1  0  0]; det_d3=det(d3)

det_d3 =
3/4*s^2+1/2*s

I3=det_d3/det_delta

I3 =
(3/4*s^2+1/2*s)/(9/4*s^2+3*s+1)

simplify(I3)

ans =
s/(3*s+2)

Therefore,

and

+


VOUT s 
VIN s 

+



1

s
I1

0.5s s 1
I2

0.5s

0.5s s 1
I3

VOUT s  VOUT s  1  I3=

s 1+  0.5s– 0.5s–
0.5s– s 1+  0.5s–
0.5s– 0.5s– s 1+ 

1
0
0

VIN s =

 3 3

VOUT s  1 I3 VIN s   s 3s 2+  VIN s = =

G s  VOUT s  VIN s  s 3s 2+ = =
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4.

For this exercise,  and thus we need to find .

At Node ,

  (1)

From the primary circuit,
  (2)

Since , , and , it follows that  and . By sub-
stitution into (2) we obtain

  (3)

Addition of (1) and (3) yields

from which . Then,

and





2  8 

4 

1:2

vS
I4 

a 2=
A

V1 V2

I2I1

4 0

Pave 4 
1
2
--- I4 24= I4 

A
V2
4

------
V2 4 0–

8
-------------------------- I2–+ 0=

3V2
8

---------- I2– 1
2
---=

2I1 V1+ 4=

I2 I1 1 a= V2 V1 a= a 2= I1 2I2= V1 V2 2=

4I2
V2
2

------+ 4=

I2
V2
8

------+ 1=

3V2
8

----------
V2
8

------+ 1
2
--- 1+=

V2 3=

I4 
V2
4

------ 3
4
---= =

Pave 4 
1
2
--- 3

4
--- 

 2
4 9

8
--- w= =
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5.

Because the dot on the secondary is at the lower end, . Then,

and 

6.

From (9.102)

Then, 

or

7. We are told that open and shortcircuit test data for a , ,  trans-
former are as follows:

Opencircuit test with input to the low side: , , 

Shortcircuit test with input to the high side:  , , 








 

2 j3 +

12 0

V1

1:5
I1 I2

V2 100 j75–  







ZLD

x

y





aVS
a2ZS

V2 aV1=
I2 I1 a=





x

y

VS

a 5–=

aVS 5 12 0– 60 0– 60 180= = =

a2ZS 25 2 j3+  50 j75+ 90.14 56.31 = = =

ZLD 100 j75– 125 36.87 –= =

I2
aVS

a2ZS ZLD+
--------------------------- 60 180

50 j75 100 j75–+ +
----------------------------------------------- 60 180

150
---------------------- 2

5
--- 180= = = =

V2 ZLD I2 125 36.87– 2
5
--- 180 50 143.13 V= = =



 12 0 V

1:a4 

10 K

Zin
ZLD

a 2
---------=

a 2 ZLD

Zin
--------- 10000

4
--------------- 2500= = =

a 50=

 10KVA 2400 / 240 60 Hz

240 V 0.75 A 72 W

80.5 V 5 A 210 W
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The given equivalent circuit is the circuit (a) in Figure 9.41 which is repeated below for conve-
nience and we are asked to compute  and . The equivalent circuits (b) and (d) will
also be useful for the solution of this exercise.

Since the input for the opencircuit test is measured at the low side, we will compute the
admittance  in circuit (d) above, and we then refer it to the high side in Figure (a) using

the relation .

From the opencircuit test data, the admittance  is

and the phase angle  is found from

Then, with 

Yeq1 Zeq1

I1

V1

Zeq2

V2
Yeq2

I2
I1

V1

Zeq2

V2
Yeq2

I2

I1

V1

Zeq1

V2
Yeq1

I2 I1

V1

Zeq1

V2Yeq1

I2

(a) (b)

(c) (d)

Yeq2

Yeq1 Yeq2 a2=

Yeq2

Yeq2
I2 OC
V2 OC
-------------- 0.75

240
---------- 3.1 10 3–   1–= = =

OC

OCcos
POC

V2 OC I2 OC
------------------------------ 72

240 0.75
------------------------- 0.4= = =

OC 0.4 1–cos 66.4  (lagging)–= =

a 2400 240 10= =
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from which

and

The measurements for the shortcircuit test were made at the high side, and thus we will use
the equivalent circuit (b) above. The impedance  is found from

and the phase angle  is found from

Then, 

from which

and

8. We begin with establishing the bases below.

Next, we convert all test data into perunit values.

Following the same procedure as in Exercise 7, we obtain:

Yeq1
Yeq2

a2
------------ 3.1 10 3–   1– 66.4–

100
--------------------------------------------------------- 12.4 j28.4–  10 6–   1–

= = =

GC1 12.4 10 6–   1–
=

BM1 28.4– 10 6–   1–
=

Zeq1

Zeq1
V1 SC
I1 SC
------------- 80.5

5
---------- 16.1 = = =

SC

SCcos
PSC

V1 SC I1 SC
----------------------------- 210

80.5 5
------------------- 0.52= = =

SC 0.52 1–cos 58.7  (lagging)= =

Zeq1 16.1 58.7 8.36 j13.76 += =

Req1 8.36 =

Xeq1 13.76 =

Pbase Pa base 10000 VA= = V1 base 2400 V= V2 base 240 V=

I1 base
10000 VA

2400 V
-------------------------- 4.17 A= = I2 base

10000 VA
240 V

-------------------------- 41.7 A= =

VOC  pu
VOC

V2 base
------------------ 240 V

240 V
--------------- 1 pu= = = I OC  pu

I OC
I2 base
--------------- 0.75 A

41.7 A
----------------- 0.018 pu= = =

POC  pu
POC

Pa base
----------------- 72 W

10000 VA
-------------------------- 0.0072 pu= = = VSC  pu

VSC
V1 base
------------------ 80.5 V

2400 V
------------------ 0.0335 pu= = =

ISC  pu
ISC

I1 base
--------------- 5 A

4.17 A
----------------- 1.2 pu= = = PSC  pu

PSC
Pa base
----------------- 210 W

10000 VA
-------------------------- 0.021 pu= = =
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From the opencircuit test data, the magnitude of the admittance  is

*

From he shortcircuit test data, the magnitude of the impedance  is

Check:

* Conversion to pu values applies only to magnitudes, angles remain the same as working with actual values.

Yeq2 pu

Yeq2 pu
I OC  pu
VOC  pu
------------------ 0.018

1
------------- 0.018 pu= = =

OC pucos
POC  pu

VOC  pu I OC  pu
---------------------------------------- 0.0072

1 0.018
---------------------- 0.4= = =

OC pu 0.4 1–cos 66.4  (lagging)–= =

OC pusin 66.4– sin 0.916–= =

GC1 pu Yeq2 pu OC pucos 0.018 0.4 0.0072 pu= = =

BM1 pu Yeq2 pu OC pusin 0.018 0.916–  0.0165 pu–= = =

Yeq2 pu 0.0072 j0.0165–=

Zeq1 pu

Zeq1 pu
VSC  pu
ISC  pu
----------------- 0.0335

1.2
---------------- 0.028 pu= = =

SC pucos
PSC  pu

VSC  pu I SC  pu
-------------------------------------- 0.021

0.0335 1.2
------------------------------ 0.522= = =

SC pu 0.522 1–cos 58.5= =

SC pusin 58.5 sin 0.853= =

Req1 pu Zeq1 pu SC pucos 0.028 0.522 0.01456 pu= = =

Xeq1 pu Zeq1 pu SC pusin 0.028 0.853 0.0238 pu= = =

Zeq1 pu 0.0146 j0.0238 pu+=

Zeq1 base
V1 base
I1 base
------------------ 2400 V

4.17 A
------------------ 575.54 = = =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling 975
Copyright © Orchard Publications
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and the other quantities can be verified similarly.

9. The voltage regulation is computed using only the magnitudes of the voltages  and , and
since we are using pu values, we will use (9.152), i.e.,

We choose  as the reference phasor, and we let , and in pu,

and since the current leads the voltage by a leading power factor. we have ,
and in pu,

With , relation (9.148) reduces to:

where from the solution of Exercise 8,

Thus,

and 

As expected, the voltage regulation is negative because of the leading load.

10. Choosing  as our reference vector, that is, , at halfload, 

and

Zeq1 SC actual 
VSC
ISC
---------- 80.5

5
---------- 16.1 = = =

Zeq1 pu
Zeq1 SC actual 

Zeq1 base
--------------------------------------- 16.1

575.54
---------------- 0.028= = =

V1 V2

pu
V1
V2
------ 1–=

V2 V2 VOC 240 V= =

V2 pu
VOC
V2

---------- 1 0 pu= =

I2 ISC 5 A= =

I2 pu
ISC
I2

------- 1 36.9 pu 0.8 j0.6+= = =

a 1=

V1 V2 Zeq I2+=

Zeq1 pu 0.01456 j0.0238 pu+=

V1 1 0.01456 j0.0238+  0.8 j0.6+ + 0.9974 0.0278+ 0.9978= = =

pu
V1
V2
------ 1– 0.9978 1– 0.0022–= = =

I2 I2 I2 0 pu=

I2  HL 0.5 pu=
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From the solution of Exercise 8, , and thus the core losses are

Also from the solution of Exercise 8, , and thus the copper losses are

Thus, the efficiency is

11.

Since  is constant, we let  and . Then,

and

or

and

Simultaneous solution of the last two equations yields 

and thus the individual losses are:

PHL VLoad I2  HL pf  1 0.5 0.8 0.4 pu= = =

GC 0.018 pu=

PC GCVOUT
2 0.018 12 0.018 pu= = =

Req 0.01456 pu=

PR ReqI2 0.01456 0.52 0.0036 pu= = =


PHL

PHL PC PR+ +
----------------------------------- 0.4

0.4 0.018 0.0036+ +
-------------------------------------------------- 0.949= = =

PC Ph Pe+ khf Bmax
n kef2 Bmax

2+= =

Bmax x1 kh Bmax
n

= x2 ke Bmax
2=

PC 25 Hz 25x1 25 2x2+ 25x1 625x2+ 500 W= = =

PC 50 Hz 50x1 50 2x2+ 50x1 2500x2+ 1400 W= = =

x1 25x2+ 20=

x1 50x2+ 28 W=

x1 12= x2 0.32=

Ph 25 Hz 25 12 300 W= = Pe 25 Hz 25 2 0.32 200 W= =

Ph 50 Hz 50 12 600 W= = Pe 50 Hz 50 2 0.32 800 W= =
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Chapter 10

One and TwoPort Networks

his chapter begins with the general principles of one and twoport networks. The , , ,
and  parameters are defined. Several examples are presented to illustrate their use. It con-
cludes with a discussion on reciprocal and symmetrical networks.

10.1 Introduction and Definitions
Generally, a network has two pairs of terminals; one pair is denoted as the input terminals, and the
other as the output terminals. Such networks are very useful in the design of electronic systems,
transmission and distribution systems, automatic control systems, communications systems, and
others where electric energy or a signal enters the input terminals, it is modified by the network,
and it exits through the output terminals.

A port is a pair of terminals in a network at which electric energy or a signal may enter or leave
the network. A network that has only one pair a terminals is called a oneport network. In an one
port network, the current that enters one terminal must exit the network through the other ter-
minal. Thus, in Figure 10.1, .

Figure 10.1. Oneport network

Figures 10.2 and 10.3 show two examples of practical oneport networks.

Figure 10.2. An example of an oneport network

T z y h
g

iin iout=

iin

iout

+



+ 

VLD

12 V

+


3  3 

5 

6  10 

7 

8 

RLD

I LD
+

Ix 

20Ix
4 

iin

iout
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Figure 10.3. Another example of an oneport network

A twoport network has two pairs of terminals, that is, four terminals as shown in Figure 10.4
where  and 

Figure 10.4. Twoport network

10.2 OnePort DrivingPoint and Transfer Admittances
Let us consider an  network and write the mesh equations for this network in terms of the
impedances . We assume that the subscript of each current corresponds to the loop number and
KVL is applied so that the sign of each  is positive. The sign of any  for  can be positive
or negative depending on the reference directions of  and .

(10.1)

In (10.1) each current can be found by Cramer’s rule. For instance, the current  is found by

(10.2)

where

(10.3)

120 V

8 +



2 

20 

4  6 

10  16 

iin

iout

i1 i3= i2 i4=

i1 i2+



+


i4i3

n port–

Z
Zii Zij i j

ii ij

Z11i1 Z12i2 Z13i3  Z1nin+ + + + v1=

Z21i1 Z22i2 Z23i3  Z2nin+ + + + v2=


Zn1i1 Zn2i2 Zn3i3  Znnin+ + + + vn=

i1

i1
D1


------=



Z11 Z12 Z13  Z1n

Z21 Z22 Z23  Z2n

Z31 Z32 Z33  Z3n

    
Zn1 Zn2 Zn3  Znn

=
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OnePort DrivingPoint and Transfer Admittances

(10.4)

Next, we recall that the value of the determinant of a matrix  is the sum of the products
obtained by multiplying each element of any row or column by its cofactor*. The cofactor, with the
proper sign, is the matrix that remains when both the row and the column containing the element
are eliminated. The sign is plus (+) when the sum of the subscripts is even, and it is minus ()
when it is odd. Mathematically, if the cofactor of the element  is denoted as , then

(10.5)

where  is the minor of the element . We recall also that the minor is the cofactor without a
sign.

Example 10.1  

Compute the determinant of  from the elements of the first row and their cofactors given that

Solution:

Using the cofactor concept, and denoting the cofactor of the element  as , we find that the
cofactors of , , and  of (10.1) are respectively,

(10.6)

* A detailed discussion on cofactors is included in Appendix E.

D1

V1 Z12 Z13  Z1n

V2 Z22 Z23  Z2n

V3 Z32 Z33  Z3n

    
Vn Zn2 Zn3  Znn

=

A

aqr Aqr

Aqr 1– q r+ Mqr=

Mqr aqr

A

A
1 2 3–
2 4– 2
1– 2 6–

=

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–
1– 2

–– 1 20 2 10–  3 0–– 40= =

aij Cij

Z11 Z12 Z21

C11

Z22 Z23  Z2n

Z32 Z33  Z3n

   
Zn2 Zn3  Znn

=
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(10.7)

(10.8)

Therefore, we can express (10.2) as

(10.9)

Also,
(10.10)

and the other currents , , and so on can be written in similar forms.

In network theory the  parameters are defined as

(10.11)

Likewise,
(10.12)

and so on. By substitution of the  parameters into (10.9) and (10.10) we obtain:

(10.13)

(10.14)

If the subscripts of the parameters are alike, such as ,  and so on, they are referred to as
drivingpoint admittances. If they are unlike, such as ,  and so on, they are referred to as
transfer admittances.

If a network consists of only two loops such as in Figure 10.5 below,

C12

Z21 Z23  Z2n

Z31 Z33  Z3n

   
Zn1 Zn3  Znn

–=

C21

Z12 Z13  Z1n

Z32 Z33  Z3n

   
Zn2 Zn3  Znn

–=

i1
D1


------
C11v1


--------------
C21v2


--------------
C31v3


-------------- 
Cn1vn


--------------+ + + += =

i2
D2


------
C12v1


--------------
C22v2


--------------
C32v3


-------------- 
Cn2vn


--------------+ + + += =

i3 i4

yij

y11
C11


--------= y12
C21


--------= y13
C31


--------= 

y21
C12


--------= y22
C22


--------= y23
C32


--------= 

y

i1 y11v1 y12v2 y13v3  y1nvn+ + + +=

i2 y21v1 y22v2 y23v3  y2nvn+ + + +=

y y11 y22

y12 y21
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OnePort DrivingPoint and Transfer Admittances

Figure 10.5. Two loop network 

the equations of (10.13) and (10.14) will have only two terms each, that is, 

(10.15)

(10.16)

From Figure 10.5 we observe that there is only one voltage source, ; there is no voltage source
in Loop 2 and thus . Then, (10.15) and (10.16) reduce to

(10.17)

(10.18)

Relation (10.17) reveals that the drivingpoint admittance  is the ratio . That is, the
drivingpoint admittance, as defined by (10.17), is the admittance seen by a voltage source that is
present in the respective loop, in this case, Loop 1. Stated in other words, the drivingpoint admit-
tance is the ratio of the current in a given loop to the voltage source in that loop when there are no voltage
sources in any other loops of the network.

Transfer admittance is the ratio of the current in some other loop to the driving voltage source, in
this case . As indicated in (10.18), the transfer admittance  is the ratio of the current in
Loop 2 to the voltage source in Loop 1.

Example 10.2  
For the circuit of Figure 10.6, find the drivingpoint and transfer admittances and the current
through each resistor. 

Figure 10.6.  Circuit for Example 10.2
Solution:
We assign currents as shown in Figure 10.7.

+



R1

R2

R3

i1
i2

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

v1

v2 0=

i1 y11v1=

i2 y21v1=

y11 i1 v1

v1 y21

4 v1
+


R1

R2

R3

24 V

12 
6 
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Figure 10.7. Loop equations for the circuit of Example 10.2

The loop equations are 
(10.19)

The drivingpoint admittance is found from (10.11), that is,

(10.20)

and the transfer admittance from (10.12), that is,

 (10.21)

For this example,

(10.22)

The cofactor  is obtained by inspection from the matrix of (10.22), that is, eliminating the
first row and first column we are left with 18 and thus . Similarly, the cofactor  is
found by eliminating the first row and second column and changing the sign of . Then,

. By substitution into (10.20) and (10.21), we obtain 

(10.23)

and
(10.24)

Then, by substitution into (10.17) and (10.18) we obtain 

(10.25)

(10.26)

4 v1
+


R1

R2

R3

24 V

12 
6 

i1 i2

10i1 6i2– 24=

6i1– 18i2+ 0=

y11
C11


--------=

y21
C12


--------=

 10 6–
6– 18

180 36– 144= = =

C11

C11 18= C12

6–

C12 6=

y11
C11


-------- 18
144
--------- 1

8
---= = =

y21
C12


-------- 6
144
--------- 1

24
------= = =

i1 y11v1
1
8
--- 24 3 A= = =

i2 y21v1
1

24
------ 24 1 A= = =
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Finally, the we observe that the current through the  resistor is , through the  is 
and through the  is .

Of course, there are other simpler methods of computing these currents. However, the intent here
was to illustrate how the drivingpoint and transfer admittances are applied. These allow easy
computation for complicated network problems.

10.3 OnePort DrivingPoint and Transfer Impedances
Now, let us consider an  network and write the nodal equations for this network in terms
of the admittances . We assume that the subscript of each current corresponds to the loop num-
ber and KVL is applied so that the sign of each  is positive. The sign of any  for  can be
positive or negative depending on the reference polarities of  and .

(10.27)

In (10.27), each voltage can be found by Cramer’s rule. For instance, the voltage  is found by

(10.28)

where

(10.29)

(10.30)

As in the previous section, we find that the nodal equations of (10.27) can be expressed as

4  3 A 12  1 A
6  i1 i2– 3 1– 2A= =

n port–

Y
Yii Yij i j

vi vj

Y11v1 Y12v2 Y13v3  Y1nvn+ + + + i1=

Y21v1 Y22v2 Y23v3  Y2nvn+ + + + i2=


Yn1v1 Yn2v2 Yn3v3  Ynnvn+ + + + in=

v1

v1
D1


------=



Y11 Y12 Y13  Y1n

Y21 Y22 Y23  Y2n

Y31 Y32 Y33  Y3n

    
Yn1 Yn2 Yn3  Ynn

=

D1

V1 Y12 Y13  Y1n

V2 Y22 Y23  Y2n

V3 Y32 Y33  Y3n

    
Vn Yn2 Yn3  Ynn

=
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(10.31)

(10.32)

(10.33)
and so on, where

(10.34)

(10.35)

(10.36)

and so on. The matrices  represent the cofactors as in the previous section.

The coefficients of (10.31), (10.32), and (10.33) with like subscripts are referred to as driving
point impedances. Thus, ,  and so on, are drivingpoint impedances. The remaining coeffi-
cients with unlike subscripts, such as ,  and so on, are called transfer impedances.

To understand the meaning of the drivingpoint and transfer impedances, we examine the net-
work of Figure 10.8 where  is the reference node and nodes  and  are independent nodes.
The driving point impedance is the ratio of the voltage across the nodes  and  to the current
that flows through the branch between these nodes. In other words,

(10.37)

Figure 10.8. Circuit to illustrate the definitions of drivingpoint and transfer impedances.

The transfer impedance between nodes  and  is the ratio of the voltage  to the current at

node  when there are no other current (or voltage) sources in the network. That is,

(10.38)

v1 z11i1 z12i2 z13i3  z1nin+ + + +=

v2 z21i1 z22i2 z23i3  z2nin+ + + +=

v3 z31i1 z32i2 z33i3  z3nin+ + + +=

z11
C11


--------= z12
C21


--------= z13
C31


--------= 

z21
C12


--------= z22
C22


--------= z23
C32


--------= 

z31
C13


--------= z32
C23


--------= z33
C33


--------= 

Cij

z11 z22

z12 z21

0 1 2
1 0

z11
v1
i1
-----=

G1

G2

G3

i1

v1 v2

v0

2

0

1

vS

2 1 v2

1

z21
v2
i1
-----=
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Example 10.3  
For the network of Figure 10.9, compute the drivingpoint and transfer impedances and the volt-
ages across each conductance in terms of the current source.

Figure 10.9. Network for Example 10.3.
Solution:

We assign nodes , , , and  as shown in Figure 10.10.

Figure 10.10. Node assignment for network of Example 10.3

The nodal equations are 

(10.39)

Simplifying and rearranging we obtain:

(10.40)

The drivingpoint impedance  is found from (10.34), that is,

 (10.41)

and the transfer impedances  and  from (10.35) and (10.36), that is,

10  1–

2  1– 1  1–

i1

1  1–1  1–

1  1–

0 1 2 3

10

2 i1

v0

v1

v2

1

2 3

0

1

1
1 1

v3

10v1 2 v1 v2–  1 v1 v3– + + i1=

2 v2 v1–  1 v2 v3–  1v2+ + 0=

1 v3 v1–  1 v3 v2–  1v3+ + 0=

13v1 2v2– v3– i1=

2v1– 4v2 v3–+ 0=

v1– v2– 3v3+ 0=

z11

z11
C11


--------=

z21 z31
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 (10.42)

(10.43)

For this example,

(10.44)

The cofactor  is

(10.45)

Similarly, the cofactors  and  are

(10.46)

and

(10.47)

By substitution into (10.41), (10.42), and (10.43), we obtain 

(10.48)

(10.49)

(10.50)

Then, by substitution into (10.31), (10.32), and (10.33) we obtain: 

(10.51)

(10.52)

(10.53)

z21
C12


--------=

z31
C13


--------=


13 2– 1–

2– 4 1–
1– 1– 3

156 2– 2– 4– 13– 12– 123= = =

C11

C11
4 1–
1– 3

12 1– 11= = =

C12 C13

C12
2– 1–
1– 3

– 6– 1– – 7= = =

C13
2– 4
1– 1–

2 4+ 6= ==

z11
C11


-------- 11
123
---------= =

z21
C12


-------- 7
123
---------= =

z31
C13


-------- 6
123
---------= =

v1 z11i1 z12i2 z13i3+ +
11

123
---------i1= =

v2 z21i1 z22i2 z23i3+ +
7

123
---------i1= =

v3 z31i1 z32i2 z33i3+ +
6

123
---------i1= =
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As stated earlier, there are other simpler methods of computing these voltages. However, the
intent here was to illustrate how the drivingpoint and transfer impedances are applied. These
allow easy computation for complicated network problems.

10.4 TwoPort Networks
Figure 10.11 shows a twoport network with external voltages and currents specified.

Figure 10.11. Twoport network

Here, we assume that  and . We also assume that  and  are obtained by the
superposition of the currents produced by both  and . 

Next, we will define the , , , and  parameters.

10.4.1 The y Parameters

The twoport network of Figure 10.11 can be described by the following set of equations.

(10.54)

(10.55)

In twoport network theory, the  coefficients are referred to as the  parameters.
Let us assume that  is shorted, that is, . Then, (10.54) reduces to

(10.56)
or

(10.57)

and  is referred to as the short circuit input admittance at the left port when the right port of Fig-
ure 10.11 is shortcircuited.

Let us again consider (10.54), that is,

(10.58)

This time we assume that  is shorted, i.e., . Then, (10.58) reduces to

 (10.59)

i1 i2+ +

 i4
i3 

v1 v2

Linear network
(Consists of linear 

passive devices and
possibly dependent
sources but no
independent sources)

i1 i3= i2 i4= i1 i2

v1 v2

y z h g

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

y y
v2 v2 0=

i1 y11v1=

y11
i1
v1
-----=

y11

i1 y11v1 y12v2+=

v1 v1 0=

i1 y12v2=
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or
(10.60)

and  is referred to as the short circuit transfer admittance when the left port of Figure 10.11 is
shortcircuited. It represents the transmission from the right to the left port. For instance, in
amplifiers where the left port is considered to be the input port and the right to be the output, the
parameter  represents the internal feedback inside the network. 

Similar expressions are obtained when we consider the equation for , that is,

(10.61)

In an amplifier, the parameter  is also referred to as the short circuit transfer admittance and
represents transmission from the left (input) port to the right (output) port. It is a measure of the
socalled forward gain. 

The parameter  is called the short circuit output admittance.

The  parameters and the conditions under which they are computed are shown in Figures 10.12
through 10.16.

Figure 10.12. The y parameters for  and 

Figure 10.13. Network for the definition of the  parameter

Figure 10.14. Network for the definition of the  parameter

y12
i1
v2
-----=

y12

y12

i2

i2 y21v1 y22v2+=

y21

y22

y

i1 i2
+

i4
i3 v1

v2

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

+ +

v1 0 v2 0

i1 i2
i4

i3v1

v2=0

y11
i1
v1
-----

v2 0=

=

+

y11

i1 i2

i4i3 v2

v1=0

y12
i1
v2
-----

v1 0=

=

+

y12
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Figure 10.15. Network for the definition of the  parameter

Figure 10.16. Network for the definition of the  parameter

Example 10.4  

For the network of Figure 10.17, find the  parameters.

Figure 10.17. Network for Example 10.4
Solution:

a. The short circuit input admittance  is found from the network of Figure 10.18 where we
have assumed that  and the resistances, for convenience, have been replaced with
conductances in mhos.

Figure 10.18. Network for computing 

We observe that the  conductance is shorted out and thus the current  is the sum of

the currents through the  and  conductances. Then,

i1 i2
i4i3v1

v2=0

y21
i2
v1
-----

v2 0=

=

+

y21

i1 i2

i4i3 v2

v1=0

y22
i2
v2
-----

v1 0=

=

+

y22

y

5  20 
10 

y11

v1 1 V=

+


v1 = 1 V

v2 = 0

i1 0.1  1–

0.2  1– 0.05  1–

y11

0.05  1– i1

0.2  1– 0.1  1–
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and thus the short circuit input admittance is

(10.62)

b. The short circuit transfer admittance  when the left port is shortcircuited, is found from
the network of Figure 10.19.

Figure 10.19. Network for computing 

We observe that the  conductance is shorted out and thus the  conductance is

in parallel with the  conductance. The current , with a minus () sign, now flows

through the  conductance. Then,

and
\ (10.63)

c. The short circuit transfer admittance  when the right port is shortcircuited, is found from
the network of Figure 10.20.

Figure 10.20. Network for computing 

We observe that the  conductance is shorted out and thus the  conductance

is in parallel with the  conductance. The current , with a minus () sign, now flows

through the  conductance. Then,

i1 0.2v1 0.1v1+ 0.2 1 0.1 1+ 0.3 A= = =

y11 i1 v1 0.3 1 0.3  1–= = =

y12

+


v2 = 1 V
v1 = 0

i1 0.1  1–

0.2  1– 0.05  1–

y12

0.2  1– 0.1  1–

0.05  1– i1

0.1  1–

i1 0.1v2 0.1– 1=– 0.1–  A= =

y12 i1 v2 0.1– 1 0.1  1––= = =

y21

+


v1 = 1 V

v2 = 0

i1 0.1  1–

0.2  1– 0.05  1–

i2 

y21

0.05  1– 0.1  1–

0.2  1– i2

0.1  1–

i2 0.1v1 0.1– 1=– 0.1–  A= =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling 1015
Copyright © Orchard Publications

TwoPort Networks

and
(10.64)

d. The short circuit output admittance  at the right port when the left port is shortcircuited,
is found from the network of 10.21.

Figure 10.21. Network for computing 

We observe that the  conductance is shorted out and thus the current  is the is the

sum of the currents through the  and  conductances. Then,

and
(10.65)

Therefore, the twoport network of Figure 10.10 can be described by the following set of equa-
tions.

(10.66)

Note:

In Example 10.4, we found that the short circuit transfer admittances are equal, that is,

(10.67)

This is not just a coincidence; this is true whenever a twoport network is reciprocal (or bilateral).
A network is reciprocal if the reciprocity theorem is satisfied. This theorem states that:

If a voltage applied in one branch of a linear, twoport passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current
in the first branch.

The reverse is also true, that is, if current applied at one node produces a certain voltage at
another, the same current at the second node will produce the same voltage at the first. An exam-
ple is given at the end of this chapter. Obviously, if we know that the twoport network is recipro-
cal, only three computations are required to find the  parameters.

y21 i2 v1 0.1– 1 0.1  1––= = =

y22

+


v2 = 1 V
v1 = 0

0.1  1–

0.2  1– 0.05  1–

i2 

y22

0.2  1– i2

0.05  1– 0.1  1–

i2 0.05v2 0.1v2+ 0.05 1 0.1 1+ 0.15 A= = =

y22 i2 v2 0.15 1 0.15  1–= = =

i1 y11v1 y12v2+ 0.3v1 0.1v2–= =

i2 y21v1 y22v2+ 0.1– v1 0.3v2+= =

y21 y12 0.1–= =

y
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If in a reciprocal twoport network its ports can be interchanged without affecting the terminal
voltages and currents, the network is said to be also symmetric. In a symmetric twoport network, 

(10.68)

The network of Figure 10.17 is not symmetric since .

We will present examples of reciprocal and symmetric twoport networks at the last section of
this chapter.

The following example illustrates the applicability of twoport network analysis in more compli-
cated networks.

Example 10.5  

For the network of Figure 10.22, compute , , , and .

Figure 10.22. Network for Example 10.5

Solution:
We recognize the portion of the network enclosed in the dotted square, shown in Figure 10.23, as
that of the previous example.

Figure 10.23. Portion of the network for which the  parameters are known.

For the network of Figure 10.23, at Node 1,

(10.69)
and at Node 2,

(10.70)

y22 y11=

y21 y12=

y22 y11

v1 v2 i1 i2

v1 
v2 

i2 

15 A

10  5 
10 

20  4 

++
i1 



+

v1 
v2 

i2 

15 A

10  5 
10 

20  4 

++
i1 



+1 2

y

i1 15 v1 10–=

i2 v2 4–=
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By substitution of (10.69) and (10.70) into (10.66), we obtain:

(10.71)

or
(10.72)

We will use MATLAB to solve the equations of (10.72) to become more familiar with it.

syms v1 v2; [v1 v2]=solve(0.4*v10.1*v215, 0.1*v1+0.4*v2)
% Must have Symbolic Math Toolbox installed

v1 = 40
v2 = 10

and thus
(10.73)

The currents  and  are found from (10.69) and (10.70).

(10.74)

10.4.2 The z parameters

A twoport network such as that of Figure 10.24 can also be described by the following set of
equations.

Figure 10.24. The z parameters for  and 

(10.75)

(10.76)

In twoport network theory, the  coefficients are referred to as the  parameters or as open cir-
cuit impedance parameters.

i1 y11v1 y12v2+ 0.3v1 0.1v2– 15 v1 10–= = =

i2 y21v1 y22v2+ 0.1– v1 0.3v2+ v2 4–= = =

0.4v1 0.1v2– 15=

0.1– v1 0.4v2+ 0=

v1 40 V=

v2 10 V=

i1 i2

i1 15 40 10– 11 A= =

i2 10 4– 2.5 A–= =

i1 i2

v1 z11i1 z12i2+=
v2 z21i1 z22i2+=

v1
+


+

v2

i1 0 i2 0

v1 z11i1 z12i2+=

v2 z21i1 z22i2+=

zij z
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Let us assume that  is open, that is,  as shown in Figure 10.25.

Figure 10.25. Network for the definition of the  parameter

Then, (10.75) reduces to
 (10.77)

or
(10.78)

and this is the open circuit input impedance when the right port of Figure 10.25 is open.
Let us again consider (10.75), that is,

(10.79)

This time we assume that the terminal at  is open, i.e.,  as shown in Figure 10.26.

Figure 10.26. Network for the definition of the  parameter

Then, (10.75) reduces to
 (10.80)

or
(10.81)

and this is the open circuit transfer impedance when the left port is open as shown in Figure 10.26.

Similar expressions are obtained when we consider the equation for , that is,

(10.82)

Let us assume that  is open, that is,  as shown in Figure 10.27.
Then, (10.82) reduces to

 (10.83)

v2 i2 0=

i1

i2=0

z11
v1
i1
-----

i2 0=

=

v1
+


+

v2

z11

v1 z11i1=

z11
v1
i1
-----=

v1 z11i1 z12i2+=

v1 i1 0=

i2

i1=0

z12
v1
i2
-----

i1 0=

=

v1
+


+

v2

z12

v1 z12i2=

z12
v1
i2
-----=

v2

v2 z21i1 z22i2+=

v2 i2 0=

v2 z21i1=
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Figure 10.27. Network for the definition of the  parameter
or

(10.84)

The parameter  is referred to as open circuit transfer impedance when the right port is open as
shown in Figure 10.27.

Finally, let us assume that the terminal at  is open, i.e.,  as shown in Figure 10.28.

Figure 10.28. Network for the definition of the  parameter

Then, (10.82) reduces to
 (10.85)

or
(10.86)

The parameter  is called the open circuit output impedance. 

We observe that the  parameters definitions are similar to those of the  parameters if we substi-
tute voltages for currents and currents for voltages. 

Example 10.6  

For the network of Figure 10.29, find the  parameters.

Figure 10.29. Network for Example 10.6

i1
i2=0

z21
v2
i1
-----

i2 0=

=

v1
+


+

v2

z21

z21
v2
i1
-----=

z21

v1 i1 0=

i2

i1=0

z22
v2
i2
-----

i1 0=

=

v1
+


+

v2

z22

v2 z22i2=

z22
v2
i2
-----=

z22

z y

z

20 
5 

15 
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Solution:

a. The open circuit input impedance  is found from the network of Figure 10.30 where we
have assumed that .

Figure 10.30. Network for computing  for the network of Figure 10.29

We observe that the  resistor is in parallel with the series combination of the  and
 resistors. Then, by the current division expression, the current through the  resistor

is  and the voltage across that resistor is

Therefore, the open circuit input impedance  is

(10.87)

b. The open circuit transfer impedance  is found from the network of Figure 10.31.

Figure 10.31. Network for computing  for the network of Figure 10.29

We observe that the  resistance is in parallel with the series combination of the  and
 resistances. Then, the current through the  resistance is

and the voltage across this resistor is

Therefore, the open circuit transfer impedance  is 

z11

i1 1 A=

+

i1 = 1 A

i2 = 0v1 20  15 
5  +



v2 

z11

20  5 
15  20 

0.5 A

v1 20 0.5 10 V= =

z11

z11 v1 i1 10 1 10 = = =

z12

+

i2 = 1 A
i1 = 0

 

+

v1
v2 20 

5 

15 

z12

15  5 
20  20 

i20
15

15 5 20+ +
---------------------------i2

15
40
------ 1 3 8=  A= =

3
8
--- 20 60

8
------ 15 2= =  V

z12
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(10.88)

c. The open circuit transfer impedance  is found from the network of Figure 10.32.

Figure 10.32. Network for computing  for the network of Figure 10.29

In Figure 10.32 the current that flows through the  resistor is

and the voltage across this resistor is

Therefore, the open circuit transfer impedance  is 

(10.89)

We observe that 
(10.90)

d. The open circuit output impedance  is found from the network of Figure 10.33.

Figure 10.33. Network for computing  for the network of Figure 10.29

We observe that the  resistance is in parallel with the series combination of the  and
 resistances. Then, the current through the  resistance is

z12
v1
i2
----- 15 2

1
------------- 7.5 = = =

z21

+

i1 = 1 A

i2 = 0v1 20  15 
5  +



v2 

z21

15 

i15
20

20 5 15+ +
---------------------------i1

20
40
------ 1 1 2=  A= =

v2
1
2
--- 15 15 2= =  V

z21

z21
v2
i1
----- 15 2

1
------------- 7.5 = = =

z21 z12=

z22

+

i2 = 1 A
i1 = 0

 

+

v1
v2 20 

5 

15 

z22

15  5 
20  15 

i15
20 5+

20 5 15+ +
---------------------------i2

25
40
------ 1 5 8=  A= =
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and the voltage across that resistor is

Therefore, the open circuit output impedance  is 

(10.91)

10.4.3 The h Parameters

A twoport network can also be described by the set of equations

(10.92)

(10.93)
as shown in Figure 10.34.

Figure 10.34. The h parameters for  and 

The  parameters represent an impedance, a voltage gain, a current gain, and an admittance. For
this reason they are called hybrid (different) parameters.

Let us assume that  as shown in Figure 10.35.

Figure 10.35. Network for the definition of the  parameter

Then, (10.92) reduces to
 (10.94)

or
(10.95)

5
8
--- 15 75 8=  V

z22

z22
v1
i2
----- 75 8

1
------------- 75 8  = = =

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

i1

i2

v1 h11i1 h12v2+=
i2 h21i1 h22v2+=

v1
+


+
v2

i1 0 v2 0

h

v2 0=

i1

v2=0

h11
v1
i1
-----

v2 0=

=

v1
+


i2

h11

v1 h11 i1=

h11
v1
i1
-----=
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Therefore, the parameter  represents the input impedance of a twoport network.

Let us assume that  as shown in Figure 10.36.

Figure 10.36. Network for computing  for the network of Figure 10.34

Then, (10.92) reduces to
 (10.96)

or
(10.97)

Therefore, in a twoport network the parameter  represents a voltage gain (or loss).

Let us assume that  as shown in Figure 10.37.

Figure 10.37. Network for computing  for the network of Figure 10.34

Then, (10.93) reduces to

or 

Therefore, in a twoport network the parameter  represents a current gain (or loss).
Finally, let us assume that the terminal at  is open, i.e.,  as shown in Figure 10.38.

Figure 10.38. Network for computing  for the network of Figure 10.34

h11

i1 0=

v2

i1=0

h12
v1
v2
-----

i1 0=

=

v1
+


+


i2

h12

v1 h12 v2=

h12
v1
v2
-----=

h12

v2 0=

i1
v2=0

h21
i2
i1
----

v2 0=

=

v1
+


i2

h21

i2 h21i1=

h21
i2
i1
----=

h21

v1 i1 0=

i2i1=0

h22
i2
v2
-----

i1 0=

=

v1
+


+ v2

h22

www.ebooko.ir


Chapter 10  One and TwoPort Networks

1024 Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling
Copyright © Orchard Publications

Then, (10.93) reduces to

or 

Therefore, in a twoport network the parameter  represents an output admittance.

Example 10.7  

For the network of Figure 10.39, find the  parameters.

Figure 10.39. Network for Example 10.7

Solution:

a. The short circuit input impedance  is found from the network of Figure 10.40 where we
have assumed that .

Figure 10.40. Network for computing  for the network of Figure 10.39

From the network of Figure 10.40 we observe that the  and  resistors are in parallel
yielding an equivalent resistance of  in series with the  resistor. Then, the voltage
across the current source is

Therefore, the short circuit input impedance  is

(10.98)

i2 h22v2=

h22
i2
v2
-----=

h22

h

1  6 

4 

h11

i1 1 A=

1  6 

4 

+



v1 

i1 = 1 A

v2 = 0

i2 

h11

4  6 
2.4  1 

v1 1 1 2.4+  3.4 V= =

h11

h11
v1
i1
----- 3.4

1
------- 3.4 = = =
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TwoPort Networks

b. The voltage gain  is found from the network of Figure 10.41.

Figure 10.41. Network for computing  for the network of Figure 10.39.

Since no current flows through the  resistor, the voltage  is the voltage across the 
resistor. Then, by the voltage division expression,

Therefore, the voltage gain  is the dimensionless number

(10.99)

c. The current gain  is found from the network of Figure 10.42. 

Figure 10.42. Network for computing  for the network of Figure 10.39.

We observe that the  and  resistors are in parallel yielding an equivalent resistance of
. Then, the voltage across the  parallel combination is

The current  is the current through the  resistor. Thus,

Therefore, the current gain  is the dimensionless number

h12

1  6 

4 

+

v1 

v2 = 1 V

i1 = 0 +



h12

1  v1 4 

v1
4

6 4+
------------v2

4
10
------ 1 0.4 V= = =

h12

h12
v1
v2
----- 0.4

1
------- 0.4 = = =

h21

1  6 

4 

+



v1 

i1 = 1 A

v2 = 0

i2 

h21

4  6 
2.4  2.4 

v2.4 2.4 1 2.4 V= =

i2 6 

i2
2.4
6

-------– 0.4–  A= =

h21
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We observe that 
(10.100)

and this is a consequence of the fact that the given network is reciprocal.

d. The open circuit admittance  is found from the network of Figure 10.43.

Figure 10.43. Network for computing  for the network of Figure 10.39.

Since no current flows through the  resistor, the current  is found by Ohm’s law as

Therefore, the open circuit admittance  is

(10.101)

Note:
The  parameters and the  parameters (to be discussed next), are used extensively in networks
consisting of transistors*, and feedback networks. The  parameters are best suited with series
parallel feedback networks, whereas the  parameters are preferred in parallelseries amplifiers.

10.4.4 The g Parameters
A twoport network can also be described by the set of equations

(10.102)

(10.103)

* Transistors are threeterminal devices. However, they can be represented as largesignal equivalent twoport
networks circuits and also as smallsignal equivalent twoport networks where linearity can be applied. For a
detailed discussion on transistors, please refer to Electronic Devices and Amplifier Circuits with MATLAB
Applications, ISBN 9781934404133.

h21
i2
i1
---- 0.4–

1
---------- 0.4–= = =

h21 h12–=

h22

1  6 

4 

+

v1 

v2 = 1 V

i1 = 0 +



h22

1  i2

i2
v2

6 4+
------------ 1

10
------ 0.1 A= = =

h22

h22
i2
v2
----- 0.1

1
------- 0.1  1–  = = =

h g
h

g

i1 g11v1 g12i2+=

v2 g21v1 g22i2+=
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as shown in Figure 10.44.

Figure 10.44. The g parameters for  and 

The  parameters, also known as inverse hybrid parameters, represent an admittance, a current gain,
a voltage gain and an impedance.

Let us assume that  as shown in Figure 10.45.

Figure 10.45. Network for computing  for the network of Figure 10.44

Then, (10.102) reduces to
 (10.104)

or
(10.105)

Therefore, the parameter  represents the input admittance of a twoport network.

Let us assume that  as shown in Figure 10.46.

Figure 10.46. Network for computing  for the network of Figure 10.44

Then, (10.102) reduces to
 (10.106)

or
(10.107)

Therefore, in a twoport network the parameter  represents a current gain (or loss).

i1 i2

i1 g11v1 g12i2+=
v2 g21v1 g22i2+=

v2
+


+v1

v1 0 i2 0

g

i2 0=

i1 i2 = 0v2
+


+v1

g11
i1
v1
-----

i2 0=

=

g11

i1 g11 v1=

g11
i1
v1
-----=

g11

v1 0=

i1 i2v2
+


v1 = 0

g12
i1
i2
----

v1 0=

=

g12

i1 g12 i2=

g12
i1
i2
----=

g12
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Let us assume that  as shown in Figure 10.47.

Figure 10.47. Network for computing  for the network of Figure 10.44

Then, (10.103) reduces to
 (10.108)

or
(10.109)

Therefore, in a twoport network the parameter  represents a voltage gain (or loss).

Finally, let us assume that  is shorted, i.e.,  as shown in Figure 10.48.

Figure 10.48. Network for computing  for the network of Figure 10.44

Then, (10.103) reduces to
 (10.110)

or
(10.111)

Thus, in a twoport network the parameter  represents the output impedance of that network.

Example 10.8  

For the network of Figure 10.49, find the  parameters.

Figure 10.49. Network for Example 10.8

i2 0=

i1 i2 = 0v2
+


+v1

g21
v2
v1
-----

i2 0=

=

g21

v2 g21 v1=

g21
v2
i1
-----=

g21

v1 v1 0=

i1 i2v2
+


v1 = 0

g22
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i2
-----

v1 0=

=

g22

v2 g22 i2=

g22
v2
i2
-----=

g22

g

1  4 
12 
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Solution:

a. The open circuit input admittance  is found from the network of Figure 10.50 where we
have assumed that .

Figure 10.50. Network for computing  for the network of Figure 10.49.

There is no current through the  resistor and thus by Ohm’s law, 

Therefore, the open circuit input admittance  is

(10.112)

b. The current gain  is found from the network of Figure 10.51.

Figure 10.51. Network for computing  for the network of Figure 10.49.

By the current division expression, the current through the  resistor is

Therefore, the current gain  is the dimensionless number

(10.113)

c. The voltage gain  is found from the network of Figure 10.52.

g11

v1 1 V=

1  4 

12 +


v2 

v1 = 1 V

i2 = 0
i1 



+

g11

4 

i1
v1

1 12+
--------------- 1

13
------ A= =

g11
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----- 1 13

1
------------- 1

13
------  1–= = =
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1  4 
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i1 
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g12

1 

i1
12

12 1+
---------------i2
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------ 1– 12 13  A–= =–=

g12
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---- 12 13–

1
------------------- 12 13–= = =
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Figure 10.52. Network for computing  for the network of Figure 10.49.

Since there is no current through the  resistor, the voltage  is the voltage across the
 resistor. Then, by the voltage division expression,

Therefore, the voltage gain  is the dimensionless number

We observe that 
(10.114)

and this is a consequence of the fact that the given network is reciprocal.

d. The short circuit output impedance  is found from the network of Figure 10.53.

Figure 10.53. Network for computing  for the network of Figure 10.49.

The voltage  is the sum of the voltages across the  resistor and the voltage across the
 resistor. By the current division expression, the current through the  resistor is

(10.115)

Then, 

and

1  4 

12 +
v2 
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+
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4  v2
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--------------- 1 12 13  V= =

g21

g21
v2
v1
----- 12 13

1
---------------- 12

13
------= = =
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+
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Therefore, the short circuit output impedance  is

(10.116)

10.5 Reciprocal TwoPort Networks
If any of the following relationships exist in a a twoport network,

(10.117)

the network is said to be reciprocal.

If, in addition to (10.117), any of the following relationship exists

(10.118)

the network is said to be symmetric.

Examples of reciprocal twoport networks are the , ,  ( ), and .
These are shown in Figure 10.54. Examples of symmetric twoport networks are shown in Figure
10.55.

Let us review the reciprocity theorem and its consequences before we present an example. This
theorem states that:

If a voltage applied in one branch of a linear, twoport passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current
in the first branch.

The reverse is also true, that is, if current applied at one node produces a certain voltage at
another, the same current at the second node will produce the same voltage at the first.

It was also stated earlier that if we know that the twoport network is reciprocal, only three com-
putations are required to find the , , , and  parameters as shown in (10.117). Furthermore, if
we know that the twoport network is symmetric, we only need to make only two computations as
shown in (10.118).

g22

g22
v2
i2
----- 64 13

1
---------------- 64 13   = = =

z21 z12=

y21 y12=

h21 h– 12=

g21 g– 12=

z22 z11=

y22 y11=

h11h22 h12h21– 1=

g11g22 g12g21– 1=

tee  bridged lattice bridged tee

y z h g
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Figure 10.54. Examples of reciprocal twoport networks

.
Figure 10.55. Examples of symmetric twoport networks.

Example 10.9  

In the twoport network of Figure 10.56, the voltage source  connected at the left end of the
network is set for , and all impedances are resistive with the values indicated. On the right
side of the network is connected a DC ammeter denoted as . Assume that the ammeter is ideal,
that is, has no internal resistance.
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a. Compute the ammeter reading.

b. Interchange the positions of the voltage source and recompute the ammeter reading.

Figure 10.56. Network for Example 10.9.
Solution:
a. Perhaps the easiest method of solution is by nodal analysis since we only need to solve one

equation. 

The given network is redrawn as shown in Figure 10.57.

Figure 10.57. Network for solution of Example 10.9 by nodal analysis

By KCL at node ,

or 

or

The current through the ammeter is the sum of the currents  and . Thus, denoting the
current through the ammeter as  we obtain:

(10.119)

Z1 Z3

Z2

Z4

A

vS 15 V=

Z1 30 =

Z2 60 =

Z3 20 =
Z4 10 =

vS

Z1 Z3

Z2

Z4

A
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Z1 30 =

Z2 60 =

Z3 20 =
Z4 10 =

a

b

IZ3

IZ4

vS

a
Vab 15–

30
---------------------

Vab
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---------
Vab
20

---------+ + 0=

6
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------Vab

15
30
------=

Vab 5 V=
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IA

IA IZ3 IZ4+
Vab
Z3
--------- V

Z4
------+ 5

20
------ 15

10
------+ 0.25 1.50+ 1.75 A= = = = =
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b. With the voltage source and ammeter positions interchanged, the network is as shown in Fig-
ure 10.58.

Figure 10.58. Network of Figure 10.57 with the voltage source and ammeter interchanged.

Applying KCL for the network of Figure 10.58, we obtain:

or 

or

The current through the ammeter this time is the sum of the currents  and . Thus, denot-
ing the current through the ammeter as  we obtain:

(10.120)

We observe that (10.119) and (10.120 yield the same value and thus we can say that the given
network is reciprocal.
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Summary

10.6 Summary
 A port is a pair of terminals in a network at which electric energy or a signal may enter or leave

the network.

 A network that has only one pair a terminals is called a oneport network. In an oneport net-
work, the current that enters one terminal must exit the network through the other terminal.

 A twoport network has two pairs of terminals, that is, four terminals. 

 For an  network the  parameters are defined as

and so on.

 If the subscripts of the parameters are alike, such as ,  and so on, they are referred to
as drivingpoint admittances. If they are unlike, such as ,  and so on, they are referred to
as transfer admittances.

 For a  network the  parameters are defined as

 In a  network where the right port is shortcircuited, that is, when , the 
parameter is referred to as the short circuit input admittance. In other words,

 In a  network where the left port is shortcircuited, that is, when , the 
parameter is referred to as the short circuit transfer admittance. In other words,

 In a  network where the right port is shortcircuited, that is, when , the 
parameter is referred to as the short circuit transfer admittance. In other words,

n port– y

i1 y11v1 y12v2 y13v3  y1nvn+ + + +=

i2 y21v1 y22v2 y23v3  y2nvn+ + + +=

i3 y31v1 y32v2 y33v3  y2nvn+ + + +=

y y11 y22

y12 y21

2 port– y

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

2 port– v2 0= y11

y11
i1
v1
-----

v2 0=

=

2 port– v1 0= y12

y12
i1
v2
-----

v1 0=

=

2 port– v2 0= y21
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 In a  network where the left port is shortcircuited, that is, when , the 
parameter is referred to as the short circuit output admittance. In other words,

 For a  network the  parameters are defined as

and so on.

 If the subscripts of the parameters are alike, such as ,  and so on, they are referred to
as drivingpoint impedances. If they are unlike, such as ,  and so on, they are referred to
as transfer impedances.

 For a  network the  parameters are defined as

 In a  network where the right port is open, that is, when , the  parameter is
referred to as the open circuit input impedance. In other words,

 In a  network where the left port is open, that is, when , the  parameter is
referred to as the open circuit transfer impedance. In other words,

y21
i2
v1
-----

v2 0=

=

2 port– v1 0= y22

y22
i2
v1
-----

v1 0=

=

n port– z

v1 z11i1 z12i2 z13i3  z1nin+ + + +=

v2 z21i1 z22i2 z23i3  z2nin+ + + +=

v3 z31i1 z32i2 z33i3  z3nin+ + + +=

z z11 z22

z12 z21

2 port– z

v1 z11i1 z12i2+=

v2 z21i1 z22i2+=

2 port– i2 0= z11

z11
v1
i1
-----

i2 0=

=

2 port– i1 0= z12

z12
v1
i2
-----

i1 0=

=
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Summary

 In a  network where the right port is open, that is, when , the  parameter is
referred to as the open circuit transfer impedance. In other words, 

 In a  network where the left port is open, that is, when , the  parameter is
referred to as the open circuit output impedance. In other words,

 A twoport network can also be described in terms of the  parameters with the equations

 The  parameters represent an impedance, a voltage gain, a current gain, and an admittance.
For this reason they are called hybrid (different) parameters.

 In a  network where the right port is shorted, that is, when , the  parameter
represents the input impedance of the twoport network. In other words,

 In a  network where the left port is open, that is, when , the  parameter rep-
resents a voltage gain (or loss) in the twoport network. In other words,

 In a  network where the right port is shorted, that is, when , the  parameter
represents a current gain (or loss). In other words, 

 In a  network where the left port is open, that is, when , the  parameter rep-
resents an output admittance. In other words,

2 port– i2 0= z21

z21
v2
i1
-----

i2 0=

=

2 port– i1 0= z22

z22
v2
i2
-----

i1 0=

=

h

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

h

2 port– v2 0= h11

h11
v1
i1
-----

v2 0=

=

2 port– i1 0= h12

h12
v1
v2
-----

i1 0=

=

2 port– v2 0= h21

h21
i2
i1
----

v2 0=

=

2 port– i1 0= h22
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 A twoport network can also be described in terms of the  parameters with the equations

 The  parameters, also known as inverse hybrid parameters, represent an admittance, a cur-
rent gain, a voltage gain and an impedance. 

 In a  network where the right port is open, that is, when , the  parameter
represents the input admittance of the twoport network. In other words,

 In a  network where the left port is shorted, that is, when , the  parameter
represents a current gain (or loss) in the twoport network. In other words,

 In a  network where the right port is open, that is, when , the  parameter
represents a voltage gain (or loss). In other words, 

 In a  network where the left port is shorted, that is, when , the  parameter
represents an output impedance. In other words,

 The reciprocity theorem states that if a voltage applied in one branch of a linear, twoport pas-
sive network produces a certain current in any other branch of this network, the same voltage
applied in the second branch will produce the same current in the first branch. The reverse is
also true, that is, if current applied at one node produces a certain voltage at another, the same
current at the second node will produce the same voltage at the first. 

h22
i2
v2
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i1 0=

=

g

i1 g11v1 g12i2+=

v2 g21v1 g22i2+=

g

2 port– i2 0= g11
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-----

i2 0=

=

2 port– v1 0= g22

g22
v2
i2
-----

v1 0=

=
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Summary

 A twoport network is said to be reciprocal if any of the following relationships exists.

 A twoport network is said to be symmetrical if any of the following relationships exists.

z21 z12=

y21 y12=

h21 h– 12=

g21 g– 12=

z21 z12=   and  z22 z11=

y21 y12=   and  y22 y11=

h21 h– 12=   and  h11h22 h12h21– 1=

g21 g– 12=   and  g11g22 g12g21– 1=

www.ebooko.ir


Chapter 10  One and TwoPort Networks

1040 Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling
Copyright © Orchard Publications

10.7 Exercises
1. For the network below find the  parameters.

2. For the network below find the  parameters.

3. For the network below find the  parameters.

4. For the network below find the  parameters.

z

5  20 

10 

y

20  15 

5 

h

   1  6 

4 

g

   1  6 

4 
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Exercises

5. The equations describing the  parameters can be used to represent the network below. This
network is a transistor equivalent circuit for the commonemitter configuration and the 
parameters given are typical values for such a circuit. Compute the voltage gain and current
gain for this network if a voltage source of  in series with  is connected at
the input (left side), and a  load is connected at the output (right side).

h
h

v1 tcos  mV= 800 

5 K

   v2

(

i2 

+


i1 

h11

h12 v2v1
h21 i1

 

+ +

h11 1.2 K=

h12 2 10 4–=

h21 50=

h22 50 10 6–   1–=

h22  1– 
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10.8 Solutions to End0fChapter Exercises
1.

   

+


i1 = 1 A

i2 = 0v1 

5 

20 

10  +



v2 

z11
v1
i1
-----

i2 0=

=

 

i5

i5
10 20+ 

5 10 20+ + 
--------------------------------i1

30
35
------ 1 6 7  A= = =

v1 5i5 5 6 7 30 7  V= = =

z11
v1
i1
----- 30 7

1
------------- 30 7  = = =

+

i2 = 1 A

i1 = 0

 

+

v1 v2 

5 

10 

20 

z12
v1
i2
-----

i1 0=

=

i5

i5
20

20 5 10+ + 
--------------------------------i2

20
35
------ 1 4 7=  A= =

v1 5 4
7
--- 20 7= =  V

z12
v1
i2
----- 20 7

1
------------- 20 7  = = =
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Solutions to End0fChapter Exercises

We observe that 

   

+


i1 = 1 A

i2 = 0v1 5  20 

10  +



v2 

z21
v2
i1
-----

i2 0=

=

i20
5

5 10 20+ + 
--------------------------------i1

5
35
------ 1 1 7=  A= =

v2 20 1
7
--- 20 7= =  V

z21
v2
i1
----- 20 7

1
------------- 20 7  = = =

z21 z12=

+

i2 = 1 A

i1 = 0

 

+

v1 v2 5 

10 

20 

z22
v2
i2
-----

i1 0=

=

i20
10 5+ 

20 10 5+ + 
--------------------------------i2

15
35
------ 1 3 7=  A= =

v2 20 3
7
--- 60 7= =  V

z22
v1
i2
----- 60 7

1
------------- 60 7  = = =
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2.

+


v1 = 1 V

v2 = 0

i1 5 

20  15 

y11
i1
v1
-----

v2 0=

=

short

Req 5 20 4 = =

i1 v1 Req 1 4  A= =

y11 i1 v1 1 4
1

---------- 1 4   1–= = =

+


v2 = 1 V

v1 = 0

i1 5 

20 

15 
short

y12
i1
v2
-----

v1 0=

=

v5 v2 1 V= =

i1 v5 5– 1 5–  A= =

y12 i1 v2 1 5– 1 1 5   1––= = =

+


v1 = 1 V

v2 = 0

i2 5 

20 

15 

y21
i2
v1
-----

v2 0=

=

short

v5 v1 1 V= =

i2 v5 5– 1 5–  A= =
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Solutions to End0fChapter Exercises

We observe that 

3.

y21 i2 v1 1 5– 1 1 5   1––= = =

y21 y12=

+


v2 = 1 V

v1 = 0

i1 5 

20 

15 
short

y22
i2
v2
-----

v1 0=

= i2 

i2 v2 Req 1 5 15  1 75 20  4 15  A= = = =

y22 i2 v2 4 15 1 4 15   1–= = =

6 

4  

 1 

+



v1 

i1 = 1 A

v2 = 0

i1 h11
v1
i1
-----

v2 0=

=

 

i1

short

i1
4

1 4+ 
-----------------i1

4
5
--- 1 4 5  A= = =

v1 1 i1 4 5  V= =

h11
v1
i1
----- 4 5

1
---------- 4 5  = = =

6  

4  

 1 

+



v1 

h12
v1
v2
-----

i1 0=

=

 

i1 0=


+

v2 = 1 V

+



v2

i2

i1
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We observe that 

i2
v2

Req
-------- 1

6 4 1+ ------------------------- 1
30 11
---------------- 11 30  A= = = =

v1 1 i1 1 6
6 4 1+ + 

-------------------------- i2 1 6
11
------ 11

30
------ 1 5  V= = = =

h12
v1
v2
----- 1 5

1
---------- 1 5  dimensionless  = = =

6 

4  

 1 

i1 = 1 A

v2 = 0

i1 h21
i2
i1
----

v2 0=

=

 

i2

short

i2
1

1 4+ 
----------------- i1–  1

5
--- 1–  1 5–  A= = =

h21
i2
i1
---- 1 5–

1
------------- 1 5–= = =

h21 h12–=

6  

4  

 1 

+



v1 

h22
i2
v2
-----

i1 0=

=

 

i1 0=


+

v2 = 1 V

+



v2

i2

i2
v2

Req
-------- 1

6 4 1+ ------------------------- 1
30 11
---------------- 11 30  A= = = =

h22
i2
v2
----- 11 30

1
---------------- 11 30   1–  = = =
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Solutions to End0fChapter Exercises

4.

6 

4  

 1 

+



v1 

i2 = 0
i1 g11

i1
v1
-----

i2 0=

=

 

+

v1 = 1 V

i1
v1

Req
-------- 1

1 4 6 + ---------------------------- 1
10 11
---------------- 11 10= =  A= =

g11
i1
v1
----- 11 10

1
---------------- 11 10   1–= = =

6  

4  

 1 

g12
i1
i2
----

v1 0=

=

 

v1 0=

i2 = 1 A

+



v2

i2i1

short

i1
6

6 4+
------------ 
  i2–  6

10
------ 3 5  A–=–= =

g12
i1
i2
---- 3 5–

1
------------- 3 5 dimensionless –  = = =

6 

4  

 1 

+



v1 

i2 = 0
i1 g21

v2
v1
-----

i2 0=

=

 

+

v1 = 1 V

+



v2

i6

i1
v1

Req
-------- 1

1 4 6+ ------------------------- 1
10 11
---------------- 11 10  A= == =

v2 6 i6 6 1
1 4 6+ +
--------------------- 11

10
------ 

  3 5  V= = =
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We observe that 

5.
We recall that

  (1)

  (2)

With the voltage source  in series with  connected at the input and a
 load connected at the output the network is as shown below.

The network above is described by the equations

or

g21
v2
v1
----- 3 5

1
---------- 3 5= = =

g21 g12–=

6  

4  

 1 

g22
v2
i2
-----

v1 0=

=

 

v1 0=

i2 = 1 A

+



v2

i2i1

short

i6

v2 6 i6 6 4
6 4+
------------ i2 

  24
10
------ 1 12 5  V= = = =

g22
v2
i2
----- 12 5

1
------------- 12 5   = = =

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

v1 tcos  mV= 800 

5 K

   v2

i2 

+


i1 



+


+

1 0 mV

800  1200 

2 10 4– v2 50i1 50 10 6–   1– 5000 

800 1200+ i1 2 10 4– v2+ 10 3–=

50i1 50 10 6– v2+ i2
v2–

5000
------------= =
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Solutions to End0fChapter Exercises

We write the two equations above in matrix form and use MATLAB for the solution.

A=[2*10^3  2*10^(4); 50  2*10^(4)]; B=[10^(3) 0]'; X=A\B;...
fprintf(' \n'); fprintf('i1 = %5.2e A \t',X(1)); fprintf('v2 = %5.2e V',X(2))

i1 = 5.13e-007 A v2 = -1.28e-001 V

Therefore,
  (3)

  (4)

Next, we use (1) and (2) to find the new values of  and 

The voltage gain is

and the minus () sign indicates that the output voltage in  outofphase with the input.

The current gain is

and the output current is in phase with the input.

The Simulink / SimPowerSystems model for this exercise is shown below.

2 103i1 2 10 4– v2+ 10 3–=

50i1 2 10 4– v2+ 0=

i1 0.513 A=

v2 128 mV–=

v1 i2

v1 1.2 103 0.513 10 6– 2 10 4– 128 10 3–– + 0.59 mV= =

i2 50 0.513 10 6– 50 10 6–+ 128 10 3––  19.25 A= =

GV
v2
v1
----- 128 mV–

0.59 mV
----------------------- 217–= = =

180

GI
i2
i1
---- 19.25 A

0.513 A
----------------------- 37.5= = =
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Chapter 11

Balanced ThreePhase Systems

his chapter is an introduction to threephase power systems. The advantages of three
phase system operation are listed and computations of three phase systems are illustrated by
several examples.

11.1 Advantages of ThreePhase Systems
The circuits and networks we have discussed thus far are known as singlephase systems and can
be either DC or AC. We recall that AC is preferable to DC because voltage levels can be changed
by transformers. This allows more economical transmission and distribution. The flow of power in
a threephase system is constant rather than pulsating. Threephase motors and generators start
and run more smoothly since they have constant torque. They are also more economical.

11.2 ThreePhase Connections
Figure 11.1 shows three single AC series circuits where, for simplicity, we have assumed that the
internal impedance of the voltage sources and the wiring have been combined with the load
impedance. We also have assumed that the voltage sources are  outofphase, the load
impedances are the same, and thus the currents  and  have the same magnitude but are

 outofphase with each other as shown in Figure 11.2.

Figure 11.1. Three circuits with outofphase voltage sources

Figure 11.2. Waveforms for three  outphase currents

T

120
Ia Ib,  Ic

120

+


Va Vb VcIa Ib Ic

Za Zb Zc
 

+ ++ + +



120

Ia Ib Ic

120
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Let us use a single wire for the return current of all three circuits as shown below. This arrange-
ment is known as fourwire, threephase system.

Figure 11.3. Fourwire, threephase system

This arrangement shown in Figure 11.3 uses only  wires instead of the  wires shown in Figure
11.1. But now we must find the relative size of the common return wire that it would be sufficient
to carry all three currents 

We have assumed that the voltage sources are equal in magnitude and  apart, and the loads
are equal. Therefore, the currents will be balanced (equal in magnitude and  outof phase).
These currents are shown in the phasor diagram of Figure 11.4.

Figure 11.4. Phasor diagram for threephase balanced system

From figure 11.4 we observe that the sum of these currents, added vectorially, is zero.* Therefore,
under ideal (perfect balance) conditions, the common return wire carries no current at all. In a
practical situation, however, is not balanced exactly and the sum is not zero. But still it is quite
small and in a fourwire threephase system the return wire is much smaller than the other three. 

* This can also be proved using trigonometric identities, and also the MATLAB statement x=sin(t); y=sin(t2.*pi./
3); z=sin(t4.*pi./3); s=x+y+z

+


Va

Vb

Vc

Ia

Ib

Ic

Za

Zb

Zc

Ia Ib Ic+ +

+

+

+

+

+











4 6

Ia Ib Ic+ +

120
120

Ia

Ic

Ib
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ThreePhase Connections

Figure 11.5 shows a fourwire, threephase  where , the three

loads are identical, and  is the current in the neutral (fourth) wire. 

Figure 11.5. Fourwire, threephase 

A threewire threephase  is shown in Figure11.6 where , and the
three loads are identical.

Figure 11.6. Threewire, threephase 

This arrangement shown in Figure 11.6 could be used only if all the three voltage sources are per-
fectly balanced, and if the three loads are perfectly balanced also. This, of course, is a physical
impossibility and therefore it is not used.

A threewire threephase  system is shown in Figure 11.7 where , and
the three loads are identical. We observe that while the voltage sources are connected as a

, the loads are connected as a  and hence the name 

The arrangement in Figure 11.7 offers the advantage that the connected loads need not be
accurately balanced. However, a connection with only three voltages is not used for safety rea-
sons, that is, it is a safety requirement to have a connection from the common point to the
ground.

Y system– Va Vb Vc= =

In



ZLD

Ia

Ib

Ic

In

Va t Vcos

Vb t 120–  Vcos

Vc t 240–  Vcos







ZLD

ZLD

Y system–

Y system– Va Vb Vc= =




Va t Vcos
Ia

 Vb t 120–  Vcos
Ib

 Vc t 240–  Vcos

Ic

ZLD

ZLD

ZLD

Y system–

 load– Va Vb Vc= =

Y system–  system–  load–
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Figure 11.7. Threewire, threephase  system

11.3 Transformer Connections in ThreePhase Systems
Threephase power systems use transformers to raise or to lower voltage levels. A typical genera-
tor voltage, typically , is stepped up to hundreds of kilovolts for transmission over long
distances. This voltage is then stepped down; for major distribution may be stepped down at a
voltage level anywhere between  to , and for local distribution anywhere between

 to  Finally, the electric utility companies furnish power to industrial and commer-
cial facilities at  volts and  and  at residential areas. All voltage levels are in

 values.

Figure 11.8 shows a bank of three single phase transformers where the primary is connected,
while the secondary is connected. This  connection is typical of transformer installations
at generating stations. 

Figure 11.8. Three singlephase transformers use in threephase systems





Va t Vcos Ia

Vb t 120–  Vcos
Ib

Ic





Vc t 240–  Vcos

ZLD

ZLD

ZLD

 load–

13.2 KV

15 KV 50 KV
2.4 KV 12 KV

480 V 120 V 240 V
RMS

Y  Y–










Y
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LinetoLine and LinetoNeutral Voltages and Currents

Figure 11.9 shows a singlephase threewire system where the middle of the three wires is center
tapped at the transformer secondary winding. As indicated, voltage between the outer wires is

 while voltage from either of the two wires to the centered (neutral) wire is . This
arrangement is used in residential areas.

Figure 11.9. 240/120 volt single phase threewire system

Industrial facilities need threephase power for threephase motors. Threephase motors run
smoother and have higher efficiency than singlephase motors. A  connection is shown in
Figure 11.10 where the secondary provides  threephase power to the motor, and one of
the transformers of the secondary is centertapped to provide  to the lighting load.

Figure 11.10. Typical 3phase distribution system

11.4 LinetoLine and LinetoNeutral Voltages and Currents

We assume that the perfectly balanced connected load of Figure 11.11 is perfectly balanced,
that is, the three loads are identical. We also assume that the applied voltages are  outof
phase but they have the same magnitude; therefore there is no current flowing from point  to
the ground. The currents ,  and  are referred to as the line currents and the currents ,

, and  as the phase currents. Obviously, in a connected load, the line and phase currents
are the same.

240 V 120 V

240 V

120 V

120 V

Neutral wire

Y –

240 V
120 V









 

LLL

LLL
M

Y
120

n
Ia Ib Ic Ian

Ibn Icn Y
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Figure 11.11. Perfectly balanced Yconnected load

Now, we consider the phasor diagram of Figure 11.12.

Figure 11.12. Phasor diagram for Yconnected perfectly balanced load

If we choose  as our reference, we have

(11.1)

(11.2)

(11.3)

These equations define the balance set of currents of positive phase sequence .

Next, we consider the voltages. Voltages , , and  are referred to as linetoline voltages

and voltages , , and  as phase voltages. We observe that in a connected load, the
line and phase voltages are not the same.

We will now derive the relationships between line and phase voltages in a connected load.

Arbitrarily, we choose  as our reference phase voltage. Then,

(11.4)

Vab

Vac Vbc

Ia

Ib

Ic

b

c

n

a

ZLD

ZLD

ZLD

Ia

Ic

Ib

Ia

Ia Ia 0=

Ib Ia 120–=

Ic Ia +120=

a b– c–

Vab Vac Vbc

Van Vbn Vcn Y

Y

Van

Van Van 0=
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LinetoLine and LinetoNeutral Voltages and Currents

(11.5)

(11.6)

These equations define a positive phase sequence . These relationships are shown in Figure
11.13.

Figure 11.13. Phase voltages in a connected perfectly balanced load

The connected load in Figure 1.11 is repeated in Figure 11.14 below for convenience.

Figure 11.14. Yconnected load

From Figure 11.14
(11.7)

(11.8)

(11.9)

These can also be derived from the phasor diagram of Figure 11.15.

Vbn Van 120– =

Vcn Van +120=

a b– c–

Vcn

Vbn

Van

Y

Y

Vab

Vac Vbc

Ia

Ib

Ic

b

c

n

a

ZLD

ZLD

ZLD

Vab Van Vnb+ Van Vbn–= =

Vca Vcn Vna+ Vcn Van–= =

Vbc Vbn Vnc+ Vbn Vcn–= =
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Figure 11.15. Phasor diagram for linetoline and linetoneutral voltages in  load

From geometry and the law of sines we find that in a balanced threephase, positive phase
sequence connected load, the line and phase voltages are related as

(11.10)

The other two linetoline voltages can be easily obtained from the phasor diagram in Figure
11.15.

Now, let us consider a connected load shown in Figure 11.16.

Figure 11.16. Line and phase currents in connected load

We observe that the line and phase voltages are the same, but the line and phase currents are not
the same. To find the relationship between the line and phase currents, we apply KCL at point 
and we obtain:

Vca Vcn

Van–

Vbc

Vbn Vcn–

Vab

Van

Vbn–

30

Y

Y

Vab 3Van 30=

Y connected load–



ZLD

Ic

Ib

Ia

Vab

Vca Vbc

c

b

a

Iab Ica

Ibc

ZLD

ZLD



a
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Equivalent Y and  Loads

or 
(11.11)

The line currents  and  are derived similarly, and the phasetoline current relationship in a

connected load is shown in the phasor diagram of Figure 11.17.

Figure 11.17. Phasor diagram for line and phase currents in connected load

From geometry and the law of sines we find that a balanced threephase, positive phase sequence
connected load, the line and phase currents are related as

(11.12)

The other two line currents can be easily obtained from the phasor diagram of Figure 11.17.

11.5 Equivalent Y and  Loads

In this section, we will establish the equivalence between the  and  combinations shown in
Figure 11.18.

Iab Ia Ica+=

Ia Iab Ica–=

Ib Ic



Ic

IaIb

Iab

Ica

Ibc

30 o
Iab

Ica

Ibc



Ia 3Iab 30– =

 connected load–

Y
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Figure 11.18. Equivalence for  and Yconnected loads

In the connection, the impedance between terminals  and  is

(11.13)

and in the connection, the impedance between terminals  and  is  in parallel with the
sum , that is,

(11.14)

Equating (11.13) and (11.14) we obtain

(11.15)

Similar equations for terminals  and  are derived by rotating the subscripts of (11.15) in a
cyclical manner. Then,

(11.16)

and
(11.17)

Equations (11.15) and (11.17) can be solved for  by adding (11.16) with (11.17), subtracting

(11.15) from this sum, and dividing by two. That is, 

(11.18)

(11.19)

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

Y B C

ZBC  Y Zb Zc+=

B C Z2

Z1 Z3+

ZBC  
Z2 Z1 Z3+ 
Z1 Z2 Z3+ +
-------------------------------=

Zb Zc+
Z2 Z1 Z3+ 
Z1 Z2 Z3+ +
-------------------------------=

AB CA

Za Zb+
Z3 Z1 Z2+ 
Z1 Z2 Z3+ +
-------------------------------=

Zc Za+
Z1 Z2 Z3+ 
Z1 Z2 Z3+ +
-------------------------------=

Za

2Za Zb Zc+ +
Z1Z3 Z2Z3 Z1Z2 Z1Z3+ + +

Z1 Z2 Z3+ +
---------------------------------------------------------------------

2Z1Z3 Z2Z3 Z1Z2+ +

Z1 Z2 Z3+ +
-----------------------------------------------------= =

2Za Zb Zc Zb Zc––+ +
2Z1Z3 Z2Z3 Z1Z2 Z1Z2 Z2Z3––+ +

Z1 Z2 Z3+ +
------------------------------------------------------------------------------------------=
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Equivalent Y and  Loads

(11.20)

(11.21)

Similar equations for  and  are derived by rotating the subscripts of (11.21) in a cyclical

manner. Thus, the three equations that allow us to change any connection of impedances into
a connection are given by (11.22).

(11.22)

Often, we wish to make the conversion in the opposite direction, that is, from  to .This con-
version is performed as follows:

Consider the  and  combinations of Figure 11.8 repeated for convenience as Figure 11.19.

Figure 11.19. Y and  loads

From Figure (a),
(11.23)

(11.24)

(11.25)

2Za
2Z1Z3

Z1 Z2 Z3+ +
-------------------------------=

Za
Z1Z3

Z1 Z2 Z3+ +
-------------------------------=

Zb Zc

Y

Za
Z1Z3

Z1 Z2 Z3+ +
-------------------------------=

Zb
Z2Z3

Z1 Z2 Z3+ +
-------------------------------=

Zc
Z1Z2

Z1 Z2 Z3+ +
-------------------------------=

 Y  Conversion

Y

Y

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

IC
IB

(a) (b)

IA

IA

IC IB

VAB ZaIA ZbIB–=

VBC ZbIB ZcIC–=

VCA ZcIC ZaIA–=
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If we attempt to solve equations (11.23), (11.24) and (11.25) simultaneously, we will find that the
determinant  of these sets of equations is singular, that is, . This can be verified with Cra-
mer’s rule as follows:

(11.26)

(11.27)

This result suggests that the equations of (11.26) are not independent and therefore, no solution
exists. However, a solution can be found if, in addition to (11.23) through (11.25), we use the
equation

(11.28)

Solving (11.28) for  we obtain:
(11.29)

and by substitution into (11.25),

(11.30)

From (11.23) and (11.30),

(11.31)

and by Cramer’s rule,
(11.32)

where

(11.33)

and

(11.34)

Then,
(11.35)

 0=

ZaIA ZbIB– 0+ VAB=

0 ZbIB ZcIC–+ VBC=

ZaIA 0 ZcIC+ +– VCA=



Za Zb– 0

0 Zb Zc–

Za– 0 Zc

ZaZbZc ZaZbZc– 0 0 0 0+ + + + 0= = =

IA IB IC+ + 0=

IC
IC IA IB––=

VCA Z– cIA Z– cIB ZaIA– Za Zc+ IA– Z– cIB= =

ZaIA ZbIB– VAB=

Za Zc+ IA– Z– cIB VCA=

IA
D1


------= IB
D2


------=


Za Zb–

Za Zc+ – Z– c
ZcZa– ZaZb ZbZc––= =

D1
VAB Zb–

VCA Z– c
Z– cVAB ZbVCA+= =

IA
D1


------
Z– cVAB ZbVCA+

Z– aZb Zb– Zc Zc– Za
--------------------------------------------------

ZcVAB Zb– VCA

ZaZb ZbZc ZcZa+ +
----------------------------------------------------= = =
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Similarly,

(11.36)

and by substitution of  and  into (11.28),

(11.37)

Therefore, for the connection which is repeated in Figure 11.20 for convenience, we have:

Figure 11.20. Currents in Yconnection

(11.38)

For the connection, which is also repeated in Figure 11.21 for convenience, the line currents
are:

Figure 11.21. Currents in connection

IB
D2


------
ZaVBC Zc– VAB

ZaZb ZbZc ZcZa+ +
----------------------------------------------------= =

IA IB

IC
ZbVCA Za– VBC

ZaZb ZbZc ZcZa+ +
----------------------------------------------------=

Y

Za

Zc Zb

A

C B

IA

IC IB

IA
ZcVAB Zb– VCA

ZaZb ZbZc ZcZa+ +
----------------------------------------------------=

IB
ZaVBC Zc– VAB

ZaZb ZbZc ZcZa+ +
----------------------------------------------------=

IC
ZbVCA Za– VBC

ZaZb ZbZc ZcZa+ +
----------------------------------------------------=

Z1 Z3

Z2

A

BC

IA

IBIC
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(11.39)

Now, the sets of equations of (11.38) and (11.39) are equal if 

(11.40)

(11.41)

(11.42)

From (11.40)

(11.43)

and from (11.41)
(11.44)

Rearranging, we obtain:

(11.45)

Example 11.1  

For the circuit of Figure 11.22, use the  conversion to find the currents in the various
branches as indicated.*

IA
VAB
Z3

----------
VCA
Z1

----------–=

IB
VBC
Z2

----------
VAB
Z3

----------–=

IC
VCA
Z1

----------
VBC
Z2

----------–=

ZcVAB Zb– VCA

ZaZb ZbZc ZcZa+ +
----------------------------------------------------

VAB
Z3

----------
VCA
Z1

----------–=

ZaVBC Zc– VAB

ZaZb ZbZc ZcZa+ +
----------------------------------------------------

VBC
Z2

----------
VAB
Z3

----------–=

ZbVCA Za– VBC

ZaZb ZbZc ZcZa+ +
---------------------------------------------------

VCA
Z1

----------
VBC
Z2

----------–=

Zc
ZaZb ZbZc ZcZa+ +
---------------------------------------------------- 1

Z3
------  and  

Zb
ZaZb ZbZc ZcZa+ +
---------------------------------------------------- 1

Z1
------==

Za
ZaZb ZbZc ZcZa+ +
---------------------------------------------------- 1

Z2
------=

Z1
ZaZb ZbZc ZcZa+ +

Zb
----------------------------------------------------=

Z2
ZaZb ZbZc ZcZa+ +

Za
----------------------------------------------------=

Z3
ZaZb ZbZc ZcZa+ +

Zc
----------------------------------------------------=

Y   Conversion

Y  
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Equivalent Y and  Loads

Figure 11.22. Circuit (a) for Example 11.1
Solution:

Let us indicate the nodes as , , , and , and denote the ,  and  resistances as
, , and  respectively as shown in Figure 11.23.

Figure 11.23. Circuit (b) for Example 11.1

Next, we replace the  connection formed by , , , and  with the equivalent  connection
shown in Figure 11.24.

Figure 11.24. Circuit (c) for Example 11.1

Now, with reference to the circuits of Figures 11.23 and 11.24, and the relations of (11.45), we
obtain:

* The subscripts are assigned to be consistent with those in the solution steps. 

120V I6

50 

I5

+

I1

I7

I4
60 

I8

70 

90 

80 



a b c d 90  80  50 
Ra Rb Rc

120V I6

50 

I5

+

I1 I4
60 

I8 70 

90 

80 


Rc Ra

Rb

b

c d

a

I7

Y a b c d

120V

174 

I5

+

I1

I4

60 

70 



a

b

dR2

R1

R3

196 

314 
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Combination of parallel resistances in the circuit of Figure 11.24 yields

and

The circuit of Figure 11.24 reduces to the circuit in Figure 11.25.

Figure 11.25. Circuit (d) for Example 11.1

The circuit of Figure 11.25 can be further simplified as shown in Figure 11.26.

Figure 11.26. Circuit (e) for Example 11.1

From the circuit of Figure 11.26,

R1
RaRb RbRc RcRa+ +

Rb
------------------------------------------------------ 90 80 80 50 50 90++

80
------------------------------------------------------------------- 15700

80
--------------- 196 = ==

R2
RaRb RbRc RcRa+ +

Ra
------------------------------------------------------ 15700

90
--------------- 174 = =

R3
RaRb RbRc RcRa+ +

Rc
------------------------------------------------------ 15700

50
--------------- 314 = = =

Rbd
196 60
196 60+
--------------------- 46 =

Rad
314 70
314 70+
--------------------- 57 =

120V

174 +

I1
46 

57 



b

I2 I3

d

a

120V

174 +

I1

103 

b

I2 I3

a

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling 1117
Copyright ©Orchard Publications

Equivalent Y and  Loads

(11.46)

(11.47)

By addition of (11.46) and (11.47)

(11.48)

To compute the other currents, we return to the circuit of Figure 11.25 which, for convenience, is
repeated as Figure 11.27 and it is denoted as Circuit (f).

Figure 11.27. Circuit (f) for Example 11.1

For the circuit of Figure 11.27, by the voltage division expression

(11.49)

(11.50)

Next, we return to the circuit of Figure 11.24 which, for convenience, is repeated as Figure 11.28
and denoted as Circuit (g).

Figure 11.28. Circuit (g) for Example 11.1

From the circuit of figure 11.28,

I2
120
174
--------- 0.69 A= =

I3
120
103
--------- 1.17 A= =

I1 I2 I3+ 0.69 1.17+ 1.86= = =

120V

174 +

I1
46 

57 



b

I2 I3

d

a

Vad
46

46 57+
------------------ 120 53.6 V= =

Vdb
57

46 57+
------------------ 120 66.4 V= =

120V

174 

I5

+

I1

I4

60 

70 



a

b

dR2

R1

R3

196 

314 
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(11.51)

and 
(11.52)

Finally, we return to the circuit of Figure 11.23 which, for convenience, is repeated as Figure
11.29 and denoted as Circuit (h).

Figure 11.29. Circuit (h) for Example 11.1

For the circuit of Figure 11.29, by KCL,

(11.53)

(11.54)
and

(11.55)

Of course, we could have found the branch currents with nodal or mesh analysis.

Quite often, the  and  arrangements appear as shown in Figure 11.30 and they are referred to
as the tee (T) and pi () circuits. Consequently, the formulas we developed for the  and 
arrangements can be used with the tee and  arrangements.

Figure 11.30. T and  circuits

I4
Vad
70

---------- 53.6
60

---------- 0.95 A= = =

I5
Vdb
60

---------- 66.4
70

---------- 0.89 A= = =

120V I6

50 

I5

+

I1 I4
60 

I8 70 

90 

80 


Rc Ra

Rb

b

c d

a

I7

I7 I1 I4– 1.86 0.95– 0.91 A= = =

I8 I1 I5– 1.86 0.89– 0.97 A= = =

I6 I5 I4– 0.89 0.95– 0.06–  A= = =

Y
Y

Z3Zb

Zc

Za

Z1 Z2

A B

C

A B

C
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Computation by Reduction to Single Phase

In communications theory, the T and  circuits are symmetrical, i.e.,  and .

11.6 Computation by Reduction to Single Phase
When we want to compute the voltages, currents, and power in a balanced threephase system, it
is very convenient to use the connection and work with one phase only. The other phases will
have corresponding quantities (voltage, current, and power) exactly the same except for a time
difference of  cycle. Thus, if current is found for phase , the current in phase  will be 
outofphase but it will have the same magnitude as phase . Likewise, phase  will be 
outofphase with phase .

If the load happens to be connected, we use the  conversion shown in Figure 11.31 and
the equations (11.56) below.

Figure 11.31.  conversion

(11.56)

Since the system is assumed to be balanced, the loads are equal, that is,  and
. Therefore, the first equation in (11.56) reduces to:

(11.57)

and the same is true for the other phases.

Za Zb= Z1 Z2=

Y

1 3 a b 120
a c 240

a

 Y

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

IA

IC IB

IA

IBIC

(b)
(a)

N

 Y

Za
Z1Z3

Z1 Z2 Z3+ +
-------------------------------=

Zb
Z2Z3

Z1 Z2 Z3+ +
-------------------------------=

Zc
Z1Z2

Z1 Z2 Z3+ +
-------------------------------=

 Y  Conversion

Z1 Z2 Z3= =

Za Zb Zc= =

Za
Z1Z3

Z1 Z2 Z3+ +
-------------------------------=

Z1
2

3Z1
---------

Z1
3

------= =
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11.7 ThreePhase Power
We can compute the power in a single phase and then multiply by three to find the total power in
a threephase system. Therefore, if a load is connected, as in Figure 11.31 (b), the total three
phase power is given by

(11.58)

where  is the linetoneutral voltage,  is the line current,  is the power factor of the load,
and  is the angle between  and .

If the load is connected as in Figure 11.31 (a), the total threephase power is given by

(11.59)

We observe that relation (11.59) is given in terms of the linetoneutral voltage and line current,
and relation (11.58) in terms of the linetoline voltage and phase current.
Quite often, the linetoline voltage and line current of a threephase systems are given. In this
case, we substitute (11.12), i.e.,  into (11.59) and we obtain

(11.60)

It is important to remember that the power factor  in (11.60) refers to the load, that is, the
angle  is not the angle between  and .

Example 11.2  

The threephase generator of Figure 11.32 supplies  at  lagging power factor to the
threephase load. The linetoline voltage at the load is . The resistance of the line is 
per conductor and the inductance and capacitance are negligible. What linetoline voltage must
the generator supply to the line?

Solution:

The load per phase at  is

Y

Ptotal 3 VAN IA cos=

Y connected load–

VAN IA cos

 VAN IA

Ptotal 3 VAB IAB cos=

 connected load–

IA 3 IAB=

Ptotal 3 VAB IA LDcos=

Y or  connected load–

LDcos

 VAB IA

100 kW 0.9
2400 V 4 

0.9 pf
1
3
--- 100 33.33 kW=
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ThreePhase Power

Figure 11.32. Circuit for Example 11.2

From (11.10),

(11.61)

Then, the magnitude of the linetoneutral at the load end is

(11.62)

and the  per phase at the load is

(11.63)

The line current in each of the three conductors is

(11.64)

and the angle by which the line (or phase) current lags the phase voltage is

(11.65)

Next, let us assume that the line current in phase  lies on the real axis. Then, the phasor of the
linetoneutral voltage at the load end is

(11.66)

The voltage drop across a conductor is in phase with the line current since it resistive in nature.
Therefore, 

(11.67)

Now, the phasor linetoneutral voltage at the generator end is

(11.68)

and its magnitude is 

(11.69)

G

Generator

L

Load
(Yconnected) (Yconnected)

Vab 3Van 30=

Y connected load–

Van load
Vab load

3
------------------------- 2400

3
------------ 1386 V= = =

KVA

kW phase
pf

---------------------------- 33.33
0.9

------------- 37.0 KVA==

Iline
VA

Van load
------------------------- 37000

1386
--------------- 26.7 A= = =

 0.91–cos 25.84= =

a

Van load Van 25.84 1386 25.84 j 25.84sin+cos  1247 j604 V+= ==

Vcond Iline R 26.7 4 106.8 V= = =

Van gen Van load Vcond+ 1247 j604 106.8+ + 1354 j604+= = =

Van gen 13542 6042+ 1483 V= =
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Finally, the linetoline voltage at the generator end is

(11.70)

11.8  Instantaneous Power in ThreePhase Systems
A significant advantage of a threepower system is that the total power in a balanced threephase
system is constant. This is proved as follows:

We assume that the load is purely resistive. Therefore, the voltage and current are always in
phase with each other. Now, let  and  be the peak (maximum) voltage and current respec-
tively, and  and  the magnitude of their  values. Then, the instantaneous voltage and
current in phase  are given by 

(11.71)

(11.72)

Multiplication of (11.71) and (11.72) yields the instantaneous power, and using the trigonometric
identity

(11.73)
we obtain

(11.74)

The voltage and current in phase  are equal in magnitude to those in phase  but they are 
outofphase. Then,

(11.75)

(11.76)

(11.77)

Similarly, the power in phase  is

(11.78)

and the total instantaneous power is 

Vline line gen– 3 Van gen 3 1483 2569 V= = =

Vp Ip

V I RMS
a

va Vp tcos 2 V tcos= =

ia Ip tcos 2 I tcos= =

2 tcos 2t 1+cos  2=

pa vaia 2 V I 2 tcos V I 2t 1+cos = = =

b a 120

vb 2 V t 120– cos=

ib 2 I t 120– cos=

pb vb ib 2 V I t 120– 2cos V I 2t 240–  1+cos = = =

c

pc vc ic 2 V I t 240– 2cos V I 2t 480–  1+cos = = =
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Instantaneous Power in ThreePhase Systems

(11.79)

Recalling that
(11.80)

we find that the sum of the three cosine terms in (11.79) is zero. Then,

(11.81)

Therefore, the instantaneous total power is constant and it is equal three times the average power.

The proof can be extended to include any power factor; thus, (11.81) can be also expressed as

(11.82)

Example 11.3  
Figure 11.33 shows a threephase feeder with two loads; one consists of a bank of lamps con-
nected lineto neutral and the rating is given in the diagram; the other load is connected and
has the impedance shown. Find the current in the feeder lines and the total power absorbed by
the two loads.

Figure 11.33. Diagram for Example 11.3
Solution:

To facilitate the computations, we will reduce the given circuit to one phase (phase ) taken as
reference, i.e., at zero degrees, as shown in Figure 11.34.

ptotal pa pb pc+ +=

V I 2tcos 2t 240– cos 2t 480– cos 3+ + + =

x y– cos x ycoscos x ysinsin+=

ptotal 3 V I=

Three phase Balanced System–

ptotal 3 V I cos=

IA

IB

IC

L L L

220 Volts
(Line-to-Line)

Z 18 j80+=

Lamps - Resistive Load
Rated 500 Watts,
120 Volts each

Z Z

Z

a
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Figure 11.34. Singlephase representation of Figure 11.33

We first compute the impedance . Using (11.56),

Next, we compute the lamp impedance 

The linetoline voltage is given as ; therefore, by (11.10), the linetoneutral
voltage  is

For convenience, we indicate these values in Figure 11.34 which now is as shown in Figure 11.35. 

Figure 11.35. Diagram with computed values, Example 11.3

From Figure 11.35,

and 

Then,

IA

L

IZ IL

ZY
ZL

+



VL-N
(Line-to-neutral)

VL L– 220 0 V=

ZY

ZY
Z
3

------ 18 j80+
3

-------------------- 82 77.32
3

------------------------ 27.33 77.32 = = = =

ZL·

ZL· Rlamp
V 2

rated
Prated

------------------ 1202

500
----------- 28.8 = = = =

VL L– 220 V=

VL N–

VL N–
VL L–

3
-------------- 220 0

3
------------------- 127 0  V= = =

IA

L

IZ IL

ZY ZL

+



VL N– 127 0  V=

ZL 28.8 0=
ZY 27.33 77.32=

IZ
VL N–

ZY
-------------- 127 0 

27.33 77.32
------------------------------- 4.65 77.32– 1.02 j4.54–= = = =

IL
VL N–

ZL
-------------- 127 0 

28.8 0
--------------------- 4.41 0 4.41= = = =
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Measuring ThreePhase Power

and the power delivered by phase  is

Finally, the total power delivered to the entire load is three times of , that is,

Check:

Each lamp is rated  and  but operates at . Thus, each lamp absorbs

and the power absorbed by the three lamps is

The voltage across each impedance  in the connected load is (see Figure 11.33) .
Then, the current in each impedance  is

and the power absorbed by each impedance  is

The total power absorbed by the  load is

and the total power delivered to the two loads is

This value is in close agreement with the value on the previous page.

11.9 Measuring ThreePhase Power
A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with
two sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these
coils produce a torque which is proportional to the  product. It would appear then that one
would need three wattmeters to measure the total power in a threephase system. This is true in a

IZ IL+ 1.02 j4.54– 4.41+ 5.43 j4.54– 7.08 39.9–= = =

a

PA VL N– IA 127 7.08 39.9– cos 690 watts= = =

PA

Ptotal 3 690 2070 watts 2.07 Kw= = =

120 V 500 w 127 V

Voper
Vrated
-------------- 

 
2 Poper

Prated
-------------= Poper

127
120
--------- 

  2
500 560 w= =

Plamps 3= 560 1680 w=

Z 220 V
Z

IZ
VL L–

18 j80+
-------------------- 220

82 77.32
------------------------ 2.68 77.32 – A= = =

Z

P VL L– IZ cos 220 2.68 77.32– cos 129.4 watts= = =

P 3 129.4 388 watts= =

PTOTAL Plamps P+ 2068 watts 2.068 kw= = =

V I
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fourwire system where the current in the neutral (fourth wire) is not zero. However, if the neu-
tral carries no current, it can be eliminated thereby reducing the system to a threewire three
phase system. In this section, we will show that the total power in a balanced threewire, three
phase system can be measured with just two wattmeters.

Figure 11.36 shows three wattmeters connected to a  load* where each wattmeter has its cur-
rent coil connected in one line, and its potential coil from that line to neutral. With this arrange-
ment, Wattmeters , , and  measure power in phase , , and  respectively.

Figure 11.36. Wattmeter connections in fourwire, threephase system

Figure 11.37 shows a threewire, threephase system without a neutral. This arrangement occurs
in systems where the load, such as an induction motor, has only three terminals. The lower end of
the voltage coils can be connected to any reference point, say . We will now show that with this
arrangement, the sum of the three wattmeters gives the correct total power even though the refer-
ence point was chosen as any reference point.

* If the load were connected, each wattmeter would have its current coil in one side of the  and its potential
coil from line to line.

Y

1 2 3 a b c

Load

1

2

3

Wattmeter connections

n

a

b

n

c

p
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Measuring ThreePhase Power

Figure 11.37. Wattmeter connections in threewire, threephase system

We recall that the average power  is found from

(11.83)

Then, the total power absorbed by the load of Figure 11.36 is 

(11.84)

This is the true power absorbed by the load, not power indicated by the wattmeters. 

Now, we will compute the total power indicated by the wattmeters. Each wattmeter measures the
average of the line current times the voltage to point . Then,

(11.85)

But

(11.86)

and by substitution of these into (11.85), we obtain:

(11.87)

and since
(11.88)

Load1

2

3

Wattmeter connections

n

p

a

c

b

Pave

Pave
1
T
--- p td

0

T


1
T
--- vi td

0

T

= =

Ptotal
1
T
--- vania vbnib vcnic+ +  td

0

T

=

p

Pwattmeters
1
T
--- vapia vbpib vcpic+ +  td

0

T

=

vap van vnp+=

vbp vbn vnp+=

vcp vcn vnp+=

Pwattmeters
1
T
--- vania vbnib vcnic+ +  vnp ia ib ic+ + +  td

0

T

=

ia ib ic+ + 0=
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then (11.87) reduces to

(11.89)

This relation is the same as (11.84); therefore, the power indicated by the wattmeters and the true
power absorbed by the load are the same. 

Some thought about the location of the arbitrarily selected point  would reveal a very interesting
result. No matter where this point is located, the power relation (11.87) reduces to (11.89). Sup-
pose that we locate point  on line . If we do this, the voltage coil of Wattmeter  is zero and
thus the reading of this wattmeter is zero. Accordingly, we can remove this wattmeter and still
obtain the true power with just Wattmeters  and  as shown in Figure 11.38.

Figure 11.38. Two wattmeter method of reading threephase power

11.10 Practical ThreePhase Transformer Connections

The four possible transformer connections and their applications are listed below.

The  connection is used in certain industrial applications.

The Y connection is the most common and it is used in both commercial and industrial
applications.

The Y connection used for transmissions of high voltage power. 

The YY connection causes harmonics and balancing problems and thus is to be avoided.
If three phase transformation is needed and a three phase transformer of the proper size and turns
ratio is not available, three single phase transformers can be connected to form a three phase
bank. When three single phase transformers are used to make a three phase transformer bank,
their primary and secondary windings are connected in a Y or  connection. The three trans-
former windings in Figure 11.39 are labeled H1 and the other end is labeled H2. One end of each
secondary lead is labeled X1 and the other end is labeled X2.

Pwattmeters
1
T
--- vania vbnib vcnic+ +  td

0

T

=

p

p c 3

1 2

Load

1

2

Wattmeter connections

n

a

c

b
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Transformers Operated in Open  Configuration

Figure 11.39. Primary and secondary leads labels in a transformer

11.11 Transformers Operated in Open  Configuration
In certain applications where large amounts of power are not required, the open  configuration
is a viable alternative. The solution of Exercise 11.9 at the end of this chapter show that the input
line currents form a symmetrical threephase set and thus two transformers can also be used for a
symmetrical threephase system.

If in a closed  configuration one of the transformers is burnt out resulting in an open  configu-
ration, the transformer bank  rating is reduced to about 58% of its original capacity. This is
because in the open  configuration the line currents become phase currents and thus they are
reduced to . For instance, if three  transformers
were connected to form a closed  connection, the total output would be . If one of
these transformers were removed and the transformer bank operated as an open delta connec-
tion, the output power would be reduced to 57.7% of its original capacity, that is,

.

If, in a bank o three transformers connected in  is burnt out and no replacement is readily avail-
able, capacitors with the proper rating can be used to prevent overloading as illustrated with
Example 11.4 below.

Example 11.4  

A bank of three  transformers each rated ,  connected in 
feeds a short distribution line that is terminated in a bank of three ,  trans-
formers with a , and  lagging load.










Y



H1 H1 H1

X1

H2 H2 H2

X2 X1 X1X2 X2

KVA

IPHASE ILINE 3  0.577 ILINE= = 100 KVA

300 KVA

300 KVA 0.577 173.2 KVA=

13200 / 4160 V 833 KVA 60 Hz
833 KVA 4160 / 480 V

1600 KVA 0.8 pf
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a. If one of the  transformers burns out, what would the voltage, current, and rat-
ing of capacitors on the secondary side of the  transformers be to prevent over-
loading of any of the transformers?

b. What would the capacitor ratings be if installed at the  side and what would the current
be through this capacitor bank?

c. What would the capacitor ratings be if installed at the  side and what would the cur-
rent be through this capacitor bank?

Assume that line and transformer impedances are negligible.

Solution:

a. With the assumption that the line and transformer impedances are negligible, the open  con-
nection still forms a balanced symmetrical system.*

The rated current per transformer at  is

  (1)

With the open  connection the  at  lagging load, the new  rating is

, and the actual current per transformer is

  (2)

The reduction in  is found from the proportion of (1) and (2) above, i.e., 

The real power (kilowatts) at  lagging load is

and without capacitors the reactive power  (kilovars) is 

With capacitors the reactive power  (kilovars) will be

* This is illustrated in Exercise 11.9 at the end of this chapter.

13200 / 4160 V
4160 / 480 V

480 V

4160 V

13200 V

Irated
833 KVA
13.2 KV

------------------------ 63.1 A= =

1600 KVA 0.8 pf KVA

1600 3 923.8 KVA=

Iactual
923.8 KVA

13.2 KV
----------------------------- 70 A= =

KVA

63.1
70

---------- 1600 1443 KVA=

PKW 0.8 pf

PKw 1600 0.8 1280 Kw= =

QKvar1

QKvar1 KVAold
2 PKw

2– 16002 12802– 960 Kvar= = =

QKvar2
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ThreePhase Systems Modeling with Simulink / SimPowerSystems

Therefore, the  required to prevent overloading should be 

b. For installation at the  side, three singlephase capacitors each rated  will be
required, and the current through this capacitor bank must be  per phase.

c. For installation at the  side, three singlephase capacitors each rated  will
be required, and the current through this capacitor bank must be  per phase.

11.12 ThreePhase Systems Modeling with Simulink / SimPowerSystems
The MathWorks Simulink / SimPowerSystems toolbox includes several threephase transformer
and they can be used with threephase system models that include threephase transformers.
Two of these are shown in Figure 11.40 below.

Figure 11.40. Two of the threephase transformer blocks included in the Simulink / SimPowerSystems toolbox

Example 11.5  
For the circuit in Figure 11.41, the threephase transformer bank consists of three transformers
each rated , ,  connected Y connection, and the lighting load is bal-
anced. Each lamp is rated  at . Assume that each lamp draws rated current. The
threephase motor draws  at a power factor of  lagging. The secondary of the trans-
former is connected Y grounded and provides balanced  linetoline. The distance
between the transformer and the loads is small and the wiring resistance and inductance can be
neglected. The input voltages are:

QKvar2 KVAnew
2 PKw

2– 14432 12802– 666 Kvar= = =

Kvar

QKvar1 QKvar2– 960 666– 294 300 Kvar= =

480 V 100 Kvar
100 0.480 208 A=

13200 V 100 Kvar
100 13.2 24 A=

A1+

A1

B1+

B1

C1+

C1

A2+

A2

B2+

B2

C2+

C2

Three-Phase Transformer
12 Terminals

A

B

C

a

b

c

Three-Phase
Transformer

(Two Windings)

5 KVA 440 / 208 V 60 Hz
500 w 120 V

5.0 Kw 0.8
208 V

www.ebooko.ir


Chapter 11  Balanced ThreePhase Systems

1132 Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling
Copyright ©Orchard Publications

Figure 11.41. Threephase circuit for Example 11.5

Create a Simulink / SimPowerSystems model to display all voltages and currents.

Solution:

The model is shown in Figure 11.42.

Figure 11.42. Simulink / SimPowerSystems model for the threephase circuit in Figure 11.41

VAB 480 0= VBC 480 120– = VCA 480 120=



L

LL

L

LL

M



 



A

B

C

a

b

c n

Vs1 Vs2 Vs3

Load 1
3-ph motor

Load 2
Lighting

VM = Voltage Measurement

3-Phase V-I = Three-Phase V-I Measurement

Vs1 = 480 V @ 0 deg
Vs2 = 480 V @ -120 deg
Vs3 = 480 V @ +120 deg

Continuous

powergui

v+
-

VM 1

A

B

C

A

B

C

Scope 3

Scope 2

Scope 1

30

Multimeter

Vabc

Iabc
A

B

C

a

b

c

3-Phase V-I 2

Vabc

Iabc
A

B

C

a

b

c

3-Phase V-I 1

A

B

C

a

b

c

3-Phase
Transformer

(Two Windings)
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ThreePhase Systems Modeling with Simulink / SimPowerSystems

For the model in Figure 11.42, the default integration algorithm ode45 was changed to odetb23.
This is done with Simulation>Configuration Parameters>Solver>odetb23.

The   dialog box is configured as shown in Figure 11.43, and the dialog box for   is shown in Figure
11.44.

Figure 11.43. Block Parameters 3-Phase Transformer  Configuration tab

Figure 11.44. Block Parameters 3-Phase Transformer  Parameters tab
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For the remaining blocks, the Measurement parameter has been set to Voltage, Current. Voltage
and Current, or All Measurements (V-I) fluxes (indicated in Figure 11.43), and the Multimeter
block in Figure 11.42 indicates that 30 measurements will be displayed when selected in the Mul-
timeter block dialog box shown in Figure 11.45.

Figure 11.45. The Multimeter block dialog box

The SimPowerSystems powerlib/Electrical Sources library includes the ThreePhase Source
block   shown in Figure 11.46.

Figure 11.46. The SimPowerSystems ThreePhase Source block
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ThreePhase Systems Modeling with Simulink / SimPowerSystems

This block is a balanced threephase voltage source with an internal RL impedance. It allows us
to specify the source internal resistance and inductance either directly by entering R and L values
or indirectly by specifying the source inductive short-circuit level* and X/R ratio. More details are
provided in the Help menu for this block, and an example is provided by The MathWorks. It can
be accessed by typing power_3phseriescomp at the MATLAB prompt.

Another threephase voltage source block is the ThreePhase Programmable Voltage Source
shown in Figure 11.47. This threephase voltage source allows variation for the amplitude, phase,
or frequency of the fundamental component of the source. Positive, negative, and zero sequences
are discussed in Chapter 12.

Figure 11.47. The SimPowerSystems ThreePhase Programmable Voltage Source block

More details are provided in the Help menu for this block, and an example is provided by The
MathWorks. It can be accessed by typing power_3phsignalseq at the MATLAB prompt.

* The short-circuit level is a function of the transformer rated VA, the rated secondary voltage, and the trans-
former impedance in percent. These parameters are provided by the transformer manufacturer. It is computed

from the relation . Thus, for a  trans-

former, the short-circuit level will be 

ISC
100 %
Z %

--------------- VA 
  3 VSEC = 100KVA  2300 / 13800 V, Z = 7% 

100
7.5
--------- 105 
  3 13.8 103  55.8 A=
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11.13 Summary
 AC is preferable to DC because voltage levels can be changed by transformers. This allows more

economical transmission and distribution.

 The flow of power in a threephase system is constant rather than pulsating. Threephase
motors and generators start and run more smoothly since they have constant torque. They are
also more economical.

 If the voltage sources are equal in magnitude and  apart, and the loads are also equal, the
currents will be balanced (equal in magnitude and  outofphase). 

 Industrial facilities need threephase power for threephase motors. Threephase motors run
smoother and have higher efficiency than singlephase motors. 

 The equations , ,  define a balanced set of currents of

positive phase sequence .

 The equations , , and  also define a bal-

anced set of voltages of positive phase sequence .

 In a connected system

 In a connected load, the line and phase currents are the same.

 In a connected system

 In a connected load, the line and phase voltages are the same.

 For  we use the relations

 For  we use the relations

 When we want to compute the voltages, currents, and power in a balanced threephase system,
it is very convenient to use the connection and work with one phase only. 

120
120

Ia Ia 0= Ib Ia 120–= Ic Ia +120=

a b– c–

Van Van 0= Vbn Van 120– = Vcn Van +120=

a b– c–

Y
Vab 3Van 30=

Y


Ia 3Iab 30– =



 Y  Conversion

Za
Z1Z3

Z1 Z2 Z3+ +
-------------------------------= Zb

Z2Z3
Z1 Z2 Z3+ +
-------------------------------= Zc

Z1Z2
Z1 Z2 Z3+ +
-------------------------------=

Y   Conversion

Z1
ZaZb ZbZc ZcZa+ +

Zb
--------------------------------------------------= Z2

ZaZb ZbZc ZcZa+ +

Za
--------------------------------------------------= Z3

ZaZb ZbZc ZcZa+ +

Zc
--------------------------------------------------=

Y
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Summary

 If a load is connected, the total threephase power is given by

 If the load is connected the total threephase power is given by

 For any load ( ) the total threephase power can be computed from

and it is important to remember that the power factor  refers to the load, that is, the
angle  is not the angle between  and .

 Threephase power can be measured with only two wattmeters.

 In a threephase system, the  connection is preferred in certain industrial applications, the
Y connection is the most common and it is used in both commercial and industrial
applications, the Y connection used for transmissions of high voltage power, but the YY
connection causes harmonics and balancing problems and it is to be avoided.

 If a threephase transformation is needed and a three phase transformer of the proper size and
turns ratio is not available, three single phase transformers can be connected to form a three
phase bank. 

 A symmetrical threephase system can also be formed with two transformers.

 If one of these transformers were removed and the transformer bank operated as an open delta
connection, the output power would be reduced to 57.7% of its original capacity. To restore
the system to its original capacity, capacitors can be added to the system.

 The MathWorks Simulink / SimPowerSystems toolbox includes several threephase trans-
former and they can be used with threephase system models that include threephase trans-
formers.

Y

PTOTAL 3 VAN IA cos=

Y connected load–

PTOTAL 3 VAB IAB cos=

 connected load–

Y or  connected–

PTOTAL 3 VAB IA LDcos=

Y or  connected load–

LDcos

 VAB IA
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11.14 Exercises

1. In the circuit below the linetoline voltage is , the phase sequence is , and each
. Compute:

a. the total power absorbed by the threephase load.

b. the wattmeter reading.

2. Three singlephase transformers are connected   Y as shown below. Each transformer is
rated , , . The total threephase load  is  with

 lagging. The input voltages are:

Find all voltages and currents assuming that the transformers are ideal, and the linetoneu-
tral voltages on the secondary are in phase with the input voltages.

3. In the circuit below the lighting load is balanced. Each lamp is rated  at . Assume
constant resistance, that is, each lamp will draw rated current. The threephase motor draws

 at a power factor of  lagging. The secondary of the transformer provides balanced
 linetoline. The load is located  feet from the threephase transformer. The resis-

tance and inductive reactance of the distribution line is  and  respectively per
 ft of the wire line. Compute linetoline and linetoneutral voltages at the load.

100 V a b– c–

Z 10 30=

Z
Z

Z

Wattmeter Load

a

b

c

100 KVA 2300 13800 V RMS 60 Hz L 270 KVA
pf 0.866=

VAB 2300 0= VBC 2300 120– = VCA 2300 120=





 

 Ln

A

B
C

a

b

c

500 w 120 V

5.0 Kw 0.8
208 V 1500

0.403  0.143 
1000
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Exercises

4. A threephase motor and a singlephase motor are connected in a threephase ,
 phase distribution system with neutral. The singlephase motor is connected between

line  and the neutral, and there is no neutral connection for the threephase motor. The
phase sequence is .

The threephase motor is rated , , , , and .

The singlephase motor is rated , , , , and .
How much current flows in each line and in the neutral when both motors are operating with
full loads?

5. Threephase power of  is to be delivered over a distance of  miles to a connected
load whose power factor is  lagging. The operating frequency is  and each line has a

 resistance and  inductance. The generator at the sending end is also con-
nected.

What must the linetoline voltages be at the sending end if the corresponding voltages at the
load are to be  in magnitude?

6. A threephase transmission line  miles long has a resistance of  per mile of conductor
and a reactance of  per mile of conductor at . The transmission line delivers

 to a connected inductive load at a power factor of . The potential difference
between line conductors at the load is .

a. Calculate the potential difference between line conductors at the input end of the line.

b. Calculate the total rating in  of a bank of capacitors placed at the input of the line that
will increase the power factor at that point to  lagging. 

7. A potential difference of  is impressed between the conductors of a threewire trans-
mission line at its generator end. Each line conductor has an impedance of . The
load is connected and the power absorbed by this load is  at a lagging power factor
of . Calculate the potential difference between conductors at the load.



L

LL

L

LL

M










208 volt
60 Hz

c
a b– c–

15 hp 208 volts 1740 rpm 87% efficiency 0.866 pf

3.5 hp 115 volts 1750 rpm 85% efficiency 0.8 pf

1 Mw 100 Y
0.80 60 Hz

30  30 mH Y

20 000 V

20 0.6 
0.27  60 Hz

1000 Kw Y 0.80
11000 V

KVA
0.90

66000 V
80 j60 +

Y 1000 Kw
0.80
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8. Each conductor of a threephase, threewire transmission line has an impedance of 
at . The potential difference between line conductors is . The load connected to
this system is balanced and absorbs  at a lagging power factor that is to be determined.
The current per conductor is . Find:

a. the efficiency of transmission

b. the potential difference between line conductors at the load

c. the power factor at the load

9. Two transformers, each rated , , , are connected in open  config-
uration as shown below. Each load  is a resistive load of . The input voltages are:

Assuming that the primary and secondary voltages are in phase, and the transformers are
ideal, find:

a. the voltages on the secondary

b. all currents

15 j20 +

60 Hz 13200 V
1000 Kw

70 A

20 KVA 440 / 220 V 60 Hz 
RLD 1.27 

VAB 440 0 V= VBC 440 120–  V= VCA 440 120 V=
  

n

A

B
C

c

b

a
RLD

RLD

RLD
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Solutions to EndofChapter Exercises

11.15 Solutions to EndofChapter Exercises
1.

a.

From the circuit above

and with MATLAB,

x=5*sqrt(3)15j; fprintf(' \n');...
fprintf('mag = %5.2f A \t', abs(x)); fprintf('phase = %5.2f deg', angle(x)*180/pi)

mag = 17.32 A    phase = -60.00 deg

Thus, 

The phase sequence  implies the phase diagram below.

From (11.59)

b.
The wattmeter reads the product  where  is  behind  as shown on the phasor
diagram below. Thus, the wattmeter reading is

Z

Z

Z

Wattmeter Load

a

b

c

Vab

Ica

Ic

Ia

Ibc

Iab

Iab
Vab
Z

--------- 100 0
10 30
------------------- 10 30– 10 3

2
------- j10 1

2
---– 5 3 j5–= = = = =

Ica
Vca
Z

--------- 100 240– 
10 30

---------------------------- 10 270– 10 90 j10= = = = =

Ia Iab Ica– 5 3 j5– j10– 5 3 j15–= = =

Ia 17.32 A=

a b– c–

Ptotal 3 Vab Ia load pf =

3 100 17.32 30cos 2 598 w==

Vab Ic Ic 240 Ia

Pwattmeter Vab Ic 100 0 10 3 60– 240– cos= =

100 17.32 300– cos 866 w==
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and, as expected, this value is onethird of the total power.

2.

Since the transformers are ideal, and the linetoneutral voltages on the secondary are in
phase with the input voltages, the linetoneutral voltages on the secondary are:

With reference to the phase diagram below, the linetoline voltages on the secondary are:

Vab 100 0=

Vca 100 240– =

Vbc 100 120– =

Iab

Ica

30
Ibc

I– bc

Ic

Ica–
Ia

VAB 2300 0= VBC 2300 120– = VCA 2300 120=




 

 Ln

A

B
C

a

b

c

Van 13800 0= Vbn 13800 120– = Vcn 13800 120=

Vab Van Vbn– 13800 0 13800 120– – 23900 30= = =

Vbc Vbn Vcn– 13800 120–  13800 60– – 23900 90– = = =

Vca Vcn Van– 13800 120 13800 180– 23900 150= = =
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Solutions to EndofChapter Exercises

For the above complex number operations and the others below, it is convenient to use the
Simulink model below.*

The magnitude of the line currents on the secondary is determined by the current drawn by
the load, that is, total threephase load divided by 3, , and thus

 

The load power factor is  lagging and since , ,
and therefore the currents on the secondary lag the linetoneutral voltages by . Then,

* For the description of the Simulink blocks used in the model above, please consult The MathWorks, Inc. docu-
mentation, or refer to Introduction to Simulink with Engineering Applications, ISBN 97819344040906.

Vca Vcn

Van–

Vbc

Vbn Vcn–

Vab

Van

Vbn–

30

K=180/piPolar to
Cartesian1

Polar to
Cartesian

-K-

Gain

30

0.5236

2.39e+004

-1.195e+004

-6900

0

1.38e+004

-2*pi/3

13800

0

13800

Cartesian to
Polar

270 KVA 3 90 KVA=

ILOAD (per phase) 90 KVA 13800 V 6.52 A= =

0.866 pf cos 0.866= =  0.8661–cos 30= =

30

Ina 6.52 0 30– 6.52 30–= =

Inb 6.52 120–  30– 6.52 150–= =

Inc 6.52 120 30– 6.52 90= =
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To find the values of the currents on the primary side, we make us of the transformers turns
ratio, that is, . Then,

With reference to the phase diagram below, the input line currents are:

3.
The singlephase equivalent circuit is shown below where 

and thus

a 2300 13800 1 6==

IAB 1 a  Ina 39= 30– =

IBC 1 a  Inb 39= 150– =

ICA 1 a  Inc 39= 90=

IA IAB ICA– 39 30–  39 90– 67.6 60– = = =

IB IBC IAB– 39 150–  39 30– – 67.6 180= = =

IC ICA IBC– 39 90 39 150– – 67.6 60= = =

Ic

IaIb

Iab

Ica

Ibc

30 o
Iab

Ica

Ibc

R 0.403  1000 ft 1500 ft 0.605 = =

XL 0.143  1000 ft 1500 ft 0.215 = =

Zline 0.605 j0.215+=
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Solutions to EndofChapter Exercises

Also,

We recall that for a single phase system the real power is given by

where 

Then, we find the motor current  in terms of the motor voltage  as

and since , the motor current  is expressed as

The total current is

and the voltage drop across the  line is

Next,

R jXL

MVan 208 3 0 V=

120 0 V=

1500 ft

j0.215 0.605  Ilamp2Ilamp1

4.17 A4.17 A
IM

5 3 Kw
0.8 pf

VM Vload=

Zline

Itotal

Ilamp1 Ilamp2
Prated
Vrated
-------------- 500

120
--------- 4.17 A= = = =

Preal VRMS IRMS cos=

cos pf=

IM VM

IM
5000 3
0.8 VM
------------------- 2083

VM
------------= =

0.81–cos 36.9 lagging pf –= IM

IM
2083
VM

------------ 36.9– 1
VM
-------- 1666 j1251– = =

Itotal Ilamp1 Ilamp2 IM+ + 2 4.17 1
VM
-------- 1666 j1251– + 1

VM
-------- 8.34VM 1666 j1251–+ = = =

1500 ft

Vline Itotal Zline 1
VM
-------- 8.34VM 1666 j1251–+  0.605 j0.215+ = =

1
VM
-------- 5.05VM j1.79VM 1008 j358.2 j756.9– 269.0+ + + + =

1
VM
-------- 5.05VM 1277+  j 1.79VM 398.7– + =

Van 120 0 Vline VM+ 1
VM
-------- 5.05VM 1277+  j 1.79VM 398.7– +  VM+= = =
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or

or

We solve this quadratic equation with the following MATLAB script:

p=[1  114.951.79j  1277398.7j]; roots(p)

ans =
  1.0e+002 *
  1.0260 + 0.0238i
  0.1235 - 0.0417i

Then,  and . Of
these, the value of  is unrealistic and thus it is rejected. The positive phase angle in  is
a result of the fact that a motor is an inductive load. But since an inductive load has a lagging
power factor, we denote this lineto neutral of linetoground voltage with a negative angle,
that is, 

The magnitude of the linetoline voltage is 

4.

For the threephase motor, the power is computed from the relation

where  is the load power factor, and  is the efficiency. Solving for the magnitude of the
line current  we obtain

120VM 5.05VM 1277+  j 1.79VM 398.7– +  VM
2+=

VM
2 114.95 j1.79– VM– 1277 j398.7– + 0=

VM1 102.6 j2.39+ 102.63 1.33= = VM2 12.35 j– 4.17 13.4 18.66– = =

VM2 VM1

VM Vload 102.63 1.33 V–= =

Vl l– 3 VM 3 102.63 177.76 V= = =

3 –

1 –

motor

motor

a
b
c

n

Ib

Ia

Ic I'c

In

I''c

P 3 Vab Ia LDcos=

LDcos 

Ia

Ia
P

3 Vab LDcos
----------------------------------------- 15 746

3 208 0.866 0.87  
-------------------------------------------------------------- 41.2 A= = =
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Solutions to EndofChapter Exercises

Next, let us refer to the phasor diagram below where we have chosen  as the reference
phase voltage. Then, 

as shown in the phasor diagram below. The position of the phase current  in the phasor dia-

gram is determined by the load power factor  from which  where the
negative sign stems from the fact that the power factor is lagging. Therefore,

For the singlephase motor, the magnitude of the current  is computed from the relation

and since  lagging,  and since  is a component of the line current
 which is  outofphase with the line current , it follows that

and

Van

Van 120 0=

Vbn 120 120– =

Vcn 120 120=

Ia

LDcos 0.866=  30–=

Ia 41.2 30– =

Ib 41.2 150– =

I'c 41.2 90=

I'c

Van

Vab

Vbc

Vca

Vbn

Vcn

IaIb

I''c

I''c
3.5 746

115 0.8 0.85 
------------------------------------ 33.4 A= =

'LDcos 0.8= ' 36.9–= I''c
Ic 120 Ia

I''c 33.4 36.9 120– 33.4 83.1A= =

Ic I'c I''c+ 41.2 90 33.4 83.1+ j41.2 4 j33.1+ + 4 j74.3+ 74.4 87= = = = =
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5. Since the system is balanced, we can find the solution treating it as a singlephase system as
shown below.

We let:

 

Then,

That is, the magnitude of voltage to neutral at the sending end is , and the linetoline
voltages are 

The phasor diagram below shows the relevant voltages and currents. The angle of  is very
small and it is neglected.

6.
a. The line current  is 

30 

R

Z

LIL

Vsn Vrn

30 mH
0.8 pf
lagging

1 Mw

100 miles

ZL

Vsn Voltage to neutral at sending end=

jX j2fL j2 60 0.03 11.31 = = =

ZL R jX+ 30 j11.31 += =

 power factor angle 0.801–cos= =

Vrn Voltage to neutral at receiving end 20 000 3 11 547 V= = =

IL
P

3VL L– cos
---------------------------------- 106

3 20 000 0.8
--------------------------------------------- 36.1 A= = =

Vsn ZLIL Vrn+ 30 j11.31+  36.1  0.8 j0.6–  11 547
     

+
12658 j323– 12662 1.5 V–

= =
= =

12662 V

VL L– 3 12662 22 000 V=

Vsn


IL

Vrn

RIL

Vsn

XIL

ILN

ILN
P

3VLpf
-------------------- 1000 1000

3 11000 0.8
------------------------------------------ 65.6 A= = =
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Solutions to EndofChapter Exercises

The line resistance  and the line reactance  for the entire length of  miles are

and thus the line impedance  is 

The linetoneutral voltage at the load end, denoted as , is

and the linetoneutral voltage at the sending end, denoted as , is

and the linetoline voltage at the sending end, denoted as , is

The phasor diagram below shows the relevant voltages and currents. The angle of  is
very small and it is neglected.

b. The capacitor bank consumes no real power but it will cause the flow of a current that leads
 by  as shown in the phasor diagram below.

Original current:

Original lagging reactive current:

RL XL 20

RL 20 0.6 12 = = XL 20 0.27 5.4 = =

ZL

ZL 12 j5.4 +=

Vrn

Vrn
11000

3
--------------- 6350 V= =

Vsn

Vsn ZLIL Vrn+ 12 j5.4+ 65.6 0.8 j0.6–  6350
     

+
7192 j189– 7195 1.5 V–

= =
= =

VL L–

VL L– 3 Vsn 3 7195 12500 V= =

Vsn


IL

Vrn

RIL

Vsn

XIL

Vsn 90

Ix1

Ix2

Ic

ILN1

Vsn

Ic

1
2

ILN2

ILN1 65.6 1cos j 1sin–  65.6 0.8 j0.6–  52.5 j39.4–= = =
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For improved power factor , , . Then,

Thus, final lagging reactive current is

and leading reactive current by the capacitor bank is

Therefore, the  rating of the capacitor bank is

7.
The singlephase equivalent circuit is shown below where 

We recall that for a threephase connected load the threephase power is given by

and thus

We choose  as a reference vector as shown in the phasor diagram below.

Then,  as a vector is

Ix1 j39.4–=

0.9 0.9 acos 25.8= 25.8 sin 0.436=

ILN2 65.6 2cos j 2sin–  65.6 0.9 j0.436–  59.0 j28.6–= = =

Ix2 j28.6–=

Ic Ix1 Ix2– j39.4 j28.6– j10.8= = =

KVA

Capacitor bank rating
3 VL L– Ic 

1000
---------------------------------- 3 12500 10.8

1000
--------------------------------------------- 234 KVA= = =

Vsn 66000 3 38100 V= =

80 

R

Z

LIL

Vsn Vrn

j60 
0.8 pf
lagging

1 Mw

ZL

Y

Ptotal 3 Vrn IL load pf   =

IL
P

3 Vrn pf 
----------------------------- 1000 1000

3 Vrn 0.8 
------------------------------- 106

2.4 Vrn
-----------------------= = =

Vrn

r
IL

Vrn

RIL

Vsn

XIL

IL
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Solutions to EndofChapter Exercises

Next, 

and since ,  and  are inphase and the expression above
simplifies to

or

We will use MATLAB to solve this quadratic equation.

syms Vrn
solve(Vrn^238100*Vrn+41.7*10^6)

 ans =
 19050+50*128481^(1/2)
19050-50*128481^(1/2)

We can find the magnitude of  from either of these two solutions. Thus,

a=19050+50*128481^(1/2); abs(a)

ans =
3.6972e+004

That is, , and denoting the potential difference between conductors at the load as

, we obtain

IL IL rcos rsin–  106

2.4 Vrn
----------------------- 0.8 j0.6– = =

Vsn ZIL Vrn+ 80 j60+  106

2.4 Vrn
----------------------- 0.8 j0.6–  Vrn+= =

80 j60+  0.8 j0.6–  100= Vsn Vrn

Vsn
106

2.4 Vrn
----------------------- 100 Vrn+ 108

2.4 Vrn
----------------------- Vrn+= =

38100 108

2.4 Vrn
----------------------- Vrn+=

Vrn
2 38100Vrn– 41.7 106+ 0=

Vrn

Vrn 36972=

Vr

Vr 3 36972 64037 V= =
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8.
a. The percent efficiency  of the systems is

b. The power factor at the sending end is

Also, , . Then,

and

c. The power factor at the load end is

9.

a. Since the voltages on the primary and secondary are inphase, it follows that:



 Power output
Power output Line copper losses+
---------------------------------------------------------------------------------------------

Pout

Pout 3IL
2 R+

----------------------------- 106

106 3 702 15+
-------------------------------------------- 82%= = = =

Power factor scos
Ps 

3 Vs IL 
--------------------------- 106 0.82

3 13200 70
---------------------------------------- 0.762= = = =

0.762 acos 40.36= ssin 40.36 sin 0.648= =

Vrn phase  Vsn phase  ILNZLN– 13200 3  70 scos j ssin–  15 j20+ 
                 

–

7621 70 0.762 j0.648–  15 j20+ – 5914 j386– 5926 3.74 V–
= =

= = =

Vrn line  3 Vrn phase  3 5926 10264 V= = =

pfLD
PLD

3 Vrn line  IL

---------------------------------------- 106

3 10264 70
---------------------------------------- 0.80= = =

  

n

A

B
C

c

b

a
RLD

RLD

RLD

20 KVA
440 / 220 V 1.27 

1.27 

1.27 

VAB 440 0 V= VBC 440 120–  V= VCA 440 120 V=

c
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Solutions to EndofChapter Exercises

and we observe that the secondary voltages form a symmetrical threephase set.

b. The magnitude of the linetoline voltages on the secondary side are  and since the

secondary is connected in , the phase voltages are . Accordingly, the magnitude
of the current through each  is

We found that , then from the phasor diagram below,

and since the secondary voltages form a symmetrical threephase set, it follows that:

Vbc 220 120–  V=

Vca 220 120 V=

Vab Vac Vcb+ Vca– Vbc– 220 0 V= = =

220 V

Y 220 3
RLD

ILD
220 3

1.27
-------------------- 100 A= =

Vab 220 0 V=

Vca Vcn

Van–

Vbc

Vbn Vcn–

Vab

Van

Vbn–

30

Van
Vab

3
--------- 30–=

Ian
Van
RLD
---------- 100 30– Ica= = =

Ibn
Vbn
RLD
---------- 100 150– Ica= = =

Icn
Vcn
RLD
---------- 100 270– 100 90 Ibc Ica–= = = =
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The ratio of transformation  is . Then, the primary currents are:

These results show that the input line currents form a symmetrical threephase set and
thus two transformers can also be used for a symmetrical threephase system.

a 2

IA IAC 1 a Ica 50 30–= = =

IB IBC 1 a Icb 50 150–= = =

IC ICB ICA+ 50 270– 50 90= = =
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Chapter 12

Unbalanced ThreePhase Systems

his chapter is an introduction to unbalanced threephase power systems. It presents several
practical examples of analysis applied to unbalanced threephase systems and a number of
observations are made based on the numerical examples. The method of symmetrical com-

ponents is introduced and a phase sequence indicator serves as an illustration of a Yconnection
with floating neutral.

12.1 Unbalanced Loads
Threephase systems deliver power in enormous amounts to singlephase loads such as lamps,
heaters, airconditioners, and small motors. It is the responsibility of the power systems engineer
to distribute these loads equally among the threephases to maintain the demand for power fairly
balanced at all times. While good balance can be achieved on large power systems, individual
loads on smaller systems are generally unbalanced and must be analyzed as unbalanced three
phase systems.

Fortunately, many problems involving unbalanced loads can be handled as singlephase problems
even though the computations can be three times as long as illustrated by the example below.

Example 12.1  
In the threephase system in Figure 12.1, the load consisting of electric heaters, draw currents as
follows:

Figure 12.1. Threephase system for Example 12.1

T

Ia 150 A= Ib 100 A= Ic 50 A=

Generator c
B

AA

B

N
C

IA

IC

IB

ba
a

b

nn

c

C

Ia

Ib

In

Ic

2400 to 120 V
Transformer

Loadzc

zazb
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Find the current in each phase of the Yconnected generator.

Solution:
Let us assume that these currents are balanced in phase. Then,

(12.1)

and the current in the neutral connection is

(12.2)

The currents , , and  on the primary side of each transformer is found from the known
secondary currents , , and  and observing in Figure 12.1 that parallel coils belong to the

same transformer, that is, the primary winding  and the secondary winding  are on the same
transformer and so on, and observing that the transformer turn ratio is  to , or  to ,
and thus the current ratio is  to .* Then, assuming that the polarity of the transformer wind-
ings is the same for the primary and the secondary, we have:

(12.3)

Next, we compute the primary line currents , , and  which are also the generator phase
currents. From Figure 12.1 we observe that

(12.4)

Therefore, the magnitude of the current in each phase of the Yconnected generator is ,
, and , and the rating of a generator to carry this load must have a rating of 

per phase or a total rating of  or more.

* We recall from relation (9.89), Chapter 9, Page 929, that .

Ia 150 0 150 j0 A+= =

Ib 100 120– 50– j86.6 A–= =

Ic 50 +120 25– j43.3 A+= =

In Ia Ib Ic+ + 75 j43.3– 86.6 30 A–= = =

IAB IBC ICA

Ia Ib Ic

AB nc
2400 120 20 1

1 20

I2 I1 1 a=

IAB
Inc
20
-------

Ic
20
------ 25– j43.3+

20
----------------------------- 1.25– j2.16+ 2.5 120= = = = =

IBC
Ina
20
-------

Ia
20
------ 150 j0+

20
-------------------- 7.5 j0+ 7.5 0= = = = =

ICA
Inb
20
-------

Ib
20
------ 50– j– 86.6

20
------------------------- 2.5– j– 4.33 5 120– = = = = =

IA IB IC

IA IAB IAC+ IAB ICA– 1.25– j2.16 2.5– j– 4.33 –+ 1.25 j6.49+ 6.61 79.1= = = = =

IB IBC IBA+ IBC IAB– 7.5 j0 1.25– j2.16+ –+ 8.75 j2.16– 9.01 13.87– = = = = =

IC ICA ICB+ ICA IBC– 2.5– j– 4.33 7.5 j0+ – 10 j– 4.33– 10.90 156.59– = = = = =

6.61 A
9.01 A 10.90 A 11 A

3 2 400 11 45.7 KVA=
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Voltage Computations

The current in the neutral connection of the generator is

(12.5)

as expected since there is no circuit in which it can flow.

The primary phase currents , ,  and the line currents , , , are shown in the pha-
sor diagram in Figure 12.2.

Figure 12.2. Phasor diagram for the primary phase and line currents in Example 12.1

12.2 Voltage Computations
In Example 12.1 above we did not consider the actual voltages at the load. If we assume that
these voltages are  volts, line to neutral, and balanced, the voltage at the generator will be
somewhat greater than the nominal value of  volts because of the impedances in the system.
This will be considered in Example 12.2 below.

Example 12.2  

For the threephase system in Figure 12.3, compute the generator voltages , , and .
Assume that each transformer impedance on the high side is  and the transformer resis-
tances are negligible. Assume also that the lines are very short and thus their impedances can are
also negligible. The transformer secondary voltages are assumed to be as follows:

(12.6)

Solution:
From Example 12.1, relation (12.3),

The voltage ratio is  to .* Therefore, the transformer primary voltages, linetoline, are as
follows:

IN IA IB IC+ + 1.25 j6.49 8.75 j2.16– 10 j– 4.33–+ + 0= = =

IAB IBC ICA IA IB IC

ICA

IAB

IBC

IC

IB

IA

120
2400

VAB VBC VCA

j30 

Van 120 0 120 j0+= =

Vbn 120 120–  60– j104–= =

Vcn 120 +120 60– j104+= =

IAB 1.25– j2.16+= IBC 7.5 j0+= ICA 2.5– j– 4.33=

20 1
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Figure 12.3. Threephase system for Example 12.2

Figure 12.4 below is the phasor diagram for these voltages.

Figure 12.4. Phasor diagram for Example 12.2

The computations in Example 12.2 are accurate. However, the approach is not practical. A prac-
tical approach would be to begin with the assumption that the generator voltage is constant at

 volts and compute the load (heaters) voltages given their resistances. This can be done with
loop or mesh equations and this approach will be used in the next example.

12.3 PhaseSequence Indicator
The phase sequence is essential with rotating machines. The rotation of a generator in a clockwise
direction may develop voltages of phase sequence  while the rotation in a counterclock-

* We recall from relation (9.99), Chapter 9, Page 930, that .V2 V1 a=

Generator c
B

AA

B

N
C

IA

IC

IB

ba
a

b

nn

c

C

Ia

Ib

In

Ic

2400 to 120 V
Transformer

Loadzc

zazb

VAB 20Vcn IABZ+ 1200– j2080+  1.25– j2.16+ j30+ 1265– j2043+ 2403 121.8= = = =

VBC 20Van IBCZ+ 2400  7.5 j0+ j30+ 2400 j225+ 2411 5.4= = = =

VCA 20Vbn ICAZ+ 1200– j– 2080  2.5– j– 4.33 j30+ 1270– j2155– 2406 116.4– = = = =

VBC

VAB

VCA

2400

a b– c–
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PhaseSequence Indicator

wise direction will develop voltages of phase sequence . The direction of rotation of an
induction motor will be reversed if two line connections are interchanged. Using a device called
phasesequence indicator, we can prove that the currents in the three phases of an unbalanced Y
connected load are dependent on the phase sequence of the source. This will be illustrated with
Example 12.3 below.

Example 12.3  
Figure 12.5 shows a typical phaseindicator consisting of two resistors representing two light
bulbs each rated  watts,  volts at  frequency, and a  capacitor connected to a

 volt threephase system.

Figure 12.5. A phasesequence indicator

The instructions provided by the manufacturer of this device states that after connecting the cir-
cuit as shown, we should attach line  to the middle (capacitor) terminal. Then, the lamp that
lights is in line . In the discussion that follows we will prove that only one of the lamps lights and
which one.

Let us assign currents  and  as shown in Figure 12.6, and assume that 

(12.7)

At the frequency , the capacitive reactance is 

and the resistance of each lamp is
*

* For a balanced 3phase load we must have 

c b– a–

15 120 60 Hz 2 F
120

15 watt  120volt lamp

2 F

15 watt  120volt lamp

c

a

b

Ic

Ia

Ib

n

a
b

I1 I2

Vab 120 0 120 j0+= =

Vbc 120 120–  60– j104–= =

Vca 120 +120 60– j104+= =

f 60 Hz=

XC 1 C– 10– 6 2 60 2  1326 –= = =

R V2 P 1202 15 960 = = =

XC R=
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Figure 12.6. The phasesequence indicator with assigned mesh currents

The mesh equations are

(12.8)

By Cramer’s rule,

and since *

we obtain

and by substitution of numerical values we obtain

(12.9)

By a similar procedure we obtain

and by substitution of numerical values we obtain

(12.10)

* See Figure 12.6

15 watt  120volt lamp

2 F

15 watt  120volt lamp

c

a

b

Ic

Ia

Ib

n

I1

I2

XC

R

R

R jXC+ I1 jXCI2– Vab=

jXCI1– R jXC+ I2+ Vca=

I1

Vab jXC–

Vca R jXC+

R jXC+ jXC–

jXC– R jXC+

-----------------------------------------------
RVab jXCVab jXCVca+ +

R jXC+ 2 X– C 2–
-----------------------------------------------------------------

RVab jXC Vab Vca+ +

R jXC+ 2 XC
2+

------------------------------------------------------------= = =

Vab Vca+ Vcb Vbc–= =

I1
RVab jXC Vcb +

R jXC+ 2 XC
2+

--------------------------------------------
RVab jXC Vbc –

R2 j2RXC+
--------------------------------------------= =

I1
960 120 j 1326–  60– j104– –

9602 2j 960 1326– +
------------------------------------------------------------------------------------------- 0.098 52.6 A= =

I2
RVca jXC Vbc –

R2 j2RXC+
-------------------------------------------=

I2
960 60– j104+  j 1326–  60– j104– –

9602 2j 960 1326– +
------------------------------------------------------------------------------------------------------------------ 0.031 84.3 A= =
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Y Transformation

The rated current for the  lamp is  and from (12.8) we observe that
the value of  is approximately  of its rated current, and this is sufficient to light the lower
lamp in Figure 12.6 though not to full brilliance. However, the value of  is about onefourth of
the rated value of the lamp, and this is not sufficient to produce a noticeable brightness. Thus we
have shown that one lamp lights brightly, and the other hardly at all, and that the lamp in line 
is the bright one. More importantly, we have shown that the phase sequence does make a differ-
ence. 

12.4 Y Transformation
We can substitute a connected load such as that of the phasesequence indicator in Figure

12.6, with a connected load and solve for phase and then for line currents.

Example 12.4  
Figure 12.7(a) below is the same as the phasesequence indicator as in Figure 12.6. We wish to
find the equivalent  shown in 12.7(b).

Figure 12.7.  to  transformation for Example 12.4
Solution:
We begin with the application of the relations (11.45), Page 1115, Chapter 11 which are
repeated below for convenience, where we have substituted , , and  with , , and

 respectively.

With reference to Figure 12.7, we obtain the following relations:

15 watt– 15 120 0.125 A=

I1 80%

I2

b

Y




a  b 

a a

b b

c c

zab

zbc

zca960

960
j1326–

n
jXC

R

R

Ib

Ia

Ic

Y 

Z1 Z2 Z3 Zab Zbc

Zca

Zab
ZaZb ZbZc ZcZa+ +

Zb
----------------------------------------------------= Zbc

ZaZb ZbZc ZcZa+ +

Za
----------------------------------------------------= Zca

ZaZb ZbZc ZcZa+ +

Zc
----------------------------------------------------=

Y   Conversion
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From (12.7),

and the phase currents in the  connection are:

and the currents in Figure 12.7(a) or Figure 12.6 are:

(12.11)

We observe that

from (12.10) and (12.11)

and from (12.9) and (12.11)

12.5 Practical and Impractical Connections

A connected system with a floating neutral should be avoided because the load may become
unbalanced. The reason becomes obvious by considering the phasor diagram in Figure 12.8.

Zab
ZaZb ZbZc ZcZa+ +

Zb
---------------------------------------------------- jXR R2 jXR+ +

R
---------------------------------------- R j2X+ 960 j2652– 2820 70.1–= = = = =

Zbc
ZaZb ZbZc ZcZa+ +

Za
---------------------------------------------------- jXR R2 jXR+ +

jX
---------------------------------------- 2R jR

2

X
------– 1920 j695+ 2042 19.9= = = = =

Zca Zab 2820 70.1–= =

Vab 120 0 120 j0+= =

Vbc 120 120–  60– j104–= =

Vca 120 +120 60– j104+= =



Iab
Vab
Zab
--------- 120 0

2820 70.1–
--------------------------------- 0.0426 70.1 0.0145 j0.0401+= = = =

Ibc
Vbc
Zbc
--------- 120 120– 

2042 19.9
------------------------------ 0.0588 139.9–  0.0450 j– 0.0379= = = =

Ica
Vbc
Zbc
--------- 120 +120

2820 70.1–
--------------------------------- 0.0426 190.1 0.0419– j– 0.0075= = = =

Ia Iab Ica– 0.0564 j0.0475+ 0.0736 40.1= = =

Ib Ibc Iab– 0.0595– j0.079– 0.0980 127.4–= = =

Ic Ica Ibc– 0.031 j0.0304+ 0.0306 84.2= = =

Ia Ib Ic+ + 0=

I2 Ic=

I1 Ib–=

Y
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Practical and Impractical Connections

Figure 12.8. Phasor diagrams for balanced and unbalanced loads

In Figure 12.8(a) above the load is assumed to be balanced and thus the neutral point  is at the
center of the triangle. However, if the load becomes unbalanced, the neutral point  moves away
from the center as shown in Figure 12.8(b). An example where this may occur is the threephase
distribution system shown in Figure 12.9 below, and thus this arrangement is impractical and
should be avoided. 

Another example of an impractical distribution system is shown in Figure 12.10 where a 
transformer bank and a  transformer bank are connected in parallel on both the primary
and secondary sides. The problem here is that one transformer bank shifts the voltages * and
the other does not.

Figure 12.9. An impractical configuration for a threephase distribution system

* We recall that in a Yconnected system the line and phase voltages are different whereas in a connected sys-
tem they are the same.

a

a 

Van
ab b

cc

n
n

b 

Vab Vab

Vbc VbcVca
Vca

Van
Vbn Vbn

Vcn Vcn

n
n

Y Y–

Y –

30



z5z1 z2 z3 z4
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Figure 12.10. Another impractical configuration for a threephase distribution system

Figure 12.11 shows an  connection on both the primary and secondary sides. 

Figure 12.11. A practical open  connection

This is the same as a standard  connection but with one transformer omitted on both sides.
This is a practical connection and it is convenient for temporary installations that are not heavily
loaded. We observe that this arrangement provides three linetoline voltages with the correct
magnitude and phase.

12.6 Symmetrical Components
The analysis of unbalanced threephase systems can be greatly simplified with the principle of
symmetrical components. This principle states that any three vectors can be represented by three
sets of balanced vectors. Thus, when applied to threephase currents, any three current phasors
can be replaced by three sets of balanced currents, and when applied to threephase voltages, any
three voltage phasors can be replaced by three sets of balanced voltages.

The voltages or currents at a point of unbalance in a threephase system are determined and
replaced by three sets of components known as positive phase sequence, negative phase sequence, and
zero phase sequence. The positive phase sequence, negative phase sequence, and zero phase

open –

z6

z1

z2

z3

z4

z5



 –
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Symmetrical Components

sequence voltages or currents are determined independently and the actual unbalanced voltages
or currents are found by adding these threephase sequences. Thus the solution of a difficult
problem involving unbalanced voltages or currents is simplified to the solution of three easy prob-
lems involving only balanced voltages or currents.

Example 12.5  
Show that the three unbalance current phasors in Figure 12.12(a) are the sum of the three bal-
anced currents shown in Figure 12.12(b).

Figure 12.12. (a) Unbalanced currents and (b) their symmetrical components.

In symmetrical components, a symmetrical set of vectors as shown in Figure 12.12(b) above, are
equal in length, and equally spaced in angle. The symmetrical sets of three vectors such as those
shown in Figure 12.12(b) are related by equation (12.12) below.

(12.12)

For the positivesequence we set , and thus

(12.13)

In other words, for the positivephase sequence set the order is  as shown
in Figure 12.13 below.

Figure 12.13. Positive sequence phasor diagram

For the negativesequence we set , and thus

Ia

Ib

Ic

Ia1

a  b Ib1

Ic1

Ia2Ib2

Ic2 Ia0
Ib0
Ic0

Positive
sequence

sequence
Negative

Zero
sequence

Ian Ibn n 120 Icn 2n 120= =

n 1=

Ia1 Ib1 120 Ic1 240= =

a b– c– a– b– c– –

Ia1

Ic1

Ib1

n 2=
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(12.14)

or
(12.15)

The same symmetrical set results by letting , and this accounts for the name of negative
sequence. Thus,

(12.16)

In other words, for the negativephase sequence set the order is  as shown
in Figure 12.14 below.

Figure 12.14. Negative sequence phasor diagram

For the zerosequence we set  or , and the latter accounts for the zerosequence
name. The three components that comprise the zerosequence set are equal in both magnitude
and phase, and thus it is unnecessary to denote them as , , and . Instead, we use the sin-

gle notation  for any of the zerosequence components, i.e.,

(12.17)

Now, let us return to Figure 12.12, Example 12.5, to prove that the addition of the positive
sequence, negativesequence, a zerosequence components in Figure 12.12(b) are added graphi-
cally to obtain the unbalanced set in Figure 12.12(a). The addition is shown in Figure 12.15
below.

The addition of the three symmetrical sets to obtain one unbalanced set is easy as shown in Figure
12.15. We will now derive three equations for finding the three symmetrical component sets of
any three unbalanced phasors.
We begin the derivation with the definitions in the system of the three equations below.

(12.18)

Ia2 Ib2 240 Ic2 480= =

Ia2 Ib2 120–  Ic2 120= =

n 1–=

Ia2 Ib2 120–  Ic2 240– = =

c b– a– c– b– a– –

Ia2

Ic2

Ib2

n 3= n 0=

Ia0 Ib0 Ic0

I0

I0 Ia0 Ib0 Ic0= = =

Ia1 Ia2 I0+ + Ia=

Ib1 Ib2 I0+ + Ib=

Ic1 Ic2 I0+ + Ic=
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Symmetrical Components

Figure 12.15. Addition of the symmetrical components to obtain an unbalanced threephase set.

From (12.13),
(12.19)

and
(12.20)

From (12.15),
(12.21)

and
(12.22)

Substitution of (12.19) through (12.22) into (12.18) yields

(12.23)

Adding the three equations in (12.23), we observe that the first two columns vanish, and thus

or 
(12.24)

Next, we multiply the second equation in (12.23) by  and the third equation by
 and we add again. This time the second and third columns in (12.23) vanish, leaving

Ib1 Ia1 120–=

Ic1 Ia1 +120=

Ib2 Ia2 +120=

Ic2 Ia2 120–=

Ia1               Ia2           I0+ + Ia=

Ia1 120– Ia2 +120 I0+ + Ib=

Ia1 +120 Ia2 120– I0+ + Ic=

3I0 Ia Ib Ic+ +=

I0
1
3
--- Ia Ib Ic+ + =

1 +120
1 120–

3Ia1 Ia Ib +120 Ic 120–+ +=
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or
(12.25)

Finally, we multiply the second equation in (12.23) by  and the third equation by
 and we add again. We observe that the first and third columns in (12.23) vanish, leav-

ing
(12.26)

Therefore, with (12.24) through (12.26) we can compute the symmetrical components of any
unbalanced threephase using the set of equations in (12.27) below.

(12.27)

It is customary to let  and  be unity vectors that apply
the appropriate shift. Then, (12.27) can be expressed as

(12.28)

Example 12.6  
In Example 12.5 the symmetrical components were presented without any explanation of where
they came from. In this example, we will find the symmetrical components using (12.27).

Solution:

The method of analysis is illustrated in Figure 12.16 below where the phasors , , and 
are the same as in Figure 12.15. 

Ia1
1
3
--- Ia Ib +120 Ic 120–+ + =

1 120–
1 +120

Ia2
1
3
--- Ia Ib 120– Ic +120+ + =

I0
1
3
--- Ia Ib Ic+ + =

Ia1
1
3
--- Ia Ib +120 Ic 120–+ + =

Ia2
1
3
--- Ia Ib 120– Ic +120+ + =

a 1.0 120= a2 1.0 240 1.0 120– = =

I0
1
3
--- Ia Ib Ic+ + =

Ia1
1
3
--- Ia aIb a2Ic+ + =

Ia2
1
3
--- Ia a2Ib aIc+ + =

Ia Ib Ic
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Symmetrical Components

Figure 12.16. Analysis of an unbalanced threephase set to find symmetrical components

The zerosequence component  is found by adding dashed lines equal to  and  at the tip of

, and onethird of the resultant is marked off as  in accordance with the first equation in
(12.27).

The positivesequence component  is found by adding a line equal to  rotated by  at the

tip of , and then a line equal to  rotated by . In accordance with the second equation in

(12.27), onethird of the resultant is .

The negativesequence component  is found by applying the third equation in (12.27) in a
similar manner.

The complete symmetrical components system is by adding the phasors  and  after being

rotated by the appropriate phase shift to the positivesequence set, and by adding the phasors 

and  after being rotated by the appropriate phase shift to the negativesequence set as shown
in Figure 12.17 below.

Figure 12.17. The complete symmetrical components set for Example 12.6

Zero sequence Positive sequence Negative sequence

Ia1
1
3
--- Ia Ib +120 Ic 120–+ + =I0

1
3
--- Ia Ib Ic+ + = Ia2

1
3
--- Ia Ib 120– Ic +120+ + =

Ib Ib Ib

Ic Ic Ic

Ia Ia Ia

Ia1

3Ia1

Ic 120–Ib +120 Ic +120
Ib 120–

I0

3I0

Ib

Ic
Ia2

3Ia2

I0 Ib Ic
Ia I0

Ia1 Ib 120

Ia Ic 120–

Ia1

Ia2

Ib1 Ic1

Ib2

Ic2

Positive
sequence

sequence
Negative

Zero
sequence

Ia1

Ic1 Ic2

Ia2
Ib2

Ia0
Ib0
Ic0
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Three more problems on symmetrical components are given as exercises at the end of this chap-
ter. Because symmetrical components are phasors, the computations can be facilitated with the
use of MATLAB and /or Simulink as illustrated in Exercise 3 at the end of this chapter.

12.7 Cases where ZeroSequence Components are Zero

Let us consider a connected load with floating neutral shown in Figure 12.18.

Figure 12.18. connected load with floating neutral

The threephase connected load with floating neutral point  shown in Figure 12.18 can have
no zerosequence component. This can be shown from relation (12.24), i.e.,

and with a floating neutral, , and thus  regardless whether the load imped-
ances are unbalanced and what the applied voltages may be.
Next, let us consider a connected load with the neutral point  connected to a ground as
shown in Figure 12.19.

Figure 12.19. connected load with grounded neutral

In Figure 12.19, 

and since

it follows that

Y

n

Ia

Ib

Ic

Z2

I0 0=

Z1

Z3

Y

Y n

I0
1
3
--- Ia Ib Ic+ + =

Ia Ib Ic+ + 0= I0 0=

Y n

n

Ia

Ib

Ic

IG 3I0=z3

z1 z2

Y

Ia Ib Ic+ + IG=

I0
1
3
--- Ia Ib Ic+ + =

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling 1217
Copyright © Orchard Publications

Cases where ZeroSequence Components are Zero

Now, let us consider the connected load shown in Figure 12.20.

Figure 12.20. connected load showing line and phase currents

In Figure 12.20, the three line currents , , and  that supply the connected load have no

zerosequence component because . However, the sum of the phase currents ,

, and  do not necessarily add to zero; they may, they may not.

If there is a zerosequence current in the connected load, it is a circulating current as indi-
cated by the arrows for the phase currents , , and . If there is only zerosequence current
flowing, these three currents are all in the arrow direction at the same instant. Then, they reverse
all in the opposite direction together. In other words, the current flows first one way around the
connected load, then the other way, but never gets our of the .

A similarity applies to linetoline voltages and line to neutral voltages. Zerosequence voltage is
onethird the sum of the three linetoline voltages and these when circulated around a closed
path always add to zero. But there may be a zerosequence component of the linetoneutral
voltages.

Example 12.7  
The threephase generator in Figure 12.21 is connected to a transmission line through a trans-
former bank. There is no load at the other end of the transmission line system. One wire of the
transmission line breaks and falls to the ground resulting in a linetoground short circuit. Derive
the symmetrical component currents and total currents produced by the generator. 

IG 3I0=



z1

z2

z3

Ia

Ib

Ic

IA

IC

IB



Ia Ib Ic 

Ia Ib Ic+ + 0= IA

IB IC


IA IB IC
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Figure 12.21. Threephase system with a linetoground fault

Solution:
The system is balanced except at the point of fault indicated in Figure 12.21, and the fault current
is . Because no load is connected to the system, currents  and  are both zero.

The positive, negative, and zerosequence currents at the point of fault are found from the sys-
tem of equations of (12.27), i.e.,

and since  and , from the equations above we find that

Hence 

as shown in Figure 12.22.

Figure 12.22. The symmetrical components for Example 12.7

Also, since the line currents  and  are both zero, we have

and

Symmetrical components are used in the calculation of fault currents since the total fault current
is not symmetrical. It includes a DC component which depends on the point at which the fault is
initiated. 

Transformer

Ia

Generator
bank

Ground to
line short

Ib

Ic

Ia Ib Ic

I0
1
3
--- Ia Ib Ic+ + =

Ia1
1
3
--- Ia Ib +120 Ic 120–+ + =

Ia2
1
3
--- Ia Ib 120– Ic +120+ + =

Ib 0= Ic 0=

I0
1
3
---Ia= Ia1

1
3
---Ia= Ia2

1
3
---Ia=

Ia1 Ia2 I0= =

Ia

Ia0 Ia1 Ia2

Ib Ic

Ib1 Ib2 Ia0+ + 0=

Ic1 Ic2 Ia0+ + 0=

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink/SimPowerSystems Modeling 1219
Copyright © Orchard Publications

Cases where ZeroSequence Components are Zero

The four types of faults that can occur in a threephase system are shown in Figure 12.23

In the calculation of a threephase fault only positive sequence components are considered, in
the calculation of a linetoline fault positive and negative sequence components are considered,
and in the calculation of a linetoneutral fault or in a linetoground fault, all three sequences,
that is, positive, negative, and zero sequences are considered.

The calculation of fault currents is a laborious procedure since the degree of asymmetry is not the
same in all three phases. Detailed discussion on this topic is beyond the scope of this book. This
topic is discussed in power systems books, in General Electric™, Westinghouse™, and other refer-
ence books, and also in the Internet. Computer programs are available for the calculations and
these can also be found in the Internet.

The MathWorks SimPowerSystems documentation contains several demos with threephase
faults. Four of them can be accessed by typing power_machines ,  power_svc_pss ,
power_wind_dfig, and power_3phseriescomp at the MATLAB command prompt. An example
with a DC line fault can also be accessed by typing power_hvdc12pulse at the MATLAB com-
mand prompt.

Figure 12.23. Types of faults in threephase systems

ThreePhase LinetoLine

LinetoNeutral LinetoGround

n n

n n
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12.8 Summary
• Loads connected to threephase systems must be distributed equally among the threephases

to maintain the demand for power fairly balanced at all times. 

• Loads are generally unbalanced and must be analyzed as unbalanced threephase systems. 

• Many problems involving unbalanced loads can be handled as singlephase problems even
though the computations can be three times as long.

• A practical approach to compute load voltages, line currents, and load currents is to use loop or
mesh equations.

• The phase sequence is essential with rotating machines. The rotation of a generator in a clock-
wise direction may develop voltages of phase sequence  while the rotation in a counter-
clockwise direction will develop voltages of phase sequence . The direction of rotation
of an induction motor will be reversed if two line connections are interchanged. 

• We can prove that the currents in the three phases of an unbalanced Yconnected load are
dependent on the phase sequence of the source using a phasesequence indicator.

• The analysis of unbalanced threephase systems can be greatly simplified with the method of
symmetrical components. This principle states that any three vectors can be represented by
three sets of balanced vectors. Thus, when applied to threephase currents, any three current
phasors can be replaced by three sets of balanced currents, and when applied to threephase
voltages, any three voltage phasors can be replaced by three sets of balanced voltages.

• Using the method of symmetrical components the voltages or currents at a point of unbalance
in a threephase system are determined and replaced by three sets of components known as
positive phase sequence, negative phase sequence, and zero phase sequence. The positive phase
sequence, negative phase sequence, and zero phase sequence voltages or currents are deter-
mined independently and the actual unbalanced voltages or currents are found by adding these
threephase sequences. Thus the solution of a difficult problem involving unbalanced voltages
or currents is simplified to the solution of three easy problems involving only balanced voltages
or currents.

• In symmetrical components the vectors are equal in length, and equally spaced in angle. The
symmetrical sets of three vectors are related by equation 

For the positivesequence we set , and thus

In other words, for the positivephase sequence set the order is .

a b– c–

c b– a–

Ian Ibn n 120 Icn 2n 120= =

n 1=

Ia1 Ib1 120 Ic1 240= =

a b– c– a– b– c– –
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Summary

• For the negativesequence we set , and thus

or

The same symmetrical set results by letting , and this accounts for the name of negative
sequence. Thus,

In other words, for the negativephase sequence set the order is .

• For the zerosequence we set  or , and the latter accounts for the zerosequence
name. The three components that comprise the zerosequence set are equal in both magnitude
and phase, and thus it is unnecessary to denote them as , , and . Instead, we use the

single notation  for any of the zerosequence components, i.e.,

• The three symmetrical sets are related as shown in the system of the three equations below.

• We can compute the symmetrical components of any unbalanced threephase using the set of
equations below.

or in terms of the unity vectors  and 

• A threephase connected load with floating neutral point can have no zerosequence
component regardless whether the load impedances are unbalanced and what the applied volt-
ages may be.

• In a threephase connected load with neutral point connected to a ground, 
where  is the current flowing in the wire that connects the neutral point to the ground.

• In a threephase system the three line currents , , and  that supply a connected load

have no zerosequence component because . However, the sum of the phase

currents , , and  do not necessarily add to zero; they may, they may not.

n 2=

Ia2 Ib2 240 Ic2 480= =

Ia2 Ib2 120–  Ic2 120= =

n 1–=

Ia2 Ib2 120–  Ic2 240– = =

c b– a– c– b– a– –

n 3= n 0=

Ia0 Ib0 Ic0

I0

I0 Ia0 Ib0 Ic0= = =

Ia1 Ia2 I0+ + Ia= Ib1 Ib2 I0+ + Ib= Ic1 Ic2 I0+ + Ic=

I0
1
3
--- Ia Ib Ic+ + =     Ia1

1
3
--- Ia Ib +120 Ic 120–+ + =     Ia2

1
3
--- Ia Ib 120– Ic +120+ + =

a 1.0 120= a2 1.0 240 1.0 120–= =

I0
1
3
--- Ia Ib Ic+ + = Ia1

1
3
--- Ia aIb a2Ic+ + = Ia2

1
3
--- Ia a2Ib aIc+ + =

Y

Y IG 3I0=

IG

Ia Ib Ic 

Ia Ib Ic+ + 0=

IA IB IC
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12.9 Exercises

1. Balanced threephase voltage  volts linetoline, positivephase sequence, is supplied to a
load that is connected, floating neutral, with  resistors from neutral to lines  and ,
and a capacitor whose capacitive reactance is  to line . Compute the current in each
phase and draw a phasor diagram.

2. A good phasesequence indicator operates with one lamp very bright and the other very dim.
Using the same lamps as in Example 12.3, Page 125, but with a capacitor of different value,
can you design a better indicator?

3. Resolve the unbalanced threephase system shown below into its symmetrical components.

4. The voltages of an unbalanced threephase supply are , , and

. Connected in  across this supply are three equal impedances each

. There is no connection between the  neutral and the supply neutral. Derive the
symmetrical components of phase  and compute the three line currents.

5. The voltages of an unbalanced threephase supply are , , and

.

a. Derive the symmetrical components of .

b. Derive the symmetrical components of  and  from the symmetrical components of 
found in part (a).

c. Draw a phasor diagram showing all symmetrical components.

6. The currents in a threephase system are , , and . Compute

, , and . Sketch phasors of the three positivesequence components, the three nega-
tivesequence components, and the zerosequence component.

220
Y 500  a b

500  c

Va 1500= 30

Vb 1800= 70– 

Vc 2000= 170

Va 200 j0+= Vb j200–=

Vc 100– j200+= Y

20 j10 + Y
a

Va 150 0= Vb 86.6 90– =

Vc 86.6 90=

Va

Vb Vc Va

Ia 5.00= Ib j8.66–= Ic j10.00=

Ia1 Ia2 I0
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Solutions to EndofChapter Exercises

12.10 Solutions to EndofChapter Exercises
1.

By KVL

(12.29)

and by Cramer’s rule

where the determinant  is

and

Since

Also,

Then,

and

a

b

c

500 

500 

j– 500 

Vab

Vbc

Vca

n

I1

I2jXC

R

R
Ia

Ib

Ic

2RI1 RI2– Vab 220 0 220 j0+= = =

RI1– R jXc+ I2+ Vbc 220 120–  110– j190–= = =

I1
D1


------= I2

D2


------=



 2R R–
R– R jXc+

2R2 j2RXc R2–+ R2 j2RXc+= = =

D1
Vab R–

Vbc R jXc+
RVab jXcVab RVbc+ + R Vab Vbc+  jXcVab+= = =

Vab Vbc+ Vac Vca–= =

D1 RVca– jXcVab+=

D2
2R Vab

R– Vbc
2RVbc RVab RVbc+ + R 2Vbc Vab+ = = =

I1
D1


------

RVca– jXcVab+

R2 j2RXc+
------------------------------------------ 0.372 j0.076–= = =
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From the threephase network above, we observe that

and

The phasor diagram for the three line currents is shown below.

2. The brightness or dimness of the lamps will depend on the magnitude, but not the phase of the
current that flows through them. Accordingly let us choose a capacitor with capacitive reac-
tance equal to the to the resistance  of each of the lamps as follows:

and with ,  in , and  in , the last expression above reduces to

From Example 12.3

and thus

Replacing  in Example 12.3 with , we obtain

I2
D2


------

R 2Vbc Vab+ 

R2 j2RXc+
------------------------------------ 0.304 j0.152–= = =

Ia I1 0.372 j0.076– 0.38 11.5–= = =

Ib I2 I1– 0.068– j0.076– 0.102 131.8–= = =

Ic I– 2 0.304– j0.152+ 0.34 153.4= = =

IaIb

Ic

R

XC R=

XC
1

2fC
-------------=

C 1
2fXC
----------------=

C 1
2fR
-------------=

f 60 Hz= C F R K

C F  2.65
R K 
--------------------=

R V2 P 1202 15 960  0.96 K= = = =

C 2.65
0.96
---------- 2.76 F= =

1326– 960–
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Solutions to EndofChapter Exercises

and 
(12.30)

The rated current for the  lamp is  and we observe that the value
of  is approximately  of its rated current, and this is an improvement in the lower lamp
brilliance. The value of  is only about  of the rated value of the lamp, and this is not suf-
ficient to produce a noticeable brightness.

3.

  (1)

where by definition

Then,

 (2)

I1
960 120 j 960–  60– j104– –

9602 2– j 9602
---------------------------------------------------------------------------------------- 0.108 48.4 A= =

I2
960 60– j104+  j 960–  60– j104– –

9602 2– j 9602
--------------------------------------------------------------------------------------------------------------- 0.029 108.4 A= =

15 watt– 15 120 0.125 A=

I1 85%

I2 23%

Va 1500= 30

Vb 1800= 70– 

Vc 2000= 170

Va1
1
3
--- Va Vb 120 Vc 240+ + =

Va2
1
3
--- Va Vb 240 Vc 120+ + =

Va0
1
3
--- Va Vb Vc+ + =

Va1 Va2 Va0+ + Va=

Vb1 Vb2 Vb0+ + Vb=

Vc1 Vc2 Vc0+ + Vc=

Va1
1
3
--- 1500 30 1800 70– 120+  2000 170 240+ + + 

      1
3
--- 1500 30 1800 50 2000 410+ + 

      1
3
--- 1299 j750 1157 j1379 1286 j1532+ + + + + 

      1
3
--- 3742 j3661+  1247 j1220+ 1744 44.37

=

=

=

= = =
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By definition, , and for this exercise

 (3)
Also,

 (4)
Next,

 (5)

 (6)

 (7)
Finally,

 (8)

and thus
 (9)

Check:

The symmetrical components in phasor diagrams are as shown below where we observe that for
the positivesequence the order of phases is , and that for the negative
sequence the order of phases is .

We can verify the computations for  in (2) above with the following MATLAB script:

Vb1 Va1 120–=

Vb1 1744 44.4 120–  1744 75.6– 433 j1689–= = =

Vc1 1744 44.4 120+  1744 164.4 1680– j469+= = =

Va2
1
3
--- 1500 30 1800 70– 240+  2000 170 120+ + + 

      1
3
--- 1500 30 1800 170+ 2000 290+ 

      1
3
--- 1299 j750 1773– j313 684 j1879–+ + + 

      1
3
--- 210 j816–  70 j272– 281 75.6– 

=

=

=

= = =

Vb2 281 75.6– 120+  281 44.4 201 j197+= = =

Vc2 281 75.6– 240+  281 164.4 271– j76+= = =

Va0
1
3
--- 1500 30 1800 70–  2000 170++ 

      1
3
--- 1299 j750 616 j1691– 1970– j347+ + + 

      1
3
--- 55– j594–  18.3– j198– 199 95.3–

=

=

= = =

Va0 Vb0 Vc0 199 95.3–= = =

Va Va1 Va2 Va0+ + 1247 j1220 70 j272– 18– j198–+ + 1299 j750+ 1500 30= = =

Vb Vb1 Vb2 Vb0+ + 434 j1689– 201 j197 18– j198–+ + 617 j1690– 1800 70–= = =

Vc Vc1 Vc2 Vc0+ + 1680– j469 271– j75.6 18– j198–+ + 1969– j347+ 2000 170= = =

a b– c– a– b– c– –

c b– a– c b–– a– –

Va1
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Solutions to EndofChapter Exercises

% Express Va, Vb rotated by 120 deg, and Vc rotated by 240 deg or by 120 deg, in accordance
% with (1) above

ReVa,ImVa]=pol2cart(30*pi/180, 1500),[ReVb,ImVb]=pol2cart((70+120)*pi/180, 1800),
[ReVc,ImVc]=pol2cart((170120)*pi/180, 2000)

ReVa = 1.2990e+003

ImVa = 750.0000

ReVb = 1.1570e+003

ImVb = 1.3789e+003

ReVc = 1.2856e+003

ImVc = 1.5321e+003
%
%  Add reals and imaginaries and divide by 3 to obtain Va1 in Cartesian form

Va1=(1/3)*(ReVa+ReVb+ReVc+j*(ImVa+ImVb+ImVc))

Va1 =  1.2472e+003 + 1.2203e+003i

%  To convert to polar form we define the real part ax x and the imaginary part as y

x=(1/3)*(ReVa+ReVb+ReVc), y=(1/3)*(ImVa+ImVb+ImVc)

x = 1.2472e+003

y = 1.2203e+003

[rad,mag]=cart2pol(x,y), deg=rad*180/pi

rad = 0.7745

mag = 1.7449e+003

deg = 44.3757

This script can be extended for the remaining calculations by repeated application of the
[x,y]=pol2cart(theta,r) and [theta,r]=cart2pol(x,y) MATLAB functions.

Vb1

Va1Vc1

Va2

Vb2

Vc2

Va0 Vb0
Vc0
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The Simulink model below can also be used for the computations of .

This model can also be used for the computations of  and 
4.

For positivephase sequence,

Va1

Va2 Va0

Va 200 j0+=

Vb j200–=

Vc 100– j200+=

z 20 j10
  

+
22.4 26.6

=
=

z z

z

Ia

Ib

Ic

Supply ground

n

a 1 120= a2 1 240= a3 1 360 1= =
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Solutions to EndofChapter Exercises

For negativephase sequence,

For zerophase sequence,

Next,

There is no connection between the  neutral point  and the supply ground, and thus

Now, for line current ,

For line current ,

Va1
1
3
--- Va aVb a2Vc+ +  1

3
--- Va Vb 120 Vc 240+ + 

      1
3
--- 200 j200 120 100– j200+  240+– 

      1
3
--- 200 200 30 223.6 116.6 240+ ++ 

      1
3
--- 200 173.2 j100 223.2 j13.3–+ + + 

      1
3
--- 596.4 j86.7+  198.8 j28.9+ 200.9 8.3

= =

=

=

=

= = =

Va2
1
3
--- Va a2Vb aVc+ +  1

3
--- Va Vb 240 Vc 120+ + 

      1
3
--- 200 j200 240 100– j200+  120+– 

      1
3
--- 200 200 150 223.6 116.6 120+ ++ 

      1
3
--- 200 173.2– j100 123.1– j186.7–+ 

      1
3
--- 96.3– j86.7–  32.1– j28.9– 43.2 138– 

= =

=

=

=

= = =

Va2
1
3
--- Va Vb Vc+ +  1

3
--- 200 j200 100– j200+–  33.3= = =

Ia1

Va1
Z

-------- 200.9 8.3
22.4 26.6
---------------------------- 8.97 18.3– 8.52 j2.82–= = = =

Ia2

Va2
Z

-------- 43.2 138– 
22.4 26.6
------------------------------ 1.93 164.6– 1.86– j0.51–= = = =

Y n

Ia0 0=

Ia

Ia Ia1 Ia2 Ia0+ + 8.52 j2.82– 1.86– j0.51– 0+ 6.66 j3.33– 7.45 26.6–= = = =

Ib
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and for line current ,

Check:

5.

a.

b.

Check:

Next,

Ib a2Ia1 aIa2 Ia0+ + 8.97 18.3–  120– 1.93 164.6–  120

   

+

8.97 138.3– 1.93 44.6–+ 6.70– j5.97– 1.37 j1.36

   

–+

5.33– j7.33– 9.06 54–

= =

= =

= =

Ic

Ic aIa1 a2Ia2 Ia0+ + 8.97 18.3–  120 1.93 164.6–  120– 

   

+

8.97 101.7 1.93 284.6–+ 1.82– j8.78 0.49 j1.87

   

+ + +

1.33– j10.65+ 10.73 97.1

= =

= =

= =

Ia Ib Ic+ + 6.66 j3.33 5.33– j7.33 1.33– j10.65+–– 0=

Vc 86.6 90=

Va 150 0=

Vb 86.6 90– =

Va1
1
3
--- Va aVb a2Vc+ +  1

3
--- Va Vb 120 Vc 120– + + 

      1
3
--- 150 0 86.6 30 86.6 30– + + 

      1
3
--- 150 86.6 3 2  j86.6 1 2  86.6 3 2  j86.6 1 2 –+ + + 

      1
3
--- 150 150+  100 0

= =

=

=

= =

Vb1 a2Va1 Va1 120– 100 120– 50– j86.6–= = = =

Vc1 aVa1 Va1 120 100 120 50– j86.6+= = = =

Va1 Vb1 Vc1+ + 100 50– j86.6– 50– j86.6+ 0= =
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Solutions to EndofChapter Exercises

Check:

and the phasor diagram is shown below.

6.

Va2
1
3
--- Va a2Vb aVc+ +  1

3
--- Va Vb 120–  Vc 120+ + 

      1
3
--- 150 0 86.6 150 86.6 210+ + 

      1
3
--- 150 86.6 3– 2  j86.6 1 2  86.6 3– 2  j86.6 1 2 –+ + + 

      1
3
--- 150 75– 75–  0

= =

=

=

= =

Va0
1
3
--- Va Vb Vc+ +  1

3
--- 150 0 86.6 90–  86.6 90+ + 

      1
3
--- 150 0 0+  50 0

= =

= =

Va Va1 Va2 Va0+ + 100 0 0 50 0+ + 150 0= = =

Vc 86.6 90=

Va 150 0=

Vb 86.6 90– =
Vb1 100 120– =

Vc1 100 120=

Va1 100 0=

Vb0 50 0=

Va0 50 0=

Ia 5.00 5 0 A= = Ib j8.66– 8.66 90 A–= = Ic j10.00 10.00 90 A= =

Ia1
1
3
--- Ia aIb a2Ic+ +  1

3
--- Ia Ib 120 Ic 120– + + 

      1
3
--- 5 0 8.66 30 10 30– + + 

      1
3
--- 5 8.66 3 2  j8.66 1 2  10 3 2  j10 1 2 –+ + + 

      1
3
--- 5 7.5 j4.33 8.66 j5–+ + +  1

3
--- 21.16 j0.67– 

      7.05 j0.22– 7.05 1.8–

= =

=

=

= =

= =

Ib1 a2Ia1 Ia1 120– 7.05 121.8– 3.72– j5.99–= = = =

Ic1 aIa1 Ia1 120 7.05 118.2 3.33– j6.21+= = = =
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Next,

and the phasor diagrams are shown below.

Ia2
1
3
--- Ia a2Ib aIc+ +  1

3
--- Ia Ib 120–  Ic 120+ + 

      1
3
--- 5 8.66 150 10 210+ + 

      1
3
--- 5 8.66 3– 2  j8.66 1 2  10 3– 2  j10 1 2 –+ + + 

      1
3
--- 5 7.5– j4.33 8.66– j5–+  1

3
--- 11.16– j0.67– 

      3.72– j0.22– 3.73 176.6–

= =

=

=

= =

= =

Ib2 aIa2 Ia2 120 3.73 56.6– 2.05 j3.11–= = = =

Ic2 a2Ia1 Ia2 120–  3.73 63.4 1.67 j3.34+= = = =

Ia0
1
3
--- Ia Ib Ic+ +  1

3
--- 5 j8.66– j10+  1.67 j0.45+ 1.73 15= = = =

10 90

8.66 90–

5 0

Ib

Ic

Ia Ia1

7.05 1.8–
Ib1 7.05 121.8–

Ic1 7.05 118.2

Ia2

3.73 176.6–

3.73 63.4Ic2

Ib2
3.73 56.6–

1.73 15
Ia0
Ib0
Ic0
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Appendix A

Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions,
procedures for naming and saving the user generated files, comment lines, access to MAT-
LAB’s Editor / Debugger, finding the roots of a polynomial, and making plots. Several exam-

ples are provided with detailed explanations.

A.1 MATLAB® and Simulink®
MATLAB and Simulink are products of The MathWorks,™ Inc. These are two outstanding soft-
ware packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and
environmental applications. MATLAB enables us to solve many advanced numerical problems
rapidly and efficiently. 

A.2 Command Window
To distinguish the screen displays from the user commands, important terms, and MATLAB
functions, we will use the following conventions:

Click: Click the left button of the mouse
Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>* 

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names
When we first start MATLAB, we see various help topics and other information. Initially, we are
interested in the command screen which can be selected from the Window drop menu. When the
command screen, we see the prompt >> or EDU>>. This prompt is displayed also after execution
of a command; MATLAB now waits for a new command from the user. It is highly recommended
that we use the Editor/Debugger to write our program, save it, and return to the command screen
to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on MFile. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. 

* EDU>> is the MATLAB prompt in the Student Version

T
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Important! MATLAB is case sensitive, that is, it distinguishes between upper and lowercase let-
ters. Thus, t and T are two different letters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfile01.m. It is a good prac-
tice to save the script in a file name that is descriptive of our script content. For instance, if the
script performs some matrix operations, we ought to name and save that file as matrices01.m or
any other similar name. We should also use a floppy disk or an external drive to backup our files.

2. Once the script is written and saved as an mfile, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the >> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example,
to get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide con-
tains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu.
We can do this periodically to become familiar with them. Whenever we want to return to the
command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the command clear. This
command erases everything; it is like exiting MATLAB and starting it again. The command clc
clears the screen but MATLAB still remembers all values, variables and equations that we have
already used. In other words, if we want to clear all previously entered commands, leaving only
the >> prompt on the upper left of the screen, we use the clc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q)    % performs multiplication of polynomials p and q

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.

www.ebooko.ir


Roots of Polynomials

Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems  Modeling A3
Copyright © Orchard Publications

One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either , or  to denote the imaginary part of a complex number, such as
3-4i or 3-4j. For example, the statement

z=34j

displays

z = 3.00004.0000i

In the above example, a multiplication (*) sign between 4 and  was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function, or
variable such as , we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x) for the imaginary part of the complex number. 

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1  
Find the roots of the polynomial

Solution:
The roots are found with the following two statements where we have denoted the polynomial as
p1, and the roots as roots_ p1.

p1=[1  10  35  50  24] %  Specify and display the coefficients of p1(x)

p1 =
     1   -10    35   -50    24

roots_ p1=roots(p1) %  Find the roots of p1(x)

roots_p1 =
   4.0000
   3.0000
   2.0000
   1.0000

i j

j

x cos

an  an 1–    a2  a1  a0 

p1 x  x4 10x3– 35x2 50x– 24+ +=
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We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2  
Find the roots of the polynomial

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with
the statements below, where we have defined the polynomial as p2, and the roots of this polyno-
mial as roots_ p2. The result indicates that this polynomial has three real roots, and two complex
roots. Of course, complex roots always occur in complex conjugate*  pairs. 

p2=[1  7   0  16  25  52]

p2 =
     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_p2 =
   6.5014         
   2.7428         
  -1.5711         
  -0.3366 + 1.3202i
  -0.3366 - 1.3202i

A.4 Polynomial Construction from Known Roots
We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) func-
tion where r is a row vector containing the roots.

 

Example A.3  

It is known that the roots of a polynomial are . Compute the coefficients of this
polynomial.

*  By definition, the conjugate of a complex number  is 

p2 x  x5 7x4– 16x2 25x+ + 52+=

A a jb+= A a jb–=

1 2 3  and 4  
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Solution: 

We first define a row vector, say , with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1  2  3  4] %  Specify the roots of the polynomial

r3 =
     1     2     3     4

poly_r3=poly(r3) %  Find the polynomial coefficients

poly_r3 =
     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example A.1.

Example A.4  

It is known that the roots of a polynomial are  Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

r4=[ 1   2   3   4+5j   45j ]

r4 =
  Columns 1 through 4 
  -1.0000   -2.0000   -3.0000   -4.0000+ 5.0000i
  Column 5 
  -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =
     1    14   100   340   499   246

Therefore, the polynomial is

r3

p1 x 

1  2  3  4 j5  and  4 j5–+–––

r4

p4 x  x5 14x4 100x3 340x2 499x 246+ + + + +=
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the indepen-
dent variable .

Example A.5  
Evaluate the polynomial

(A.1)

at .

Solution:
p5=[1  3   0   5  4   3   2]; % These are the coefficients of the given polynomial

% The semicolon (;) after the right bracket suppresses the 
%  display of the row vector that contains the coefficients of p5.

%
val_minus3=polyval(p5, 3) % Evaluate p5 at x=3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =
        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b)  multiplies two polynomials a and b 

[q,r]=deconv(c,d) divides polynomial c by polynomial d and displays the quotient q and
remainder r.

polyder(p)  produces the coefficients of the derivative of a polynomial p.

 

Example A.6  
Let 

and

Compute the product  using the conv(a,b) function.

p x 
x

p5 x  x6 3x5– 5x3 4x2– 3x 2+ + +=
x 3–=

p1 x5 3x4– 5x2 7x 9+ + +=

p2 2x6 8x4– 4x2 10x 12+ + +=

p1 p2
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Solution:
p1=[1  3   0  5  7  9]; % The coefficients of p1
p2=[2   0  8  0  4  10  12]; % The coefficients of p2
p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =
2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

Example A.7  
Let

and

Compute the quotient  using the [q,r]=deconv(c,d) function.

Solution:
% It is permissible to write two or more statements in one line separated by semicolons
p3=[1   0  3    0   5   7    9];  p4=[2  8   0    0   4  10  12];  [q,r]=deconv(p3,p4)

q =
    0.5000
r =
     0     4    -3     0     3     2     3

Therefore,

Example A.8  
Let

Compute the derivative  using the polyder(p) function.

p1 p2 2x11 6x10 8x9–– 34x8 18x7 24x6–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5– 4x2 10x 12+ + +=

p3 p4

q 0.5= r 4x5 3x4– 3x2 2x 3+ + +=

p5 2x6 8x4– 4x2 10x 12+ + +=

d
dx
------p5
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Solution:
p5=[2   0   8   0   4   10   12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =
    12     0   -32     0     8    10

Therefore,

A.6  Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if
we separate them by commas or semicolons. Commas will display the results whereas semicolons
will suppress the display.

Example A.9  
Let

Express the numerator and denominator in factored form, using the roots(p) function. 

Solution:
num=[1  3  0  5  7  9]; den=[1  0  4  0  2  5  6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =
   2.4186 + 1.0712i    2.4186 - 1.0712i   -1.1633         
  -0.3370 + 0.9961i   -0.3370 - 0.9961i

d
dx
------p5 12x5 32x3– 8x 10+ +=

R x  Num x 
Den x 
--------------------

bnxn bn 1– xn 1– bn 2– xn 2–  b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2–  a1x a0+ + + + +
------------------------------------------------------------------------------------------------------------------------= =

R x 
pnum
pden
------------ x5 3x4– 5x2 7x 9+ + +

x6 4x4– 2x2 5x 6+ + +
---------------------------------------------------------= =
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roots_den =
   1.6760 + 0.4922i     1.6760 - 0.4922i  -1.9304         
  -0.2108 + 0.9870i    -0.2108 - 0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form 
whose roots are  and , the negative sum of the roots is equal to the coefficient  of the 
term, that is, , while the product of the roots is equal to the constant term , that
is, . Accordingly, we form the coefficient  by addition of the complex conjugate roots
and this is done by inspection; then we multiply the complex conjugate roots to obtain the con-
stant term  using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 1.0712i)

ans = 6.9971

(0.3370+ 0.9961i)*(0.33700.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.67600.4922i)

ans = 3.0512

(0.2108+ 0.9870i)*(0.21080.9870i)

ans = 1.0186

Thus,

pnum x 2.4186– j1.0712–  x 2.4186– j1.0712+  x 1.1633+ =

x 0.3370 j0.9961–+  x 0.3370 j0.9961+ + 

pden x 1.6760– j0.4922–  x 1.6760– j0.4922+  x 1.9304+ =

x 0.2108 j– 0.9870+  x 0.2108 j0.9870+ +  x 1.0000+ 

x2 bx c+ + 0=

x1 x2 b x

x1 x2+ – b= c

x1 x2 c= b

c

R x 
pnum
pden
------------ x2 4.8372x– 6.9971+  x2 0.6740x 1.1058+ +  x 1.1633+ 

x2 3.3520x– 3.0512+  x2 0.4216x 1.0186+ +  x 1.0000+  x 1.9304+ 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =
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We can check this result of Example A.9 above with MATLAB’s Symbolic Math Toolbox which is
a collection of tools (functions) used in solving symbolic expressions. They are discussed in detail
in MATLAB’s Users Manual. For the present, our interest is in using the collect(s) function that
is used to multiply two or more symbolic expressions to obtain the result in polynomial form. We
must remember that the conv(p,q) function is used with numeric expressions only, that is, poly-
nomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following script:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial form
collect((x^24.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =
x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression
in polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots
Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x, where x is the horizontal axis (abscissa) and y is the ver-
tical axis (ordinate).

Example A.10  
Consider the electric circuit of Figure A.1, where the radian frequency  (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant. 

Figure A.1. Electric circuit for Example A.10

A

V L
C

R2

R1
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The ammeter readings were then recorded for each frequency. The magnitude of the impedance
|Z| was computed as  and the data were tabulated on Table A.1.

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB Command prompt, so we will use the English letter
w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];
%
z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 
1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 
90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 
48.717  46.286  44.122  42.182  40.432  38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press

TABLE A.1  Table for Example A.10

 (rads/s) |Z| Ohms  (rads/s) |Z| Ohms

300 39.339 1700 90.603

400 52.589 1800 81.088

500 71.184 1900 73.588

600 97.665 2000 67.513

700 140.437 2100 62.481

800 222.182 2200 58.240

900 436.056 2300 54.611

1000 1014.938 2400 51.428

1100 469.83 2500 48.717

1200 266.032 2600 46.286

1300 187.052 2700 44.122

1400 145.751 2800 42.182

1500 120.353 2900 40.432

1600 103.111 3000 38.845

Z V A=
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<enter>. To plot  (yaxis) versus  (xaxis), we use the plot(x,y) command. For this example,
we use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s
graph screen and MATLAB denotes this plot as Figure 1. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance  versus frequency  for Example A.10

This plot is referred to as the magnitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pulldown menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pulldown
menu, and we choose Figure 1.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x and yaxis respectively.

The magnitude frequency response is usually represented with the xaxis in a logarithmic scale.
We can use the semilogx(x,y) command which is similar to the plot(x,y) command, except that
the xaxis is represented as a log scale, and the yaxis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the yaxis is represented as a

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.
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log scale, and the xaxis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm
to the base 2 as log2(x). 

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid;   % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, the plot is as shown in Figure A.3.

If the yaxis represents power, voltage or current, the xaxis of the frequency response is more
often shown in a logarithmic scale, and the yaxis in dB (decibels).

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage  in a dB scale on the yaxis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB) provided that v is predefined.

The command gtext(‘string’)*  switches to the current Figure Window, and displays a crosshair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Imped-
ance |Z| versus Frequency’), and this will place a crosshair in the Figure window. Then, using

* With the latest MATLAB Versions 6 and 7 (Student Editions 13 and 14), we can add text, lines and arrows directly into
the graph using the tools provided on the Figure Window. For advanced MATLAB graphics, please refer to The Math-
Works Using MATLAB Graphics documentation.
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the mouse, we can move the crosshair to the position where we want our label to begin, and we
press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3phase sinusoidal wave-
form.

The first line of the script below has the form

linspace(first_value, last_value, number_of_values) 

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The script for the 3phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a builtin function in MATLAB;
%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 
plot(x,y,x,u,x,v); %  The xaxis must be specified for each function
grid on, box on, %  turn grid and axes box on
text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Threephase waveforms 
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In our previous examples, we did not specify line styles, markers, and colors for our plots. How-
ever, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a com-
bination of these, can be added with the plot(x,y,s) command, where s is a character string con-
taining one or more characters shown on the three columns of Table A.2. MATLAB has no
default color; it starts with blue and cycles through the first seven colors listed in Table A.2 for
each additional line in the plot. Also, there is no default marker; no markers are drawn unless
they are selected. The default line is the solid line. But with the latest MATLAB versions, we can
select the line color, line width, and other options directly from the Figure Window.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are twodimensional, that is, they are drawn on two axes.
MATLAB has also a threedimensional (threeaxes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3space through the points whose coordinates are the
elements of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the twodimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style

b blue  point  solid line

g green o circle  dotted line

r red x xmark  dashdot line

c cyan + plus  dashed line

m magenta * star

y yellow s square

k black d diamond

w white  triangle down

 triangle up

 triangle left

 triangle right

p pentagram

h hexagram
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Example A.11  
Plot the function

(A.3)
Solution:
We arbitrarily choose the interval (length) shown on the script below.

x= 10: 0.5: 10; %  Length of vector x 
y= x; % Length of vector y must be same as x
z= 2.*x.^3+x+3.*y.^21; %  Vector z is function of both x and y* 

plot3(x,y,z); grid

The threedimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a twodimensional plot, we can set the limits of the x and yaxes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a threedimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The threedimensional text(x,y,z,’string’) command will
place string beginning at the coordinate (x,y,z) on the plot.

For threedimensional plots, grid on and box off are the default states.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication, division,
and exponential operators are preceded by a dot. These important operations will be explained in Section A.9.
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We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
 and  where . In this case, the vertices of the mesh

lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the
X and Y matrices that consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the
matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the
vector y.

Example A.12  

The volume  of a right circular cone of radius  and height  is given by

(A.4)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:
The volume of the cone is a function of both the radius r and the height h, that is,

The threedimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, dot division, and dot expo-
nentiation. This will be explained in Section A.9.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h;...
V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V);...
xlabel('xaxis, radius r (meters)'); ylabel('yaxis, altitude h (meters)');...
zlabel('zaxis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The threedimensional plot of Figure A.6 shows how the volume of the cone increases as the
radius and height are increased.

The plots of Figure A.5 and A.6 are rudimentary; MATLAB can generate very sophisticated
threedimensional plots. The MATLAB User’s Manual and the Using MATLAB Graphics Man-
ual contain numerous examples. 

length x  n= length y  m= m n  size Z =

x j  y i  Z i j  

z f x y =

V r h

V 1
3
---r2h=

r h 0 r 4  0 h 6 

V f r h =
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Figure A.6. Volume of a right circular cone.

A.8 Subplots
MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m  n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB

A.9  Multiplication, Division, and Exponentiation
MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the elementbyelement multiplication,
division, and exponentiation. They are explained in the following paragraphs.
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In Section A.2, the arrays , such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character () to transpose a vector. Thus, a column vector can be written either as

b=[1; 3; 6; 11]

or as 

b=[1  3  6  11]'

As shown below, MATLAB produces the same display with either format.

b=[1; 3; 6; 11] 

b =
    -1
     3
     6
    11

b=[1  3  6  11]' % Observe the single quotation character (‘)

b =
    -1
     3
     6
    11

We will now define Matrix Multiplication and ElementbyElement multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and
 

be two vectors. We observe that  is defined as a row vector whereas  is defined as a col-
umn vector, as indicated by the transpose operator (). Here, multiplication of the row vector

 by the column vector , is performed with the matrix multiplication operator (*). Then,

(A.5)

a  b  c   

A a1   a2   a3      an =

B b1   b2   b3      bn '=

A B

A B

A*B a1b1 a2b2 a3b3  anbn+ + + +  gle valuesin= =
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For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with the MATLAB script

A=[1   2    3   4   5]; B=[ 2   6  3   8   7]'; A*B % Observe transpose operator (‘) in B

ans =

   68

Now, let us suppose that both  and  are row vectors, and we attempt to perform a rowby
row multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[2  6  3  8  7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
vector  to be a column vector, not a row vector. It recognizes that  is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. ElementbyElement Multiplication (multiplication of a row vector by another row vector)

Let

and
 

be two row vectors. Here, multiplication of the row vector  by the row vector  is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

(A.6)

This product is another row vector with the same number of elements, as the elements of 

A 1   2   3   4   5 =

B 2–    6   3–    8   7 '=

A*B

AB 1 2–  2 6 3 3–  4 8 5 7++++ 68= =

A B

B B

C c1   c2   c3      cn =

D d1   d2   d3      dn =

C D

C.D c1d1    c2d2    c3d3        cndn =

C
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and . 

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[2  6 3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element
byelement division and exponentiation, as illustrated in Examples A.11 and A.12 above.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators. 

Note: A dot (.) is never required with the plus (+) and minus () operators.

Example A.13  
Write the MATLAB script that produces a simple plot for the waveform defined as 

(A.7)

in the  seconds interval.

Solution:
The MATLAB script for this example is as follows:

t=0: 0.01: 5;  %  Define taxis in 0.01 increments
y=3 .* exp(4 .* t) .* cos(5 .* t)2 .* exp(3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

The plot for this example is shown in Figure A.8.

D

C 1   2   3   4   5 =

D 2–    6   3–    8   7 =

C.D 1 2–     2 6    3 3–     4 8   5 7 2–    12   9–    32   35= =

y f t  3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5 
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Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less
than , say as  MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero
when . To avoid division by zero, we use the special MATLAB function eps, which is a

number approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example A.14  
Plot the functions

in the interval  using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.
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Plot for Example A.13
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t 1–=
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Solution:
The MATLAB script to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2);  z=(cos(x).^ 2);  
w=y.* z;
v=y./ (z+eps);%  add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9. 

Figure A.9. Subplots for the functions of Example A.14

The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions that display the real and imaginary parts of the complex quan-
tity z =  x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x + iy = rWe will also usethe
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
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is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example A.15   
Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance  as a func-
tion of the radian frequency  can be computed from the following expression:

(A.8)

a. Plot  (the real part of the impedance Z) versus frequency .

b. Plot  (the imaginary part of the impedance Z) versus frequency .

c. Plot the impedance Z versus frequency  in polar coordinates.

Solution:

The MATLAB script below computes the real and imaginary parts of  which, for simplicity,

are denoted as , and plots these as two separate graphs (parts a & b). It also produces a polar
plot (part c).

w=0: 1: 2000; %  Define interval with one radian interval;...
z=(10+(10 .^ 4 j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w 10.^5./ (w+eps))));...
%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);...
xlabel('radian frequency w');  ylabel('Real part of Z'); grid

a

b

10 

10 

0.1 H

10 FZab

Zab

Zab Z 10 104 j 106  –

10 j 0.1 105   – +
--------------------------------------------------------+= =

Re Z 

Im Z 

Zab

z
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Figure A.11. Plot for the real part of the impedance in Example A.15

%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);...
xlabel('radian frequency w');  ylabel('Imaginary part of Z'); grid

Figure A.12. Plot for the imaginary part of the impedance in Example A.15

%  The last six statements (next five lines) below produce the polar plot of z
mag=abs(z); %  Computes |Z|;...
rndz=round(abs(z)); %  Rounds |Z| to read polar plot easier;...
theta=angle(z); %  Computes the phase angle of impedance Z;...
polar(theta,rndz); %  Angle is the first argument
ylabel('Polar Plot of Z'); grid
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Figure A.13. Polar plot of the impedance in Example A.15

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10  Script and Function Files
MATLAB recognizes two types of files: script files and function files. Both types are referred to as
mfiles since both require the .m extension.

A script file consists of two or more builtin functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an mfile with an editor such as the MAT-
LAB’s Editor/Debugger.

A function file is a userdefined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions:

fzero(f,x)  attempts to find a zero of a function of one variable, where f is a string containing the
name of a realvalued function of a single real variable. MATLAB searches for a value near a
point where the function f changes sign, and returns that value, or returns NaN if the search fails. 
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Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fplot(fcn,lims) plots the function specified by the string fcn between the xaxis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the yaxis limits.
The string fcn must be the name of an mfile function or a string with variable .

NaN (NotaNumber) is not a function; it is MATLAB’s response to an undefined expression
such as , or inability to produce a result as described on the next paragraph.We can
avoid division by zero using the eps number, which we mentioned earlier.

Example A.16  
Find the zeros, the minimum, and the maximum values of the function 

(A.9)

in the interval 

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script.

x=1.5: 0.01: 1.5;
y=1./ ((x0.1).^ 2 + 0.01) 1./ ((x1.2).^ 2 + 0.04) 10;
plot(x,y); grid

The plot is shown in Figure A.14.

Figure A.14. Plot for Example A.16 using the plot command
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The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum

occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function mfile with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot  as follows:

fplot('funczero01', [1.5  1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14
which was obtained with the plot(x,y) command as shown in Figure A.14.

Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in Equation (A.9) more precisely.
The MATLAB script below will accomplish this.

x1= fzero('funczero01', 0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)
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MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function  or a maximum of  since a maximum of

 is equal to a minimum of . This can be visualized by flipping the plot of a function 
upsidedown. This function is no longer used in MATLAB and thus we will compute the maxima
and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function  can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)^2+1/100)^2*(2*x-1/5)+1/((x-6/5)^2+1/25)^2*(2*x-12/5)

When the command

solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i
ans =
   0.6585 - 0.3437i
ans =
    1.2012

The real value  above is the value of  at which the function  has its minimum value as
we observe also in the plot of Figure A.15.

To find the value of y corresponding to this value of x, we substitute it into , that is,

x=1.2012; ymin=1 / ((x0.1) ^ 2 + 0.01) 1 / ((x1.2) ^ 2 + 0.04) 10

ymin = -34.1812

We can find the maximum value from  whose plot is produced with the script

x=1.5:0.01:1.5; ymax=1./((x0.1).^2+0.01)1./((x1.2).^2+0.04)10; plot(x,ymax); grid

and the plot is shown in Figure A.16.

f x  f x 
f x  f x – f x 

y f x =

x

1.2012 x y

f x 

f x –

www.ebooko.ir


Appendix A  Introduction to MATLAB®

A30 Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems  Modeling
Copyright © Orchard Publications

Figure A.16. Plot of  for Example A.16

Next we compute the first derivative of  and we solve for  to find the value where the max-
imum of  occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=(1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10); zmax=diff(ymax)

zmax =
 1/((x-1/10)^2+1/100)^2*(2*x-1/5)-1/((x-6/5)^2+1/25)^2*(2*x-12/5)

solve(zmax)

When the command

solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i

ans =
   0.6585 - 0.3437i

ans =
    1.2012
ans =
    0.0999

From the values above we choose  which is consistent with the plots of Figures A.15
and A.16. Accordingly, we execute the following script to obtain the value of .
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x=0.0999; % Using this value find the corresponding value of ymax
ymax=1 / ((x0.1) ^ 2 + 0.01) 1 / ((x1.2) ^ 2 + 0.04) 10

ymax = 89.2000

A.11 Display Formats
MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available MATLAB formats can
be displayed with the help format command as follows:

help format 

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display formats
as follows:

FORMAT  Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E  Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed for positive, negative, 

and zero elements.Imaginary parts are ignored.
FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE  Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short  33.3335  Four decimal digits (default)
format long  33.33333333333334 16 digits
format short e  3.3333e+01  Four decimal digits plus exponent
format short g  33.333  Better of format short or format short e
format bank  33.33 two decimal digits
format +  only + or - or zero are printed
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format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the
text is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is
used, the values will be displayed and printed in fixed decimal format, and if %e is used, the val-
ues will be displayed and printed in scientific notation format. With this command only the real
part of each parameter is processed.
This appendix is just an introduction to MATLAB.*  This outstanding software package consists
of many applications known as Toolboxes. The MATLAB Student Version contains just a few of
these Toolboxes. Others can be bought directly from The MathWorks, Inc., as addons.

* For more MATLAB applications, please refer to Numerical Analysis Using MATLAB and Excel, ISBN 978
1934404034.
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Appendix B

Introduction to Simulink

his appendix is a brief introduction to Simulink. This author feels that we can best intro-
duce Simulink with a few examples. Some familiarity with MATLAB is essential in under-
standing Simulink, and for this purpose, Appendix A is included as an introduction to

MATLAB.

B.1 Simulink and its Relation to MATLAB

The MATLAB and Simulink environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We will introduce Simulink with a few illustrated examples. 

Example B.1  

For the circuit of Figure B.1, the initial conditions are , and . We will
compute .

Figure B.1. Circuit for Example B.1

For this example,
(B.1)

and by Kirchoff’s voltage law (KVL),

(B.2)

Substitution of (B.1) into (B.2) yields
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(B.3)

Substituting the values of the circuit constants and rearranging we obtain:

(B.4)

(B.5)

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method  Assumed Solution

Equation (B.5) is a secondorder, nonhomogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

However, decaying exponentials of the form  where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

It is shown in Appendix H that if  and  where  and  are constants and  and
 are the roots of the characteristic equation of the homogeneous part of the given differential

equation, the natural response is the sum of the terms  and . Therefore, the total
solution will be

(B.6)

The values of  and  are the roots of the characteristic equation 

(B.7)

Solution of (B.7) yields of  and  and with these values (B.6) is written as

RC
dvC

dt
--------- LC

d2vC

dt2
----------- vC+ + u0 t =

1
3
---d2vC

dt2
----------- 4

3
---dvC

dt
--------- vC+ + u0 t =

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3u0 t =
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(B.8)

The forced component  is found from (B.5), i.e., 

(B.9)

Since the right side of (B.9) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (B.9) we obtain

or
 (B.10)

Substitution of this value into (B.8), yields the total solution as 

 (B.11)

The constants  and  will be evaluated from the initial conditions. First, using 
and evaluating (B.11) at , we obtain

 (B.12)

Also,

and

(B.13)

Next, we differentiate (B.11), we evaluate it at , and equate it with (B.13). Thus,

(B.14)

By equating the right sides of (B.13) and (B.14) we obtain

(B.15)
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Simultaneous solution of (B.12) and (B.15), gives  and . By substitution into
(B.8), we obtain the total solution as

(B.16)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=0.75*exp(t)+0.25*exp(3*t)+1; %  The total solution y(t), for our example, vc(t)
y1=diff(y0) %  The first derivative of y(t)

y1 =
3/4*exp(-t)-3/4*exp(-3*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 =
-3/4*exp(-t)+9/4*exp(-3*t)

y=y2+4*y1+3*y0 %  Summation of y and its derivatives

y =
3

Thus, the solution has been verified by MATLAB. Using the expression for  in (B.16), we
find the expression for the current as

  (B.17)

Second Method  Using the Laplace Transformation

The transformed circuit is shown in Figure B.2.

Figure B.2. Transformed Circuit for Example B.1
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By the voltage division* expression,

Using partial fraction expansion,† we let

(B.18)

and by substitution into (B.18)

Taking the Inverse Laplace transform‡ we find that 

Third Method  Using State Variables

**

* For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with
MATLAB Computing and Simulink / SimPowerSystems , ISBN 9781934404171.

† Partial fraction expansion is discussed in Chapter 5, this text.
‡ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer Chapters 4 and 5, this

text.
** Usually, in StateSpace and State Variables Analysis,  denotes any input. For distinction, we will denote

the Unit Step Function as . For a detailed discussion on StateSpace and State Variables Analysis, please
refer to Chapter 7, this text.
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By substitution of given values and rearranging, we obtain

or

(B.19)

Next, we define the state variables  and . Then,

* (B.20)

and

(B.21)

Also,

and thus,

or

(B.22)

Therefore, from (B.19), (B.20), and (B.22), we obtain the state equations

and in matrix form,

(B.23)

Solution† of (B.23) yields

* The notation  (x dot) is often used to denote the first derivative of the function , that is, .

† The detailed solution of (B.23) is given in Chapter 7, Example 7.10, Page 723, this text.
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Then,

(B.24)

and

(B.25)

Modeling the Differential Equation of Example B.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the MATLAB Command prompt, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure B.3. It appears on the top bar on
MATLAB’s Command prompt. 

Figure B.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks appear as shown in Fig-
ure B.4.

In Figure B.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example B.1 as

(B.26)

A block diagram representing relation (B.26) above is shown in Figure B.5. We will use Simulink
to draw a similar block diagram.*

* Henceforth, all Simulink block diagrams will be referred to as models.
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Figure B.4. The Simulink Library Browser

Figure B.5. Block diagram for equation (B.26)

To model the differential equation (B.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure B.6. 

3u0 t   dt dt

4

3

d2vC

dt2
----------- dvC

dt
--------- vC
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Figure B.6. The Untitled model window in Simulink.

The window of Figure B.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure B.6 where we choose Save as and name the file as Equation_1_26. Simulink will add
the extension .mdl. The new model window will now be shown as Equation_1_26, and all
saved files will have this appearance. See Figure B.7.

Figure B.7. Model window for Equation_1_26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function shown as Step. See Figure B.8. We select it, and we drag it into
the Equation_1_26 model window which now appears as shown in Figure B.8. We save file
Equation_1_26 using the File drop menu on the Equation_1_26 model window (right side of
Figure B.8).

3. With reference to block diagram of Figure B.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
B.8. If the Equation_1_26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two
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blocks.* We doubleclick on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure B.9.

Figure B.8. Dragging the unit step function into File Equation_1_26

Figure B.9. File Equation_1_26 with added Step and Gain blocks

* An easy method to interconnect two Simulink blocks by clicking on the source block to select it, then hold down
the Ctrl key and leftclick on the destination block.
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5. Next, we need to add a theeinput adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1_26 model window. We double click it, and on the Function Block Parameters
window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure B.10.

Figure B.10. File Equation_1_26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-
ure B.11.

Figure B.11. File Equation_1_26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we doubleclick on these
gain blocks and on the Function Block Parameters window, we change the gains from to 4
and 3 as shown in Figure B.12.

Figure B.12. File Equation_1_26 complete block diagram
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8. The initial conditions , and  are entered by double

clicking the Integrator blocks and entering the values  for the first integrator, and  for the
second integrator. We also need to specify the simulation time. This is done by specifying the
simulation time to be  seconds on the Configuration Parameters from the Simulation drop
menu. We can start the simulation on Start from the Simulation drop menu or by clicking on

the  icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.13. 

Figure B.13. The waveform for the function  for Example B.1

Another easier method to obtain and display the output  for Example B.1, is to use State
Space block from Continuous in the Simulink Library Browser, as shown in Figure B.14.

Figure B.14. Obtaining the function  for Example B.1 with the StateSpace block.

iL 0  C
dvC
dt

---------
t 0=

0= = vc 0  0.5 V=

0 0.5

10

vC t 

vC t 

vC t 
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The simout To Workspace block shown in Figure B.14 writes its input to the workspace. The
data and variables created in the MATLAB Command window, reside in the MATLAB Work-
space. This block writes its output to an array or structure that has the name specified by the
block's Variable name parameter. This gives us the ability to delete or modify selected variables.
We issue the command who to see those variables. From Equation B.23, Page B6,

The output equation is

or

We doubleclick on the StateSpace block, and in the Functions Block Parameters window we
enter the constants shown in Figure B.15.

Figure B.15. The Function block parameters for the StateSpace block.

x·1

x·2

4– 4–
3 4 0

x1

x2

4
0

u0 t +=

y Cx du+=

y 0  1  x1

x2

0 u+=
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The initials conditions  are specified in MATLAB’s Command prompt as

x1=0; x2=0.5;

As before, to start the simulation we click clicking on the  icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale  icon, we
obtain the waveform shown in Figure B.16.

Figure B.16. The waveform for the function  for Example B.1 with the StateSpace block.

The statespace block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example B.2  
A fourthorder network is described by the differential equation

(B.27)

where  is the output representing the voltage or current of the network, and  is any input,
and the initial conditions are .

a. We will express (B.27) as a set of state equations

x1  x2 '

vC t 

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t + + + + u t =

y t  u t 
y 0  y' 0  y'' 0  y''' 0  0= = = =
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b. It is known that the solution of the differential equation

(B.28)

subject to the initial conditions , has the solution

(B.29)

In our set of state equations, we will select appropriate values for the coefficients
 so that the new set of the state equations will represent the differential equa-

tion of (B.28), and using Simulink, we will display the waveform of the output .

1. The differential equation of (B.28) is of fourthorder; therefore, we must define four state vari-
ables that will be used with the four firstorder state equations. 

We denote the state variables as , and , and we relate them to the terms of the
given differential equation as

(B.30)

We observe that

(B.31)

and in matrix form 

(B.32)

In compact form, (B.32) is written as

(B.33)
Also, the output is

(B.34)
where

d4y
dt4
-------- 2d2y

dt2
-------- y t + + tsin=

y 0  y' 0  y'' 0  y''' 0  0= = = =

y t  0.125 3 t2–  3t tcos– =

a3 a2 a1  and a0  
y t 

x1 x2 x3   x4

x1 y t = x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x·1 x2=

x·2 x3=

x·3 x4=

d 4y
dt4
--------- x·4 a0x1– a1x2 a2x3–– a3x4– u t += =

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t +=

x· Ax bu+=

y Cx du+=
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(B.35)

and since the output is defined as 

relation (B.34) is expressed as

(B.36)

2. By inspection, the differential equation of (B.27) will be reduced to the differential equation of
(B.28) if we let

and thus the differential equation of (B.28) can be expressed in statespace form as

(B.37)

where

(B.38)

Since the output is defined as 

in matrix form it is expressed as

x·

x·1

x·2

x·3

x·4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u=   u t =

y t  x1=

y 1  0  0  0 

x1

x2

x3

x4

 0 u t +=

a3 0= a2 2= a1 0= a0 1= u t  tsin=

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

x1

x2

x3

x4

0
0
0
1

tsin+=

x·

x·1

x·2

x·3

x·4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u=   tsin=

y t  x1=
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(B.39)

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1_2 model window, we click
and drag the StateSpace block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
B.17.

Figure B.17. Block diagram for Example B.2

We now doubleclick on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time

Amplitude: 1

Frequency: 2

Units: Hertz

Next, we doubleclick on the statespace block and we enter the following parameter values
in the Function Block Parameters: 

A: [0  1  0  0; 0  0  1  0; 0  0  0  1; a0  a1 a2  a3]

B: [0  0  0  1]’

C: [1  0  0  0]

D: [0]

Initial conditions: x0

y 1  0  0  0 

x1

x2

x3

x4

 0  tsin+=

www.ebooko.ir


  Introduction to Simulink

B18 Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Absolute tolerance: auto

Now, we switch to the MATLAB Command prompt and we type the following:

>> a0=1; a1=0; a2=2; a3=0; x0=[0  0  0  0]’;

We change the Simulation Stop time to , and we start the simulation by clicking on the 
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.18.

Figure B.18. Waveform for Example B.2

The Display block in Figure B.17 shows the value at the end of the simulation stop time.

Examples B.1 and B.2 have clearly illustrated that the StateSpace is indeed a powerful block. We
could have obtained the solution of Example B.2 using four Integrator blocks by this approach
would have been more time consuming.
 

Example B.3  
Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns , , and  in the system of the equations

(B.40)

25

z1 z2 z3

a1z1 a2z2 a3z3 k1+ + + 0=

a4z1 a5z2 a6z3 k2+ + + 0=

a7z1 a8z2 a9z3 k3+ + + 0=
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The model is shown in Figure B.19.

Figure B.19. Model for Example B.3

Next, we go to MATLAB’s Command prompt and we enter the following values:

a1=2; a2=3; a3=1; a4=1; a5=5; a6=4; a7=6; a8=1; a9=2;...
k1=8; k2=7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as ,
, and .These values are shown in the Display blocks of Figure B.19.

The Algebraic Constraint block constrains the input signal  to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We
can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.

z1 2=

z2 3–= z3 5=

f z 
z
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An outstanding feature in Simulink is the representation of a large model consisting of many
blocks and lines, to be shown as a single Subsystem block.* For instance, we can group all blocks
and lines in the model of Figure B.19 except the display blocks, we choose Create Subsystem
from the Edit menu, and this model will be shown as in Figure B.20† where in MATLAB’s Com-
mand prompt we have entered:

a1=5; a2=1; a3=4; a4=11; a5=6; a6=9; a7=8; a8=4; a9=15;...
k1=14; k2=6; k3=9;

Figure B.20. The model of Figure B.19 represented as a subsystem

The Display blocks in Figure B.20 show the values of , , and  for the values specified at the
MATLAB command prompt. 

B.2 Simulink Demos
At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. It is highly recommended that the reader becomes familiar with the block
libraries found in the Simulink Library Browser. Then, the reader can follow the steps delineated
in The MathWorks Simulink User’s Manual to run the Demo Models beginning with the thermo
model. This model can be seen by typing

thermo

at the MATLAB command prompt.

* The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 22, Introduction to Simulink with
Engineering Applications, 9781934404096.

† The contents of the Subsystem block are not lost. We can doubleclick on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 22, Introduction to Simulink with Engineering Applica-
tions, ISBN 9781934404096.

z1 z2 z3
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Appendix C

Introduction to SimPowerSystems

his appendix is a brief introduction to SimPowerSystems blockset that operates in the
Simulink environment. An introduction to Simulink is presented in Appendix B. For
additional help with Simulink, please refer to the Simulink documentation.

C.1 Simulation of Electric Circuits with SimPowerSystems

As stated in Appendix B, the MATLAB and Simulink environments are integrated into one
entity, and thus we can analyze, simulate, and revise our models in either environment at any
point. We can invoke Simulink from within MATLAB or by typing simulink at the MATLAB
command prompt, and we can invoke SimPowerSystems from within Simulink or by typing pow-
erlib at the MATLAB command prompt. We will introduce SimPowerSystems with two illus-
trated examples, a DC electric circuit, and an AC electric circuit

Example C.1  

For the simple resistive circuit in Figure C.1, , , and . From the volt-

age division expression,  and from Ohm’s law,
.

Figure C.1. Circuit for Example C.1

To model the circuit in Figure C.1, we enter the following command at the MATLAB prompt.

powerlib

and upon execution of this command, the powerlib window shown in Figure C.2 is displayed.

From the File menu in Figure C.2, we open a new window and we name it Sim_Fig_C3 as shown
in Figure C.3.

T

vS 12v= R1 7= R2 5=

vR2 R2 vS R1 R2+  5 12 12 5v= = =

i vS R1 R2+  1A= =

+
vS

R2

R1

i
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Figure C.2. Library blocks for SimPowerSystems

Figure C.3. New window for modeling the circuit shown in Figure C.1

The powergui block in Figure C.2 is referred to as the Environmental block for SimPowerSys-
tems models and it must be included in every model containing SimPowerSystems blocks.
Accordingly, we begin our model by adding this block as shown in Figure C.4.

We observe that in Figure C.4, the powergui block is named Continuous. This is the default
method of solving an electric circuit and uses a variable step Simulink solver. Other methods are
the Discrete method used when the discretization of the system at fixed time steps is desired, and
the Phasors method which performs phasor simulation at the frequency specified by the Phasor
frequency parameter. These methods are described in detail in the SimPowerSystems documen-
tation.
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Figure C.4. Window with the addition of the powergui block

Next, we need to the components of the electric circuit shown in Figure C.1. From the Electrical
Sources library in Figure C.2 we select the DC Voltage Source block and drag it into the model,
from the Elements library we select and drag the Series RLC Branch block and the Ground
block, from the Measurements library we select the Current Measurement and the Voltage
Measurement blocks, and from the Simulink Sinks library we select and drag the Display block.
The model now appears as shown in Figure C.5.

Figure C.5. The circuit components for our model

From the Series RLC Branch block we only need the resistor, and to eliminate the inductor and
the capacitor, we double click it and from the Block Parameters window we select the R compo-
nent with value set at  as shown in Figure C.6.7 
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Figure C.6. The Block Parameters window for the Series RLC Branch

We need two resistors for our model and thus we copy and paste the resistor into the model, using
the Block Parameters window we change its value to , and from the Format drop window we
click the Rotate block option and we rotate it clockwise. We also need two Display blocks, one
for the current measurement and the second for the voltage measurement and thus we copy and
paste the Display block into the model. We also copy and paste twice the Ground block and the
model is now as shown in Figure C.7 where we also have renamed the blocks to shorter names.

Figure C.7. Model with blocks renamed

From Figure C.7 above, we observe that both terminals of the voltage source and the resistors are
shown with small square ( ) ports, the left ports of the CM (Current Measurement), and VM
(Voltage Measurement) are also shown with ports, but the terminals on the right are shown with
the Simulink output ports as >. The rules for the SimPowerSystems electrical terminal ports
and connection lines are as follows:

5 
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1. We can connect Simulink ports (>) only to other Simulink ports.

2. We can connect SimPowerSystems ports ( ) only to other SimPowerSystems ports.*

3. If it is necessary to connect Simulink ports (>) to SimPowerSystems ports ( ), we can use
SimPowerSystems blocks that contain both Simulink and SimPowerSystems ports such as the
Current Measurement (CM) block and the Voltage Measurement (VM) block shown in Fig-
ure C.7.

The model for the electric circuit in Figure C.1 is shown in Figure C.8.

Figure C.8. The final form of the SimPowerSystems model for the electric circuit in Figure C.1

For the model in Figure C.8 we used the DC Voltage Source block. The SimPowerSystems doc-
umentation states that we can also use the AC Voltage Source block as a DC Voltage Source
block provided that we set the frequency at  and the phase at  in the Block
Parameters window as shown in Figure C.9.

* As in Simulink, we can autoconnect two SimPowerSystems blocks by selecting the source block, then holding
down the Ctrl key, and left-clicking the destination block.

0 Hz 90 degrees
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Figure C.9. Block parameter settings when using an AC Voltage Source block as a DC Voltage Source

Figure C.10. Model with AC Voltage Source used as DC Voltage Source

A third option is to use a Controlled Voltage Source block with a Constant block set to the
numerical value of the DC voltage Source as shown in the model of Figure C.11.
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Figure C.11. Model with Controlled Voltage Source block

Example C.2  
Consider the AC electric circuit in Figure C.12

Figure C.12. Electric circuit for Example C.2

The current I and the voltage Vc across the capacitor are computed with MATLAB as follows:

Vs=120; f=60; R=1; L=0.2; C=10^(3); XL=2*pi*f*L; XC=1/(2*pi*f*C);...
Z=sqrt(R^2+(XLXC)^2); I=Vs/Z, Vc=XC*I

I =
    1.6494
Vc =
    4.3752

The SimPowerSystems model and the waveforms for the current I and the voltage Vc are shown
in Figures C.13 and C.14 respectively.

VS

I

0.2H

C

120 0 V

1 

LR

10 3–  F

60 Hz
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Figure C.13. SimPowerSystems model for the electric circuit in Figure C.12

Figure C.14. Waveforms for the current I and voltage Vc across the capacitor in Figure C.12

The same results are obtained if we replace the applied AC voltage source block in the model of
Figure C.13 with a Controlled Voltage Source (CVS) block as shown in Figure C.15.

Figure C.15. The model in Figure C.13 with the AC Voltage Source block replaced with a CVS block
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Appendix D

Review of Complex Numbers

his appendix is a review of the algebra of complex numbers. The basic operations are
defined and illustrated by several examples. Applications using Euler’s identities are pre-
sented, and the exponential and polar forms are discussed and illustrated with examples. 

D.1 Definition of a Complex Number

In the language of mathematics, the square root of minus one is denoted as , that is, .
In the electrical engineering field, we denote  as  to avoid confusion with current . Essentially,

 is an operator that produces a 90degree counterclockwise rotation to any vector to which it is
applied as a multiplying factor. Thus, if it is given that a vector  has the direction along the
right side of the xaxis as shown in Figure D.1, multiplication of this vector by the operator  will
result in a new vector  whose magnitude remains the same, but it has been rotated counter-
clockwise by . 

Figure D.1. The j operator

Also, another multiplication of the new vector  by  will produce another counterclock-
wise direction. In this case, the vector  has rotated  and its new value now is . When
this vector is rotated by another  for a total of , its value becomes . A
fourth  rotation returns the vector to its original position, and thus its value is again .

Therefore, we conclude that , , and .

T

i i 1–=
i j i

j
A

j
jA

90

x

y
jA

j jA  j2A A–= =

j A–  j 3A jA–= =

j jA–  j– 2A A= =

A

jA j 90
A 180 A–

90 270 j A–  jA–=
90 A

j 2 1–= j 3 j–= j 4 1=

  

    

   

www.ebooko.ir


  Review of Complex Numbers

D2 Circuit Analysis II with MATLAB  Computing and Simulink / SimPower Systems Modeling
Copyright © Orchard Publications

Note: In our subsequent discussion, we will denote the xaxis (abscissa) as the real axis, and the
yaxis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as
“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.*

An imaginary number is the product of a real number, say , by the operator . Thus,  is a real
number and  is an imaginary number.

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number  where  and  are both real numbers, is a complex number.
Then,  and  where  denotes real part of A, and 
the imaginary part of .

By definition, two complex numbers  and  where  and , are equal if
and only if their real parts are equal, and also their imaginary parts are equal. Thus,  if and
only if  and .

D.2 Addition and Subtraction of Complex Numbers
The sum of two complex numbers has a real component equal to the sum of the real components,
and an imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

 and 
then

and

Example D.1  

It is given that , and . Find  and 

Solution:

and

* We may think the real axis as the cosine axis and the imaginary axis as the sine axis.

r j r
jr

A a jb+= a b
a Re A = b Im A = Re A  b Im A =

A

A B A a jb+= B c jd+=
A B=

a c= b d=

A a jb+= B c jd+=

A B+ a c+  j b d+ +=

A B– a c–  j b d– +=

A 3 j4+= B 4 j2–= A B+ A B–

A B+ 3 j4+ = 4 j2– + 3 4+  j 4 2– + 7 j2+= =

A B– 3 j4+ = 4 j2– – 3 4–  j 4 2+ + 1– j6+= =
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D.3 Multiplication of Complex Numbers
Complex numbers are multiplied using the rules of elementary algebra, and making use of the
fact that . Thus, if

 and 
then

and since , it follows that

(D.1)

Example D.2  

It is given that  and . Find 

Solution:

The conjugate of a complex number, denoted as , is another complex number with the same
real component, and with an imaginary component of opposite sign. Thus, if , then

.

Example D.3  

It is given that . Find 

Solution:

The conjugate of the complex number  has the same real component, but the imaginary com-
ponent has opposite sign. Then, 

If a complex number  is multiplied by its conjugate, the result is a real number. Thus, if
, then

j 2 1–=

A a jb+= B c jd+=

A B a jb+  c jd+  ac jad jbc j2bd+ + += =

j 2 1–=

A B ac jad jbc b– d+ +=

ac bd–  j ad bc+ +=

A 3 j4+= B 4 j2–= A B

A B 3 j4+  4 j2–  12 j6– j16 j 28–+ 20 j10+= = =

A
A a jb+=

A a j– b=

A 3 j5+= A

A
A 3 j– 5=

A
A a jb+=

A A a jb+  a jb–  a2 jab– jab j 2b2–+ a2 b2+= = =
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Example D.4  

It is given that . Find 

Solution:

D.4 Division of Complex Numbers
When performing division of complex numbers, it is desirable to obtain the quotient separated
into a real part and an imaginary part. This procedure is called rationalization of the quotient, and it
is done by multiplying the denominator by its conjugate. Thus, if  and ,
then,

(D.2)

In (D.2), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we see
that the quotient is easily separated into a real and an imaginary part.

Example D.5  

It is given that , and . Find 

Solution:

Using the procedure of (D.2), we obtain

D.5 Exponential and Polar Forms of Complex Numbers
The relations

(D.3)

and

A 3 j5+= A A

A A 3 j5+  3 j5–  32 52+ 9 25 34=+= = =

A a jb+= B c jd+=

A
B
---- a jb+

c jd+
-------------- a jb+  c jd– 

c jd+  c jd– 
------------------------------------- A

B
---- B

B
------- ac bd+  j bc ad– +

c2 d 2+
------------------------------------------------------= = = =

ac bd+ 
c2 d 2+

----------------------- j bc ad– 
c2 d 2+

----------------------+=

A 3 j4+= B 4 j3+= A B

A
B
---- 3 j4+

4 j3+
-------------- 3 j4+  4 j3– 

4 j3+  4 j3– 
-------------------------------------- 12 j9– j16 12+ +

42 32+
-------------------------------------------- 24 j7+

25
----------------- 24

25
------ j 7

25
------+ 0.96 j0.28+= = = = ==

e j  j sin+cos=

www.ebooko.ir


Circuit Analysis II with MATLAB  Computing and Simulink / SimPower Systems Modeling D5
Copyright © Orchard Publications

Exponential and Polar Forms of Complex Numbers

(D.4)

are known as the Euler’s identities.

Multiplying (D.3) by the real positive constant C we obtain:

(D.5)

This expression represents a complex number, say , and thus

(D.6)

where the left side of (D.6) is the exponential form, and the right side is the rectangular form.

Equating real and imaginary parts in (D.5) and (D.6), we obtain

(D.7)

Squaring and adding the expressions in (D.7), we obtain

Then,

or

(D.8)

Also, from (D.7)

or

(D.9)

To convert a complex number from rectangular to exponential form, we use the expression

(D.10)

To convert a complex number from exponential to rectangular form, we use the expressions

(D.11)

    e j–  j– sincos=

Ce j C  jC sin+cos=

a jb+

Ce j a jb+=

a C cos=   and  b C sin=

a2 b2+ C cos 2 C sin 2+ C2 2cos 2sin+  C2= = =

C2 a2 b2+=

C a2 b2+=

b
a
--- C sin

C cos
--------------- tan= =

   b
a
--- 
 1–tan=

a jb+ a2 b2+ e
j tan 1–  b

a
--- 

 
=

Ce j C  jC sin+cos=

Ce j– C  j– C sincos=
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The polar form is essentially the same as the exponential form but the notation is different, that
is,

(D.12)

where the left side of (D.12) is the exponential form, and the right side is the polar form.

We must remember that the phase angle  is always measured with respect to the positive real
axis, and rotates in the counterclockwise direction.

Example D.6  

Convert the following complex numbers from rectangular*to exponential and polar forms:

a. 

b. 

c. 

d. 

Solution:

a. The real and imaginary components of this complex number are shown in Figure D.2.

Figure D.2. The components of 
Then,

Check with MATLAB:

x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi;  disp(magx); disp(thetax)

    5

* The rectangular form is also known as Cartesian form.

Ce j C =



3 j4+

1– j2+

2– j–

4 j3–

Re

Im
4

3

5

53.1

3 j4+

3 j4+ 32 42+ e
j 4

3
---

1–
tan 

 
5e j53.1 5 53.1= = =
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Exponential and Polar Forms of Complex Numbers

    53.1301

Check with the Simulink Complex to MagnitudeAngle block* shown in the Simulink
model of Figure D.3.

Figure D.3. Simulink model for Example D.6a

b. The real and imaginary components of this complex number are shown in Figure D.4.

Figure D.4. The components of 
Then, 

Check with MATLAB:

y=1+j*2; magy=abs(y); thetay=angle(y)*180/pi;  disp(magy); disp(thetay)

    2.2361
  116.5651

c. The real and imaginary components of this complex number are shown in Figure D.5. 

* For a detailed description and examples with this and other related transformation blocks, please refer to Intro-
duction to Simulink with Engineering Applications, ISBN 9781934404096.

Re

Im
2

1

116.6
63.4

5

1– j2+

1– j2+ 12 22+ e
j 2

1–
------

1–
tan 
 

5e j116.6 5 116.6= = =

Re

Im

2

1

206.6

153.4Measured26.6
Clockwise)5
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Figure D.5. The components of 

Then,

Check with MATLAB:

v=2j*1; magv=abs(v); thetav=angle(v)*180/pi;  disp(magv); disp(thetav)

    2.2361
 -153.4349

d. The real and imaginary components of this complex number are shown in Figure D.6.

Figure D.6. The components of 

Then,

Check with MATLAB:

w=4j*3; magw=abs(w); thetaw=angle(w)*180/pi;  disp(magw); disp(thetaw)

     5
  -36.8699

Example D.7  

Express the complex number in exponential and in rectangular forms.

Solution:

We recall that . Since each  rotates a vector by  counterclockwise, then is
the same as rotated counterclockwise by .Therefore,

2– j–

2– j– 1 22 12+ e
j 1–

2–
------

1–
tan 
 

5e j206.6
= = 5 206.6 5ej 153.4–  5 153.4– = = =

Re

Im
4

3
5

323.1×

36.9×

4 j3–

4 j– 3 42 32+ e
j 3–

4
------

1–
tan 
 

5e j323.1
= = 5 323.1 5e j36.9–  5 36.9– = = =

2 30–

1– j2= j 90 2 30–

2 30 180

2 30– 2 30 180+  2 210 2 150–= = =
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Exponential and Polar Forms of Complex Numbers

The components of this complex number are shown in Figure D.7.

Figure D.7. The components of 
Then,

Note: The rectangular form is most useful when we add or subtract complex numbers; however,
the exponential and polar forms are most convenient when we multiply or divide complex
numbers.

To multiply two complex numbers in exponential (or polar) form, we multiply the magnitudes
and we add the phase angles, that is, if

then,

(D.13)

Example D.8  

Multiply  by 

Solution:

Multiplication in polar form yields

and multiplication in exponential form yields

To divide one complex number by another when both are expressed in exponential or polar
form, we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract
the phase angle of the divisor from the phase angle of the dividend, that is, if

Re

Im

1.73

1

210

2
150Measured

30
Clockwise)

2 150–

2 150–  2e j– 150
= 2 150 j 150sin–cos  2 0.866– j0.5–  1.73– j–= = =

A M =   and  B N =

AB MN  +  Me jNe j MNe j  + 
= = =

A 10 53.1= B 5 36.9–=

AB 10 5  53.1 36.9– +  50 16.2= =

AB 10e j53.1  5e j– 36.9  50e j 53.1 36.9–  50e j16.2= = =
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then,

(D.14)

Example D.9  

Divide  by 

Solution:

Division in polar form yields

Division in exponential form yields

A M =   and  B N =

A
B
---- M

N
-----  –  Me j

Ne j
------------- M

N
----e j  – 

= = =

A 10 53.1= B 5 36.9–=

A
B
---- 10 53.1

5 36.9–
------------------------ 2 53.1 36.9– –  2 90= = =

A
B
---- 10e j53.1

5e j36.9–
--------------------- 2e j53.1e j36.9 2e j90= ==
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Appendix E

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not
applicable to the material presented in this text, but are included for subject continuity,

and academic interest. They are discussed in detail in matrix theory textbooks. These are
denoted with a dagger (†) and may be skipped. 

E.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix A is denoted as

(E.1)

The numbers  are the elements of the matrix where the index  indicates the row, and  indi-

cates the column in which each element is positioned. For instance,  indicates the element
positioned in the fourth row and third column.

A matrix of  rows and  columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order  (or ). Thus, if a matrix has five
rows and five columns, it is said to be a square matrix of order 5.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–
4 7– 6

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
am1 am2 am3  amn

=

aij i j

a43

m n m n

m n= m n
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In a square matrix, the elements  are called the main diagonal elements.
Alternately, we say that the matrix elements , are located on the main
diagonal.

† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

E.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(E.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
.

If  and  are conformable for addition (subtraction), their sum (difference) will

be another matrix  with the same order as  and , where each element of  is the sum (dif-
ference) of the corresponding elements of  and , that is,

(E.3)

Example E.1  

Compute  and  given that

 and 

Solution:

and

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix
theory textbooks.

a11  a22  a33    ann   

a11  a22  a33    ann   

A A

A aij= B bij= A B=

aij bij= i 1 2 3  m   = j 1 2 3  n   =

m n

A aij= B bij=

C A B C
A B

C A B aij bij = =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+
0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =

A B– 1 2– 2 3– 3 0–
0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =
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Matrix Operations

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; 1  2  5]; % Define matrices A and B
A+B, AB % Add A and B, then Subtract B from A

ans =
     3     5     3
    -1     3     9

ans =
    -1    -1     3
     1    -1    -1

Check with Simulink:

If  is any scalar (a positive or negative number), and not  which is a  matrix, then mul-
tiplication of a matrix  by the scalar  is the multiplication of every element of  by .

Example E.2  
Multiply the matrix

by 

a.  

b. 

Note: The elements of matrices
         A and B are specified in

                MATLAB's Command prompt

Sum 2

Sum 1

-1

1

-1

-1

3

-1

Display 2 (A-B)

3

-1

5

3

3

9

Display 1 (A+B)
B

Constant 2

A

Constant 1

k k  1 1
A k A k

A 1 2–
2 3

=

k1 5=

k2 3– j2+=
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Solution:
a.

b.

Check with MATLAB:

k1=5; k2=(3 + 2*j); %  Define scalars k1 and k2
A=[1 2; 2  3]; % Define matrix A
k1*A, k2*A % Multiply matrix A by scalars k1 and k2  

ans =
     5   -10
    10    15

ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only
when the number of columns of matrix  is equal to the number of rows of matrix . That is, the
product  (but not ) is conformable for multiplication only if  is an  matrix and
matrix  is an  matrix. The product  will then be an  matrix. A convenient way
to determine if two matrices are conformable for multiplication is to write the dimensions of the
two matrices sidebyside as shown below.

 

For the product  we have:

k1 A 5 1 2–
2 3

 5 1 5 2– 
5 2 5 3

5 10–
10 15

= = =

k2 A 3– j2+  1 2–
2 3

 3– j2+  1 3– j2+  2– 
3– j2+  2 3– j2+  3

3– j2+ 6 j4–
6– j4+ 9– j6+

= = =

A B A B
A B

A B B A A m p
B p n A B m n

m  p     p  n
A           B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A  B 

B A
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Matrix Operations

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we
add these products.

Example E.3  

Matrices  and  are defined as

 and 

Compute the products  and 

Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is
feasible, and will result in a , that is,

The dimensions for  and  are respectively  and therefore, the product  is
also feasible. Multiplication of these will produce a  matrix as follows:

Check with MATLAB:

C=[2  3  4];  D=[1  1  2]’; % Define matrices C and D. Observe that D is a column vector
C*D, D*C % Multiply C by D, then multiply D by C

ans =
     7

 Here, B and A are not conformable for multiplication

                     B           A 
      p  n    m  p

A B
A B

C D

C 2 3 4= D
1
1–
2

=

C D D C

C D 1 3  3 1 C D
1 1

C D 2 3 4
1
1–
2

2  1  3  1–  4  2 + + 7= = =

D C 3 1  1 3 D C
3 3

D C
1
1–
2

2 3 4
1  2  1  3  1  4 
1–  2  1–  3  1–  4 

2  2  2  3  2  4 

2 3 4
2– 3– 4–
4 6 8

= = =
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ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an analogous operation exists, and it
will become apparent later in this chapter when we discuss the inverse of a matrix.

E.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix  of (E.4) is an upper triangular matrix. In an upper triangular matrix, not
all elements above the diagonal need to be nonzero.

(E.4)

† A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix  of (E.5) is a lower triangular matrix. In a lower triangular matrix, not all
elements below the diagonal need to be nonzero.

(E.5)

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  of (E.6) is a diagonal matrix.

A

A

a11 a12 a13  a1n

0 a22 a23  a2n

0 0   
  0  
0 0 0  amn

=

B

B

a11 0 0  0
a21 a22 0  0
   0 0
    0

am1 am2 am3  amn

=

C
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Special Forms of Matrices

(E.6)

† A diagonal matrix is called a scalar matrix, if  where  is a

scalar. The matrix  of (E.7) is a scalar matrix with .

(E.7)

A scalar matrix with , is called an identity matrix . Shown below are , , and
 identity matrices. 

(E.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix

ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
. For example, let matrix  be defined as

A=[1  3  1; 2  1 5; 4 7  6] % Define matrix A

A =
    1     3     1

    -2     1    -5
     4    -7     6

C

a11 0 0  0
0 a22 0  0
0 0  0 0
0 0 0  0
0 0 0  amn

=

a11 a22 a33  ann k= = = = = k

D k 4=

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2 3 3
4 4

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n

A A

www.ebooko.ir


Appendix E  Matrices and Determinants

E8 Circuit Analysis II with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Then,
eye(size(A))

displays

ans =
     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and
columns of matrix  are interchangeE. For example, if

(E.9)

In MATLAB, we use the apostrophe () symbol to denote and obtain the transpose of a matrix.
Thus, for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =
     1     2     3
     4     5     6

A' % Display the transpose of A

ans =
     1     4
     2     5
     3     6

† A symmetric matrix  is a matrix such that , that is, the transpose of a matrix  is the
same as . An example of a symmetric matrix is shown below.

(E.10)

† If a matrix  has complex numbers as elements, the matrix obtained from  by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as , for example,

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=

A AT A= A
A

A
1 2 3
2 4 5–
3 5– 6

= AT
1 2 3
2 4 5–
3 5– 6

A= =

A A
A A
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Special Forms of Matrices

MATLAB has two builtin functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,
conj(A), computes the conjugate of a matrix . Using MATLAB with the matrix  defined
as above, we obtain

A = [1+2j   j;  3   23j] % Define and display matrix A

A =
  1.0000 + 2.0000i        0 + 1.0000i
  3.0000             2.0000 - 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =
  1.0000 - 2.0000i        0 - 1.0000i
  3.0000             2.0000 + 3.0000i

† A square matrix  such that  is called skew-symmetric. For example,

Therefore, matrix  above is skew symmetric.

† A square matrix  such that  is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that  is called skewHermitian. For example,

Therefore, matrix  above is skewHermitian.

A 1 j2+ j
3 2 j3–

= A 1 j2– j–
3 2 j3+

=

A A

A AT A–=

A
0 2 3–
2– 0 4–
3 4 0

=     AT
0 2– 3
2 0 4
3– 4– 0

A–= =

A

A AT A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

  AT
1 1 j+ 2

1 j– 3 j–
2 j 0

  AT*
1 1 j+ 2

1 j– 3 j–
2 j 0

A====

A

A AT A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

  AT
j 1– j– 2–

1 j– 3j j
2 j 0

  AT*
j– 1– j+ 2–

1 j+ 3j– j–
2 j– 0

A–====

A
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E.4 Determinants

Let matrix  be defined as the square matrix

(E.11)

then, the determinant of , denoted as , is defined as

(E.12)

The determinant of a square matrix of order n is referred to as determinant of order n.

Let  be a determinant of order , that is,

(E.13)

Then,

(E.14)

Example E.4  

Matrices  and  are defined as

 and 

Compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  1; 2  0]; % Define matrices A and B
det(A), det(B) % Compute the determinants of A and B

A

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
an1 an2 an3  ann

=

A detA

detA a11a22a33ann a12a23a34an1 a13a24a35an2 
             an1a22a13 an2– a23a14 an3a24a15 –––

+ + +=

A 2

A
a11 a12

a21 a22

=

detA a11a22 a21a12–=

A B

A 1 2
3 4

= B 2 1–
2 0

=

detA detB

detA 1 4 3 2– 4 6– 2–= = =

detB 2 0 2 1– – 0 2– – 2= = =
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Determinants

ans =
    -2

ans =
    2

Let  be a matrix of order , that is,

(E.15)

then,  is found from 

(E.16)

A convenient method to evaluate the determinant of order , is to write the first two columns to
the right of the  matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (E.16) above.

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example E.5  

Compute  and  if matrices  and  are defined as

 and 

A 3

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

detA

detA a11a22a33 a12a23a31 a11a22a33+ +=

a11a22a33 a11a22a33 a11a22a33–––

3
3 3

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +



detA detB A B

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–
1 0 2–
0 5– 6–

=
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Solution:

or

Likewise,

or

Check with MATLAB:

A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   3   4;  1   0   2;  0   5   6];det(B) % Define matrix B and compute detB

ans =
   -18

E.5  Minors and Cofactors

Let matrix  be defined as the square matrix of order  as shown below.

(E.17)

If we remove the elements of its  row, and  column, the remaining  square matrix is

called the minor of , and it is denoted as .

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0 0  3 1 1  5 1 1 
2 0 5 – 1 1 2  0 1 3 ––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–
1 0 2– 1 2–
0 5– 6– 2 6–

=

detB 2 0 6–   3–  2–  0  4–  1 5–  
0 0 4–  – 5–  2–  2  6–  1 3–  ––

+ +
20 38– 18–= =

=

A n

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
an1 an2 an3  ann

=

ith jth n 1–

A Mij
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Minors and Cofactors

The signed minor  is called the cofactor of  and it is denoted as .

Example E.6  

Matrix  is defined as

(E.18)

Compute the minors ,     ,      and the cofactors ,  and .

Solution:

and

The remaining minors

and cofactors

are defined similarly.

Example E.7  

Compute the cofactors of matrix  defined as

(E.19)

Solution:

(E.20)

1– i j+
Mij aij ij

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 11 12 13

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

11 1– 1 1+
M11 M11         12 1– 1 2+

M12 M12         13 M13 1– 1 3+
M13= =–= == =

M21    M22    M23    M31    M32    M33    

21 22 23 31 32 and 33    

A

A
1 2 3–
2 4– 2
1– 2 6–

=

11 1– 1 1+ 4– 2
2 6–

20= =           12 1– 1 2+ 2 2
1– 6–

10= =
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                                                   (E.21)

                        (E.22)

(E.23)

                         (E.24)

It is useful to remember that the signs of the cofactors follow the pattern below

that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example E.8  

Matrix  is defined as

(E.25)

Compute the determinant of  using the elements of the first row.

Solution:

13 1– 1 3+ 2 4–
1– 2

0         21 1– 2 1+ 2 3–
2 6–

6= == =

22 1– 2 2+ 1 3–
1– 6–

9–= =           23 1– 2 3+ 1 2
1– 2

4–= =

31 1– 3 1+ 2 3–
4– 2

8–= =         32 1– 3 2+ 1 3–
2 2

8–= =

33 1– 3 3+ 1 2
2 4–

8–= =

+  +  +
 +  + 
+  +  +
 +  + 
+  +  +

A A

A

A
1 2 3–
2 4– 2
1– 2 6–

=

A

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–
1– 2

–– 1 20 2 10–  3 0–– 40= =
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Minors and Cofactors

Check with MATLAB:

A=[1  2  3; 2  4  2; 1  2  6]; det(A) % Define matrix A and compute detA

ans =
    40

We must use the above procedure to find the determinant of a matrix  of order  or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

(E.26)

Determinants of order five or higher can be evaluated similarly.

Example E.9  

Compute the value of the determinant of the matrix  defined as

(E.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

A 4

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =

A

A

2 1– 0 3–
1– 1 0 1–
4 0 3 2–
3– 0 0 1

=

A=2
1 0 1–
0 3 2–
0 0 1

a 

1– 
1– 0 3–

0 3 2–
0 0 1

–

b 

 
+4

1– 0 3–
1 0 1–
0 0 1

c 

3– 
1– 0 3–

1 0 1–
0 3 2–

–

d 
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Next, using the procedure of Example E.5 or Example E.8, we find

, , , 
and thus

We can verify our answer with MATLAB as follows:

A=[ 2  1  0  3; 1  1  0  1; 4  0  3  2;  3  0  0  1]; delta = det(A)

delta =
   -33

Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An exam-
ple of this is the determinant of the cofactor  above.

Property 2: If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero. For example, if

(E.28)

then,

(E.29)

Here,  is zero because the second column in  is  times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1]; det(A)

ans =
     0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This
follows from Property 2 with .

E.6  Cramer’s Rule
Let us consider the systems of the three equations below:

a  6= b  3–= c  0= d  36–=

detA a  b  c  d + + + 6 3– 0 36–+ 33–= = =

c 

A
2 4 1
3 6 1
1 2 1

=

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A 2

m 1=
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Cramer’s Rule

(E.30)

and let

Cramer’s rule states that the unknowns x, y, and z can be found from the relations

(E.31)

provided that the determinant  (delta) is not zero.

We observe that the numerators of (E.31) are determinants that are formed from  by the substi-
tution of the known values , , and , for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (E.30) is a homogeneous set of equations, that is, if , then, 
are all zero as we found in Property 1 above. Then,  also.

Example E.10  

Use Cramer’s rule to find , , and  if

(E.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns , and transferring known values to the right side, we obtain

(E.33)

By Cramer’s rule,

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=


a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====

x
D1


------= y

D2


------= z

D3


------=

A B C

A B C 0= = = D1  D2  and D3 
x y z 0= = =

v1 v2  v3

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=

v

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=
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Using relation (E.31) we obtain

(E.34)

We will verify with MATLAB as follows:

% The following script will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  1  3;  4  3  2;  3  1 1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
d1=[5  1  3;  8  3  2;  4  1  1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  4  8  2;  3  4  1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  1  5; 4  3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3
v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3

%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3


2 1– 3
4– 3– 2–
3 1 1–

2 1–
4– 3–
3 1

6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–
4 1 1–

5 1–
8 3–
4 1

15 8 24 36 10 8–+ + + + 85= = =

D2

2 5 3
4– 8 2–
3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–
4– 3–
3 1

24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1


------ 85

35
------ 17

7
------= = = x2

D2


------ 170

35
---------– 34

7
------–= = = x3

D3


------ 55

35
------– 11

7
------–= = =
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Gaussian Elimination Method

v1=
    17/7
v2=
   -34/7     
v3=
   -11/7 

These are the same values as in (E.34)

E.7  Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can be
done by multiplying the terms of any of the equations of the system by a number such that we
can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we
can find the second unknown. Subsequently, substitution of the two values found can be made
into an equation with three unknowns from which we can find the value of the third unknown.
This procedure is repeated until all unknowns are found. This method is best illustrated with the
following example which consists of the same equations as the previous example.

Example E.11  

Use the Gaussian elimination method to find , , and  of the system of equations

(E.35)

Solution:

As a first step, we add the first equation of (E.35) with the third to eliminate the unknown v2 and
we obtain the equation

(E.36)

Next, we multiply the third equation of (E.35) by 3, and we add it with the second to eliminate
, and we obtain the equation

(E.37)

Subtraction of (E.37) from (E.36) yields

v1 v2  v3

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

5v1 2v3+ 9=

v2

5v1 5v3– 20=
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(E.38)

Now, we can find the unknown  from either (E.36) or (E.37). By substitution of (D.38) into
(E.36) we obtain

(E.39)

Finally, we can find the last unknown  from any of the three equations of (E.35). By substitu-
tion into the first equation we obtain

(E.40)

These are the same values as those we found in Example E.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example E.11. However, it becomes impractical if the coefficients are large or fractional
numbers.

E.8 The Adjoint of a Matrix

Let us assume that  is an n square matrix and  is the cofactor of . Then the adjoint of ,

denoted as , is defined as the n square matrix below.

(E.41)

We observe that the cofactors of the elements of the ith row (column) of  are the elements of
the ith column (row) of .

Example E.12  

Compute  if Matrix  is defined as

7v3 11  or  v3
11
7
------–=–=

v1

5v1 2 11
7

------– 
 + 9  or  v1

17
7

------==

v2

v2 2v1 3v3 5–+ 34
7

------ 33
7
------– 35

7
------– 34

7
------–= = =

A ij aij A

adjA

adjA

11 21 31  n1

12 22 32  n2

13 23 33  n3

    
1n 2n 3n  nn

=

A
adjA

adjA A
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Singular and NonSingular Matrices

(E.42)

Solution: 

E.9 Singular and NonSingular Matrices

An  square matrix  is called singular if ; if ,  is called nonsingular.

Example E.13  

Matrix  is defined as

(E.43)

Determine whether this matrix is singular or nonsingular.

Solution:

Therefore, matrix  is singular.

A
1 2 3
1 3 4
1 4 3

=

adjA

  3 4
4 3

2 3
4 3

–   2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

    1 2
1 4

–   1 2
1 3

7– 6 1–
1 0 1–
1 2– 1

= =

n A detA 0= detA 0 A

A

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A
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E.10   The Inverse of a Matrix

If  and  are  square matrices such that , where  is the identity matrix,  is

called the inverse of , denoted as , and likewise,  is called the inverse of , that is,

If a matrix  is non-singular, we can compute its inverse  from the relation

(E.44)

Example E.14  

Matrix  is defined as

(E.45)

Compute its inverse, that is, find 

Solution:

Here, , and since this is a non-zero value, it is possible to com-
pute the inverse of  using (E.44).

From Example E.12,

Then,

(E.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)      % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

A B n AB BA I= = I B

A B A 1–= A B

A B 1–=

A A 1–

A 1– 1
detA
------------adjA=

A

A
1 2 3
1 3 4
1 4 3

=

A 1–

detA 9 8 12 9– 16– 6–+ + 2–= =

A

adjA
7– 6 1–

1 0 1–
1 2– 1

=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–
1 0 1–
1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =
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Solution of Simultaneous Equations with Matrices

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(E.47)

Example E.15  

Prove the validity of (E.47) for the Matrix  defined as

Proof:

Then,

and

E.11  Solution of Simultaneous Equations with Matrices
Consider the relation

(E.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector)
whose elements are the unknowns. We assume that  and  are conformable for multiplica-
tion.

Multiplication of both sides of (E.48) by  yields:

(E.49)
or

A A 1– I

AA 1– I   or   A 1– A I ==

A

A 4 3
2 2

=

detA 8 6– 2   and   adjA 2 3–
2– 4

== =

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2
1– 2

= = =

AA 1– 4 3
2 2

1 3– 2
1– 2

4 3– 6– 6+
2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B   = = =
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(E.50)

Therefore, we can use (E.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example E.16  
For the system of the equations

(E.51)

compute the unknowns  using the inverse matrix method.

Solution:

In matrix form, the given set of equations is  where

(E.52)

Then,
(E.53)

or

(E.54)

Next, we find the determinant , and the adjoint .

Therefore,

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8= 
 
 
 
 

x1 x2  and x3 

AX B=

A
2 3 1
1 2 3
3 1 2

=   X
x1

x2

x3

=   B
9
6
8

= 

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–
5– 7 1

=
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Solution of Simultaneous Equations with Matrices

and with relation (E.53) we obtain the solution as follows:

(E.55)

To verify our results, we could use the MATLAB’s inv(A) function, and then multiply  by .

However, it is easier to use the matrix left division operation ; this is MATLAB’s solu-

tion of  for the matrix equation , where matrix  is the same size as matrix .

For this example,

A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]'; X=A \ B

X =
    1.9444
    1.6111
    0.2778

Example E.17  
For the electric circuit of Figure E.1,

 
Figure E.1. Electric circuit for Example E.17

the loop equations are

(E.56)

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–
5– 7 1

= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–
5– 7 1

9
6
8

1
18
------

35
29
5

35 18
29 18
5 18

1.94
1.61
0.28

= = = = =

A 1– B

X A \ B=

A 1– B A X B= X B

+


V = 100 v
9  9  4 

2 2 1 

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=
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Use the inverse matrix method to compute the values of the currents , , and 

Solution:

For this example, the matrix equation is or , where

The next step is to find . It is found from the relation

(E.57)

Therefore, we must find the determinant and the adjoint of . For this example, we find that

(E.58)

Then,

and

Check with MATLAB:

R=[10  9   0;  9   20  9;  0  9  15]; V=[100  0  0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 = 22.46   I2 = 13.85   I3 = 8.31

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
MATLAB script above could also have been written as:

R(1,1)=10; R(1,2)=9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=9; R(2,2)=20; R(2,3)=9; R(3,2)=9; R(3,3)=15; V=[100 0 0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 I2 I3

RI V = I R 1– V=

R
10 9– 0

9– 20 9–
0 9– 15

=   V
100

0
0

   and   I
I1

I2

I3

==

R 1–

R 1– 1
detR
------------ adjR=

R

detR 975=   adjR
219 135 81
135 150 90
81 90 119

  =

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =
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Solution of Simultaneous Equations with Matrices

I1 = 22.46   I2 = 13.85   I3 = 8.31

Spreadsheets also have the capability of solving simultaneous equations with real coefficients
using the inverse matrix method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix
Inversion) and MMULT (Matrix Multiplication) functions, to obtain the values of the three cur-
rents in Example E.17.

The procedure is as follows:

1. We begin with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure D.2. Then, we enter the elements of matrix  in G3:G5.

2. Next, we compute and display the inverse of , that is, . We choose B7:D9 for the ele-
ments of this inverted matrix. We format this block for number display with three decimal
places. With this range highlighted and making sure that the cell marker is in B7, we type the
formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that  appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current . As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of  then appear in G7:G9.

Figure E.2. Solution of Example E.17 with a spreadsheet

Example E.18  
For the phasor circuit of Figure E.18

V

R R 1–

R 1–

I

I

1
2
3
4
5
6
7

8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462

R-1= 0.138 0.154 0.092 I= 13.846
0.083 0.092 0.122 8.3077
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Figure E.3. Circuit for Example E.18

the current  can be found from the relation

(E.59)

and the voltages  and  can be computed from the nodal equations

(E.60)

and
(E.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as , where
, , and 

Solution:

The  matrix elements are the coefficients of  and . Simplifying and rearranging the nodal
equations of (E.60) and (E.61), we obtain

(E.62)

Next, we write (E.62) in matrix form as

(E.63)

+



R185 

50 R2

C

L

R3 = 100 

IX

VS

j100 

j200 

170

V1 V2

IX

IX
V1 V2–

R3
-------------------=

V1 V2

V1 170 0–

85
--------------------------------

V1 V2–

100
-------------------

V1 0–

j200
---------------+ + 0=

V2 170 0–

j100–
--------------------------------

V2 V1–

100
-------------------

V2 0–

50
---------------+ + 0=

Ix

YV I=

Y Admit cetan= V Voltage= I Current=

Y V1 V2

0.0218 j0.005– V1 0.01V2– 2=

0.01– V1 0.03 j0.01+ V2+ j1.7=

0.0218 j0.005– 0.01–
0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=
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Solution of Simultaneous Equations with Matrices

where the matrices , , and  are as indicated.

We will use MATLAB to compute the voltages  and , and to do all other computations.
The script is shown below.

Y=[0.02180.005j  0.01;  0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I; % Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); % Display values of V1 and V2

V1 = 
 1.0490e+002 + 4.9448e+001i
V2 = 
  53.4162 + 55.3439i

Next, we find  from

R3=100; IX=(V(1)V(2))/R3 % Compute the value of IX

IX =
   0.5149 - 0.0590i

This is the rectangular form of . For the polar form we use the MATLAB script

magIX=abs(IX), thetaIX=angle(IX)*180/pi  % Compute the magnitude and the angle in

degrees

magIX =
    0.5183

thetaIX =
   -6.5326

Therefore, in polar form,

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements as in Example E.18.

Y V I

V1 V2

IX

IX

IX 0.518 6.53–=
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E.12  Exercises

For Exercises 1, 2, and 3 below, the matrices , , , and  are defined as:

1. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.

e. f. g. h.

2. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. g. h. 

3. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.  e. f. 

4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MAT-
LAB.

a.    b.    

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers
with MATLAB.

a. b. 

A B C D

A
1 1– 4–
5 7 2–
3 5– 6

=     B
5 9 3–
2– 8 2
7 4– 6

=     C=
4 6
3– 8
5 2–

    D 1 2– 3
3– 6 4–

=

A B+ A C+ B D+ C D+

A B– A C– B D– C D–

A B A C B D C D

B A C A D A D· C

detA detB detC detD det A B  det A C 

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

x1– 2x2 3x3– 5x4+ + 14=

x1 3x2 2x3 x4–+ + 9=

3x1 3– x2 2x3 4x4+ + 19=

4x1 2x2 5x3 x4+ + + 27=

1 3 4
3 1 2–
2 3 5

x1

x2

x3


3–
2–

0

=

2 4 3 2–
2 4– 1 3
1– 3 4– 2
2 2– 2 1

x1

x2

x3

x4



1
10
14–
7

=
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Appendix F

Scaling

his chapter discusses magnitude and frequency scaling procedures that allow us to trans-
form circuits that contain passive devices with unrealistic values to equivalent circuits with
realistic values.

F.1 Magnitude Scaling
Magnitude scaling is the process by which the impedance of a two terminal network is changed by
a factor  which is a real positive number greater or smaller than unity. 
If we increase the input impedance by a factor , we must increase the impedance of each
device of the network by the same factor. Thus, if a network consists of , , and  devices and
we wish to scale this network by this factor, the magnitude scaling process entails the following
transformations where the subscript m denotes magnitude scaling.

(F.1)

These transformations are consistent with the timedomain to frequency domain transformations 

(F.2)

and the domain to domain transformations

(F.3)

F.2 Frequency Scaling 
Frequency scaling is the process in which we change the values of the network devices so that at
the new frequency the impedance of each device has the same value as at the original frequency.

T

km

km

R L C

Rm kmR

Lm kmL

Cm
C
km
------

R R
L jL

C 1
jC
----------

t s

R R
L sL

C 1
sC
------
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The frequency scaling factor is denoted as . This factor is also a real positive number and can be
greater or smaller than unity. 

The resistance value is independent of the frequency. However, the complex impedance of any
inductor is , and in order to maintain the same impedance at a frequency  times as great, we

must replace the inductor value by another which is equal to . Similarly, a capacitor with value 

must be replaced with another having a capacitance value equal to . For frequency scaling then, the

following transformations are necessary where the subscript  denotes magnitude scaling.

(F.4)

A circuit can be scaled simultaneously in both magnitude and frequency using the scales values
below where the subscript  denotes simultaneous magnitude and frequency scaling.

(F.5)

Example F.1  
For the network of Figure F.6 compute

Figure F.6. Network for Example F.1

a. the resonant frequency .
b. the maximum impedance .
c. the quality factor .
d. the bandwidth BW.
e. the magnitude of the input impedance , and using MATLAB sketch it as a function of fre-

quency.

kf

sL kf

L kf C

C kf

f

Rf R

Lf
L
kf
----

Cf
C
kf
----

mf

Rmf kmR

Lmf
km
kf
------L

Cmf
1

kmkf
-----------C

Z R L C
2.5  0.5 H 2 F

0

Zmax

Q0P

Z

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling F3
Copyright © Orchard Publications

Frequency Scaling

f. Scale this circuit so that the impedance will have a maximum value of  at a resonant fre-

quency of 

Solution:
a. The resonant frequency of the given circuit is

and thus the circuit is parallel resonant.

b. The impedance is maximum at parallel resonance. Therefore,

c. The quality factor at parallel resonance is

d. The bandwidth of this circuit is 

e. The magnitude of the input impedance versus radian frequency  is shown in Figure F.7 and
was generated with the MATLAB script below.

w=0.01: 0.005: 5; R=2.5; G=1/R; C=2; L=0.5; Y=G+j.*(w.*C1./(w.*L));...
magY=abs(Y); magZ=1./magY; plot(w,magZ); grid

f. Using (F.1), we obtain

Then,

and

After being scaled in magnitude by the factor , the network constants are as shown
in Figure F.8, and the plot is shown in Figure F.9.

5 K

5 106  rad s

0
1
LC

------------ 1 rad s= =

Zmax 2.5 =

Q0P
0C

G
---------- 0CR 1 2 2.5 5= = = =

BW
0
Q0P
--------- 1

5
--- 0.2= = =



km
Rm
R

------- 5000
2.5

------------ 2000= = =

Lm kmL 2000 0.5 1000 H= = =

Cm
C
km
------ 2

2000
------------ 10 3–  F= = =

km 2000=
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Figure F.7. Plot for Example F.1

Figure F.8. The network in Figure F.6 scaled by the factor 

Figure F.9. Plot for the network of Figure F.6 after being scaled by the factor 

The final step is to scale the above circuit to . Using (F.4), we obtain:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Z R L
C

5 K 10 3 H 10 -3 F

km 2000=

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

km 2000=

5 106  rad s

Rf R 5 k= =

Lf L kf 1000 5 106    200 H= = =

Cf C kf 10 3– 5 106 200 pF= = =
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Frequency Scaling

The network constants and its response, in final form, are as shown in Figures F.10 and F.11
respectively. 

Figure F.10. The network in Figure F.6 scaled to its final form

Figure F.11. Plot for Example F.1 scaled to its final form

The plot of Figure F.11 was generated with the following MATLAB script:

w=1: 10^3: 10^7; R=5000; G=1/R; C=200.*10.^(12); L=200.*10.^(6); ...
magY=sqrt(G.^2+(w.*C1./(w.*L)).^2); magZ=1./magY; plot(w,magZ); grid

Check:

The resonant frequency of the scaled circuit is

and thus the circuit is parallel resonant at this frequency.

The impedance is maximum at parallel resonance. Therefore,

The quality factor at parallel resonance is

and the bandwidth is 

Z R L C
5 K 200 H 200 pF

0 1 2 3 4 5 6 7 8 9 10

x 106

0

1000

2000

3000

4000

5000

0
1
LC

------------ 1

0.2 10 3– 0.2 10 9–
----------------------------------------------------------- 1

0.2 10 6–
------------------------ 5 106  rad s= = ==

Zmax 5 K=

Q0P
0C

G
---------- 0CR 5 106 2 10 10– 5 103 5= = = =
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The values of the circuit devices could have been obtained also by direct application of (F.5),
that is,

and these values are the same as obtained before.

Example F.2  

A series  circuit has resistance , inductance , and capacitance .
Use scaling to compute the new values of  and  which will result in a circuit with the same
quality factor , resonant frequency at  and the new value of the capacitor to be .

Solution:
The resonant frequency of the circuit before scaling is 

and we want the resonant frequency of the scaled circuit to be  or .
Therefore, the frequency scaling factor must be

Now, we must compute the magnitude scale factor, and since we want the capacitor value to be
, we use (F.5), that is,

BW
0

Q0P
--------- 5 106

5
----------------- 106= = =

Rmf kmR

Lmf
km
kf
------L

Cmf
km
kf
------C

Rmf kmR 2000 2.5 5 K= = =

Lmf
km
kf
------L 2000

5 106
----------------- 0.5 200 H= = =

Cmf
1

kmkf
-----------C 1

2 103 5 106
----------------------------------------- 2 200 pf= = =

RLC R 1 = L 1 H= C 1 F=

R L
QOS 500 Hz 2 F

0
1
LC

------------ 1 rad s= =

500 Hz 2 500 3142 rad s=

kf
3142

1
------------ 3142= =

2 F
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Frequency Scaling

or

Then, the scaled values for the resistance and inductance are

and 

Cmf
1

kmkf
-----------C=

km
C

kfCmf
-------------- 1

3142 2 10 6–
-------------------------------------- 159= = =

Rm kmR 159 1 159 = = =

Lmf
km
kf
------L 159

3142
------------ 1 50.6 mH= = =

www.ebooko.ir


Appendix F  Scaling

F8 Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

F.3 Exercises
1. A series resonant circuit has a bandwidth of ,  and . Compute

the new resonant frequency and inductance if the circuit is scaled

a. in magnitude by a factor of 5

b. in frequency by a factor of 5

c. in both magnitude and frequency by factors of 5

2. A scaled parallel resonant circuit consists of , , and . Com-
pute  and  if the original circuit had the following values before scaling.

a.  and 

b.  and 

c.  and 

100 rad s Q0s 20= C 50 F=

R 4 K= L 0.1 H= C 0.3 F=

km kf

R 10 = L 1 H=

R 10 = C 5 F=

L 1 H= C 5 F=
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Solutions to EndofAppendix Exercises

F.4 Solutions to EndofAppendix Exercises
1.  a. It is given that  and ; then,

 

Since , , and with ,

. Also, 

and

  or 

b. It is given that  and from (a) . Then, with ,

         
Also, 

and 

or
 

c.   and . Then, from (F.5)

Also from (F.5)

and

 or 

2.  a.  From (F.1),  and from (F.5)

b.  From (a)  and from (F.5),

BW 0 QOS= 100= QOS 20=

0 BW QOS 100 20 2000 rad s= = =

0
2 1 LC= LOLD 1 0

2 C 1 4 106 50 10 6–  5 mH= = = km 5=

LNEW kmLOLD 5 5 mH 25 mH= = = CNEW COLD km 50 10 6– 5 10 F= = =

0 NEW
2 1 LNEWCNEW 1 25 10 3– 10 10 6–  108 25= = = 0 NEW 2000 r s=

COLD 50 10 6–= LOLD 5 mH= kf 5=

LNEW LOLD kf 5 10 3– 5 1 mH= = =

CNEW COLD kf 50 10 6– 5 10 F= = =

0 NEW
2 1 LNEWCNEW 1 10 3– 10 10 6–  108= = =

0 NEW 10000 r s=

LOLD 5 mH= COLD 50 10 6–=

LNEW km kf  LOLD 5 5  5 mH 5 mH= = =

CNEW 1 kmkf   COLD 50 F 5 5  2 F= = =

0 NEW
2 1 LNEWCNEW 1 5 10 3– 2 10 6–  108= = = 0 NEW 10000 r s=

km RNEW ROLD 4000 10 400= = =

kf LOLD LNEW  km 1 0.1  400 4000= = =

km 400=

kf 1 km  COLD CNEW  1 400  5 0.3 10 6–  41677= = =
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c.  From (F.5)  and thus   (1) 

Also from (F.5),   (2)

Substitution of (1) into (2) yields , , or , 

and from (1) 

kf km LOLD LNEW 1 0.1 10= = = kf 10km=

km kf COLD CNEW 5 0.3 10 6– 5 106 0.3= = =

10km km 5 106 0.3= km
2 5 106 3= km 1291=

kf 1291 10 12910= =
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Appendix G

Per Unit System

his chapter introduces the per unit system. This system allows us to work with normalized
power, voltage current, impedance, and admittance values known as per unit (pu) values.
The relationship between units in a per-unit system depends on whether the system is sin-

glephase or threephase. Three-phase systems are discussed in Chapters 11 and 12.

G.1 Per Unit Defined
By definition, 

(G.1)

A per unit (pu) system defines per unit values for voltampere (VA) power, voltage, current,
impedance, and admittance, and of these only two of these are independent. It is customary to
choose VA (or KVA) power and nominal voltage as the independent base values, and others are
specified as multiples of selected base values. 

For single-phase systems, the pu values are based on rated VA (or KVA) rated power and on the
nominal voltage of the equipment, e.g., singlephase transformer, singlephase motor. 

Example G.1  

A singlephase transformer is rated  and the nominal voltage on the primary winding is
. Compute its pu impedance.

Solution:

(G.2)

and assuming that the actual primary winding voltage, current, and impedance are
, , and , respectively, the per unit values are computed as follows:

T

Per Unit Value Actual Value
Base Value

---------------------------------=

10 KVA
480 V RMS

Base Current (amperes) Base KVA
Base Volts
--------------------------- 10000 VA

480 V
------------------------- 20.83 A RMS= = =

Base Impedance (Ohms) Base Volts
Base Current
-------------------------------- 480 V

20.83 A
------------------- 23.04 = = =

436 Volts RMS 15 A RMS 5 

  

    

   

/wiki/Single_phase
/wiki/Single_phase
/wiki/Three_phase
/wiki/Electric_power
/wiki/Voltage
/wiki/Current_(electricity)
/wiki/Electrical_impedance
/wiki/Admittance
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(G.3)

The base impedance in (G.2) is also expressed as

(G.4)

Thus, the pu impedance can also be expressed as

(G.5)

and using the values above we obtain

as before.

The pu values allow us to express quantities in percentages, that is,

(G.6)
and thus  

The per unit values in threephase systems are based on 

(G.7)

Example G.2  

A threephase Yconnected transformer is rated  and the linetoline voltage is
. Compute its per phase (linetoneutral) pu impedance.

Solution:
The per phase (linetoneutral) pu values are computed as follows:

Voltagepu
Actual Volts
Base Volts

-------------------------------- 436 V
480 V
--------------- 0.91 pu= =

Currentpu
Actual Current
Base Current

------------------------------------- 15 A
20.83 A
------------------- 0.72 pu= =

Impedancepu
Actual Impedance

Base Impedance
------------------------------------------------- 5 

23.04 
-------------------- 0.22 pu= =

Base Impedance (Ohms) Base Volts
Base Current
-------------------------------- Base Volts

Base KVA  Base Volts 
-------------------------------------------------------------------- Base Volts 2

Base KVA 
----------------------------------= = =

Impedancepu
Actual Impedance

Base Impedance
------------------------------------------------- Actual Impedance

Base Volts 2 Base KVA 
-----------------------------------------------------------------------

                       Actual Impedance Base KVA 
Base Volts 2

----------------------------------

= =

=

Impedancepu   5 10000

4802
--------------- 0.22 pu=

% pu 100=

0.22 pu 22%=

Base VA 3-phase VA=

Base Volts Line-to-Line Volts RMS=

7.5 KVA
480 V RMS
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Impedance Transformation from One Base to Another Base

(G.8)

and assuming that the per phase (linetoneutral) actual primary winding voltage, current, and
impedance are , , and  respectively, the per phase (lineto
neutral) per unit values are computed as follows:

(G.9)

G.2 Impedance Transformation from One Base to Another Base

Often, we need to change the base values from one base to another, and thus we must change the
original pu values to the new base pu values. Denoting the original pu as  and the new pu as

, and using relation (G.5) we obtain:

(G.10)

from which,

(G.11)

Example G.3  

A threephase AC motor rated , , , , fullload effi-
ciency , power factor , is connected to a ,  system. Compute its pu
impedance on the system base values.

Solution:
First, we must find the rated KVA of the motor. It is computed from the equation

Per phase Base Current (A) Per phase Base KVA
Per phase Base Volts
------------------------------------------------------- 7.5 3  KVA

480 3  V
----------------------------- 9.02 A RMS= = =

Base Impedance ( Per phase Base Volts
Per phase Base Current
------------------------------------------------------------- 480 3  KV

9.02 A
------------------------------- 30.73 = = =

472 3  Volts RMS 12.2 A RMS 5 

Voltagepu
Actual Volts
Base Volts

-------------------------------- 472 3  V
480 3  V
-------------------------- 0.98 pu= =

Currentpu
Actual Current
Base Current

------------------------------------- 9.02 A
12.2 A
---------------- 0.74 pu= =

Impedancepu
Actual Impedance

Base Impedance
------------------------------------------------- 5 

30.73 
-------------------- 0.16 pu= =

pu1

pu2

Impedancepu1
Impedancepu2
-------------------------------------

Actual Impedance Base KVA1  Base Volts1 2

Actual Impedance Base KVA2  Base Volts2 2

-----------------------------------------------------------------------------------------------------------------------------------=

Impedancepu2 Impedancepu1
Base KVA2 
Base KVA1 

----------------------------------
Base Volts1
Base Volts2
------------------------------ 

 
2

 =

500 hp 2.0 KV 60 Hz pu impedance 0.26=

88 % 0.85 10 000 KVA 4 160 V
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(G.12)

Thus,

and with (G.11) we obtain

Example G.4  

A stepdown threephase transformer is rated , , with  pu
impedance. It is proposed to use this transformer on a ,  system. Compute:

a. The pu impedance of the ,  system.

b. If the  is to be used as the new base voltage on the high voltage side, what would the
base voltage be on the low voltage side?

c. What would the base current values be on the high voltage side and the low voltage side on
the ,  system?

Solution:
a. 

b.
By proportion,

c.

Motor Rated KVA Rated hp  0.746 Kw/hp
Full Load Efficiency Rated Power Factor
--------------------------------------------------------------------------------------------------------------------=

Motor Rated KVA 500 0.746
0.88 0.85
---------------------------- 500 0.746

0.88 0.85
---------------------------- 500 KVA1= = =

Impedancepu2 0.26 10000
500

--------------- 2
4.16
---------- 

  2
  1.2= =

1 000 KVA 13 200 / 480 V 0.0575
750 KVA 12 000 V

750 KVA 12 000 V

12 000 V

750 KVA 12 000 V

Impedancepu2 Impedancepu1
Base KVA2 
Base KVA1 

----------------------------------
Base Volts1
Base Volts2
------------------------------ 

 
2

                         



0.0575 750
1 000
--------------- 13.2

12
---------- 

  2
  0.052= =

=

Low voltage side 480 12
13.2
---------- 436= =

High voltage side base current 750
3 12

----------------- 36 A= =

Low voltage side base current 750
3 0.436

------------------------- 993 A= =
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Appendix H

Review of Differential Equations

his appendix is a review of ordinary differential equations. Some definitions, topics, and
examples are not applicable to introductory circuit analysis but are included for continuity of
the subject, and for reference to more advance topics in electrical engineering such as state

variables. These are denoted with an asterisk and may be skipped.

H.1 Simple Differential Equations
In this section we present two simple examples to show the importance of differential equations in
engineering applications.

Example H.1  

A  capacitor is being charged by a constant current . Find the voltage  across this capacitor
as a function of time given that the voltage at some reference time  is . 

Solution:
It is given that the current, as a function of time, is constant, that is,

(H.1)

We know that the current and voltage in a capacitor are related by

(H.2)

and for our example, . Then, by substitution of (H.2) into (H.1) we obtain

By separation of the variables,
(H.3)

and by integrating both sides of (H.3) we obtain

(H.4)

where  represents the constants of integration of both sides. 

T

1 F I vC

t 0= V0

iC t  I cons ttan= =

iC t  C
dvC

dt
---------=

C 1=

dvC

dt
--------- I=

dvC Idt=

vC t  It k+=

k
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We can find the value of the constant  by making use of the initial condition, i.e., at ,
 and (H.4) then becomes

(H.5)

or , and by substitution into (H.4),

(H.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-
duced across the terminals of the capacitor.

Example H.2  

Find the current  through an inductor whose slope at the coordinate  is  and the
current  passes through the point .

Solution:
We are given that

(H.7)

By separating the variables we obtain
(H.8)

and integrating both sides we obtain
(H.9)

where  represents the constants of integration of both sides.

We find the value of the constant  by making use of the initial condition. For this example,
 and thus at , . With these values (H.9) becomes

(H.10)

or , and by substitution into (H.9),

(H.11)

k t 0=

vC V0=

V0 0 k+=

k V0=

vC t  It V0+=

iL t  t iL  tcos
iL  2 1, 

diL

dt
------- tcos=

diL tdtcos=

iL t  t k+sin=

k

k
 1= t t  2= = iL 1=

1 
2
---sin k+=

k 0=

iL t  tsin=
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Classification

H.2  Classification
Differential equations are classified by:

1. Type  Ordinary or Partial

2. Order  The highest order derivative which is included in the differential equation

3. Degree  The exponent of the highest power of the highest order derivative after the differen-
tial equation has been cleared of any fractions or radicals in the dependent variable and its
derivatives

For example, the differential equation

is an ordinary differential equation of order  and degree .

If the dependent variable  is a function of only a single variable , that is, if , the dif-
ferential equation which relates  and  is said to be an ordinary differential equation and it is
abbreviated as ODE. 

The differential equation

is an ODE with constant coefficients.

The differential equation

is an ODE with variable coefficients.

If the dependent variable  is a function of two or more variables such as , where 
and  are independent variables, the differential equation that relates , , and  is said to be a
partial differential equation and it is abbreviated as PDE.

An example of a partial differential equation is the wellknown onedimensional wave equation
shown below.

Most of the electrical engineering problems are solved with ordinary differential equations with
constant coefficients; however, partial differential equations provide often quick solutions to
some practical applications as illustrated with the following three examples.

d4y
dx4
-------- 
 

2

5 d3y
dx3
-------- 
 

4

6 d2y
dx2
-------- 
 

6

3 dy
dx
------ 
 

8 y2

x3 1+
--------------+ + + + ye 2x–=

4 2

y x y f x =

y x

d2y
dt2
-------- 3dy

dt
------ 2+ + 5 4tcos=

x2 d2y
dt2
-------- xdy

dt
------ x2 n2– + + 0=

y y f x t = x
t y x t

2y
t2
-------- a22y

x2
--------=
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Example H.3  

The equivalent resistance  of three resistors , , and  in parallel is given by

Given that initially , , and  compute the change in  if  is
increased by  and  is decreased by  while  does not change.

Solution:

The initial value of the equivalent resistance is 

We begin by treating  and  as constants and differentiating  with respect to  we obtain

Similarly,

and the total differential  is

By substitution of the given numerical values we obtain

Therefore, the eequivalent resistance decreases by .

Example H.4  

In a series  circuit that is excited by a sinusoidal voltage, the magnitude of the impedance  is

computed from . Initially,  and . Find the change in the
impedance  if the resistance  is increased by  ( ) and the capacitive reactance 
is decreased by  ).

Solution:

We will first find the partial derivatives  and ; then we compute the change in impedance

RT R1 R2 R3

1
RT
------ 1

R1
------ 1

R2
------ 1

R3
------+ +=

R1 5 = R2 20 = R3 4 = RT R2

10 % R3 5 % R1

RT 5 20 4  2 = =

R2 R3 RT R1

1
RT

2
------–

RT

R1
--------- 1

R1
2

------–=    or   RT

R1
---------

RT

R1
------ 

 
2

=

RT

R2
---------

RT

R2
------ 

 
2

=    and   RT

R3
---------

RT

R3
------ 

 
2

=

dRT

dRT
RT

R1
---------dR1

RT

R2
---------dR2

RT

R3
---------dR3+ +

RT

R1
------ 

 
2
dR1

RT

R2
------ 

 
2
dR2

RT

R3
------ 

 
2
dR+ += =

dRT
2
5
--- 

 
2

0  2
20
------ 

 
2

2  2
4
--- 

 
2

0.2– + + 0.02 0.05– 0.03–= = =

3 %

RC Z

Z R 2 XC
2+= R 4 = XC 3 =

Z R 0.25  6.25 % XC

0.125  4.167%–

Z
R
------- Z

XC
----------
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Classification

from the total differential . Thus,

and

and by substitution of the given values

Therefore, if  increases by  and  decreases by , the impedance  increases by
.

Example H.5  

A light bulb is rated at  volts and  watts. If the voltage decreases by  volts and the resis-
tance of the bulb is increased by , by how much will the power change?

Solution:

At  volts and  watts, the bulb resistance is

and since

and the total differential is

That is, the power will decrease by  watts.

dZ

Z
R
------- R

R 2 XC
2+

---------------------------=    and   Z
XC
---------- XC

R 2 XC
2+

---------------------------=

dZ Z
R
------- dR Z

XC
---------- dXC+

R dR XC dXC+

R 2 XC
2+

---------------------------------------= =

dZ 4 0.25  3 0.125– +

4 2 32+
----------------------------------------------------- 1 0.375 –

5
-------------------------- 0.125= = =

R 6.25 % XC 4.167% Z
4.167%

120 75 5
8 

V 120= P 75=

R V2

P
------ 120 2

75
------------ 192 = = =

P V2

R
------=    then   P

V
------- 2V

R
-------=    and   P

R
------- V2

R2
------–=

dP P
V
------- dV P

R
------- dR+

2V
R

-------dV V2

R2
------– dR= =

2 120 
192

----------------- 5–  1202

1922
-----------– 8  9.375–==

9.375
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H.3  Solutions of Ordinary Differential Equations (ODE)

A function  is a solution of a differential equation if the latter is satisfied when  and its
derivatives are replaced throughout by  and its corresponding derivatives. Also, the initial
conditions must be satisfied.

For example a solution of the differential equation

is
 

since  and its second derivative satisfy the given differential equation.

Any linear, timeinvariant electric circuit can be described by an ODE which has the form

(H.12)

If the excitation in (B12) is not zero, that is, if , the ODE is called a nonhomogeneous
ODE. If , it reduces to:

(H.13)

The differential equation of (H.13) above is called a homogeneous ODE and has  different lin-
early independent solutions denoted as .

We will now prove that the most general solution of (H.13) is:

(H.14)

where the subscript  on the left side is used to emphasize that this is the form of the solution of
the homogeneous ODE and  are arbitrary constants.

y f x = y
f x 

d2y
dx2
-------- y+ 0=

y k1 xsin k2 xcos+=

y

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
--------------  a1

dy
dt
------ a0 y+ + + +

             
bm

d mx
dt m
---------- bm 1–

d m 1– x
dt n 1–
---------------  b1

dx
dt
------ b0x+ + + +

Excitation Forcing  Function x t 

=

NON HOMOGENEOUS DIFFERENTIAL EQUATION–

                

x t  0
x t  0=

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
--------------  a1

dy
dt
------ a0 y+ + + + 0=

HOMOGENEOUS DIFFERENTIAL EQUATION

n
y1 t  y2 t  y3 t   yn t  

yH t  k1 y1 t  k2 y2 t  k3 y3 t   kn yn t + + + +=

H
k1 k2 k3  kn   

www.ebooko.ir


Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Modeling H-7
Copyright © Orchard Publications

Solutions of Ordinary Differential Equations (ODE)

Proof:

Let us assume that  is a solution of (H.13); then by substitution, 

(H.15)

A solution of the form  will also satisfy (H.13) since

(H.16)

If  and  are any two solutions, then  will also be a solution
since

and

 

Therefore,

(H.17)

In general, if

are the  solutions of the homogeneous ODE of (H.13), the linear combination

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary
solution, will be referred to as the natural response, and will be denoted as  or simply . The
particular solution of a nonhomogeneous ODE will be referred to as the forced response, and will

y1 t 

an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
-----------------  a1

dy1

dt
-------- a0 y1+ + + + 0=

k1y1 t 

an
d n

dtn
------- k1 y1  an 1–

d n 1–

dtn 1–
------------ k1 y1   a1

d
dt
----- k1 y1  a0 k1 y1 + + + +

k1 an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
-----------------  a1

dy1

dt
-------- a0 y1+ + + +

 
 
 

0==

y y1 t = y y2 t = y y1 t  y2 t +=

an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
-----------------  a1

dy1

dt
-------- a0 y1+ + + + 0=

an
d ny2

dtn
----------- an 1–

d n 1– y2

dt n 1–
-----------------  a1

d y2

dt
--------- a0 y2+ + + + 0=

an
d n

dtn
------- y1 y2+  an 1–

d n 1–

dtn 1–
------------ y1 y2+   a1

d
dt
----- y1 y2+  a0 y1 y2+ + + + +

an
d n

dtn
------- y1 an 1–

d n 1–

dtn 1–
------------ y1  a1

d
dt
----- y1 a0 y1

an
d n

dtn
------- y2 an 1–

d n 1–

dtn 1–
------------ y2  a1

d
dt
----- y2 a0 y2

+ + + +

+ + + + + 0

=

=

y k1y1 t  k2y1 t  k3y3 t   knyn t  =

n

y k1y1 t  k2y1 t  k3y3 t   knyn t + +++=

yN t  yN
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be denoted as  or simply . Accordingly, we express the total solution of the nonhomoge-
neous ODE of (H.12) as:

(H.18)

The natural response  contains arbitrary constants and these can be evaluated from the given
initial conditions. The forced response , however, contains no arbitrary constants. It is impera-
tive to remember that the arbitrary constants of the natural response must be evaluated from the
total response.

H.4  Solution of the Homogeneous ODE
Let the solutions of the homogeneous ODE

(H.19)

be of the form
(H.20)

Then, by substitution of (H.20) into (H.19) we obtain

or
(H.21)

We observe that (H.21) can be satisfied when

(H.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield
trivial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the
only meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

(H.23)

Since the characteristic equation is an algebraic equation of an nthpower polynomial, its solu-
tions are , and thus the solutions of the homogeneous ODE are:

(H.24)

yF t  yF

y t  y Natural
Response

y Forced
Response

+ yN yF+= =

yN

yF

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
--------------  a1

dy
dt
------ a0 y+ + + + 0=

y kest=

an ksnest an 1– ksn 1– est  a1 ksest a0 kest+ + + + 0=

an sn an 1– sn 1–  a1 s a0+ + + +  kest 0=

an sn an 1– sn 1–  a1 s a0+ + + +  0   or  k 0    or  s= –= =

an sn an 1– sn 1–  a1 s a0+ + + +  0=

Characteristic Equation

                

s1 s2 s3  sn   

y1 k1e
s1t

= y2 k2e
s2t

= y3 k3e
s3t

=  yn kne
snt

=   
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Solution of the Homogeneous ODE

Case I  Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the  solu-
tions of (H.23) are independent and the most general solution is:

(H.25)

Case II  Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the
terms of (H.24) are not independent and therefore (H.25) does not represent the most general
solution. If, for example, , then,

and we see that one term of (H.25) is lost. In this case, we express one of the terms of (H.25), say

 as . These two represent two independent solutions and therefore the most general
solution has the form:

(H.26)

If there are m equal roots the most general solution has the form:

(H.27)

Case III  Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is  where  and  are real numbers, then another root is

Then, 

(H.28)

n

yN k1e
s1t

= k2e
s2t

 kne
snt

+ + +

FOR DISTINCT ROOTS

s1 s2=

k1e
s1t

k2e
s2t

+ k1e
s1t

k2e
s1t

+ k1 k2+ e
s1t

k3e
s1t

= = =

k2e
s1t

k2te
s1t

yN k1 k2t+ e
s1t

= k3e
s3t

 kne
snt

+ + +

yN k1 k2t  kmtm 1–+ + +  e
s1t

= kn i– e
s2t

 kne
snt

+ + +

FOR M EQUAL ROOTS

s1 – j+=  
s1 – j– =

k1e
s1t

k2e
s2t

+ k1e  t– jt+ k2e t– j– t+ e  t– k1ejt k2e j– t+ = =

e t– k1 tcos jk1 sin t k2 tcos jk2– sin t+ + =

e t– k1 k2+  tcos j k1 k2–  sin t+ =

e t– k3 tcos k4 sin t+  e  t– k5 t + cos==

FOR TWO COMPLEX CONJUGATE ROOTS
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If (H.28) is to be a real function of time, the constants  and  must be complex conjugates.
The other constants , , , and the phase angle  are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or

b. The Method of Variation of Parameters

We will study the Method of Undetermined Coefficients first.

H.5  Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of . Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the nonhomogeneous ODE

(H.29)

where , , and  are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if  and  are any two solutions of (H.29), the linear combination
, where  and  are arbitrary constants, is also a solution, that is, if we know

the two solutions, we can obtain the most general solution by forming the linear combination of
 and . To be certain that there exist no other solutions, we examine the Wronskian Determi-

nant defined below.

(H.30)

If (H.30) is true, we can be assured that all solutions of (H.29) are indeed the linear combination
of  and .

The forced response is, in most circuit analysis problems, obtained by observation of the right side
of the given ODE as it is illustrated by the examples that follow.

k1 k2

k3 k4 k5 

order 2

a
t2

2

d

d y b d
dt
-----y cy+ + f x =

a b c

y1 y2

y3 k1 y1 k2 y2+= k1 k2

y1 y2

W y1 y2 
y1 y2

d
dx
------ y1

d
dx
------ y2

 y1
d

dx
------ y2 y2

d
dx
------ y1– 0=

WRONSKIAN DETERMINANT

y1 y2
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Using the Method of Undetermined Coefficients for the Forced Response

Example H.6  

Find the total solution of the ODE

(H.31)

subject to the initial conditions  and  where 

Solution:
This is a homogeneous ODE and its total solution is just the natural response found from the
characteristic equation  whose roots are  and . The total response
is:

(H.32)

The constants  and  are evaluated from the given initial conditions. For this example,

or
(H.33)

Also, 

or
(H.34)

Simultaneous solution of (H.33) and (H.34) yields  and . By substitution into
(H.32), we obtain 

(H.35)

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4')  % Must have Symbolic Math Tool box installed

y =
13/(2*exp(t)) - 7/(2*exp(3*t))

pretty(y)

  13 exp(-t)   7 exp(-3 t)
  ---------- - -----------
       2            2

The function  is shown in Figure H.1 plotted with the MATLAB command 
ezplot(y,[0 10])

t2

2

d

d y 4dy
dt
------ 3y+ + 0=

y 0  3= y' 0  4= y' dy dt=

s2 4s 3+ + 0= s1 1–= s2 3–=

y t  yN t  k1e t– k2e 3t–+= =

k1 k2

y 0  3 k1e0 k2e0    += =

k1 k2+ 3=

y' 0  4 dy
dt
------

t 0=

k1e t–– 3k2e 3t––
t 0=

= = =

k1– 3k2– 4=

k1 6.5= k2 3.5–=

y t  yN t  6.5e t– 3.5e 3t––= =

y f t =
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Figure H.1. Plot for the function  of Example H.6.

Example H.7  

Find the total solution of the ODE

(H.36)

subject to the initial conditions  and 

Solution:
The left side of (H.36) is the same as that of Example H.6.Therefore,

(H.37)

(We must remember that the constants  and  must be evaluated from the total response).

To find the forced response, we assume a solution of the form

(H.38)

We can find out whether our assumption is correct by substituting (H.38) into the given ODE of
(H.36). Then, 

(H.39)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

t

13/(2 exp(t)) - 7/(2 exp(3 t))

y

y f t =

t2

2

d

d y 4dy
dt
------ 3y+ + 3e 2t–=

y 0  1= y' 0  1–=

yN t  k1e t– k2e 3t–+=

k1 k2

yF Ae 2t–=

4Ae 2t– 8Ae 2t–– 3Ae 2t–+ 3e 2t–=
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Using the Method of Undetermined Coefficients for the Forced Response

from which  and the total solution is

(H.40)

The constants  and  are evaluated from the given initial conditions. For this example,

or
(H.41)

Also,

or
 

Simultaneous solution of (H.41) and (H.42) yields  and . By substitution into
(H.40), we obtain

(H.42)

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+4*Dy+3*y=3*exp(2*t)', 'y(0)=1', 'Dy(0)=1')

y=
    5/(2*exp(t)) - 3/exp(2*t) + 3/(2*exp(3*t))

pretty(y)

  5 exp(-t)                 3 exp(-3 t)
  --------- - 3 exp(-2 t) + -----------
      2                          2

ezplot(y,[0 8])

The plot is shown in Figure H.2

Example H.8  

Find the total solution of the ODE

(H.43)

subject to the initial conditions  and 

A 3–=

y t  yN yF+ k1e t– k2e 3t– 3– e 2t–+= =

k1 k2

y 0  1 k1e0 k2e0 3e0    –+= =

k1 k2+ 4=

y' 0  1– dy
dt
------

t 0=

k1e t–– 3k2e 3t–– 6e 2t–+
t 0=

= = =

k1– 3k2– 7–=

k1 2.5= k2 1.5=

y t  yN yF+ 2.5e t– 1.5e 3t– 3– e 2t–+= =

t2

2

d

d y 6dy
dt
------ 9y+ + 0=

y 0  1–= y' 0  1=
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Figure H.2. Plot for the function  of Example H.7

Solution:
This is a homogeneous ODE and therefore its total solution is just the natural response found
from the characteristic equation  whose roots are  (repeated roots).
Thus, the total response is

(H.44)

Next, we evaluate the constants  and  from the given initial conditions. For this example,

or
(H.45)

Also,

or
(H.46)

From (H.45) and (H.46) we obtain  and . By substitution into (H.44),

(H.47)

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+6*Dy+9*y=0', 'y(0)=1', 'Dy(0)=1')

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

5/(2 exp(t)) - 3/exp(2 t) + 3/(2 exp(3 t))

y

y f t =

s2 6s 9+ + 0= s1 s2 3–= =

y t  yN k1e 3t– k2 te 3t–+= =

k1 k2

y 0  1– k1e0 k2 0 e0  += =

k1 1–=

y' 0  1 dy
dt
------

t 0=

3k1e 3t–– k2e 3t– 3k2te 3t––+
t 0=

= = =

3k1– k2+ 1=

k1 1–= k2 2–=

y t  e– 3t– 2te 3t––=
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Using the Method of Undetermined Coefficients for the Forced Response

y =
- 1/exp(3*t) - (2*t)/exp(3*t)

ezplot(y,[0 4])

The plot is shown in Figure H.3.

Figure H.3. Plot for the function  of Example H.8.

Example H.9  

Find the total solution of the ODE

(H.48)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants 
and . By inspection, the roots of the characteristic equation of (H.48) are  and 
and thus the natural response has the form

(H.49)

Next, we find the forced response by assuming a solution of the form

(H.50)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t

- 1/exp(3 t) - (2 t)/exp(3 t)

y

y f t =

t2

2

d

d y 5dy
dt
------ 6y+ + 3e 2t–=

k1

k2 s1 2–= s2 3–=

yN k1e 2t– k2 e 3t–+=

yF Ae 2t–=
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We can find out whether our assumption is correct by substitution of (H.50) into the given ODE
of (H.48). Then, 

(H.51)

but the sum of the three terms on the left side of (H.52) is zero whereas the right side can never be
zero unless we let t  and this produces a meaningless result.

The problem here is that the right side of the given ODE of (H.48) has the same form as one of
the terms of the natural response of (H.49), namely the term .

To work around this problem, we assume that the forced response has the form

(H.52)

that is, we multiply (H.50) by  in order to eliminate the duplication of terms in the total
response. Then, by substitution of (H.52) into (H.48) and equating like terms, we find that

. Therefore, the total response is

(H.53)

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+5*Dy+6*y=3*exp(2*t)')

y =
-3*exp(-2*t)+3*t*exp(-2*t)+C1*exp(-3*t)+C2*exp(-2*t)

Example H.10  

Find the total solution of the ODE

(H.54)

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants 
and . We observe that the left side of (H.54) is the same of that of Example H.9. Therefore, the
natural response is the same, that is, it has the form

(H.55)

Next, to find the forced response and we assume a solution of the form

(H.56)

4Ae 2t– 10Ae 2t–– 6Ae 2t–+ 3e 2t–=

k1 e 2t–

yF Ate 2t–=

t

A 3=

y t  yN yF+ k1e 2t– k2e 3t– 3te 2t–+ += =

t2

2

d

d y 5dy
dt
------ 6y+ + 4 5tcos=

k1

k2

yN k1e 2t– k2e 3t–+=

yF A 5tcos=
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Using the Method of Undetermined Coefficients for the Forced Response

We can find out whether our assumption is correct by substitution of the assumed solution of
(H.56) into the given ODE of (H.55). Then,

but this relation is invalid since by equating cosine and sine terms, we find that  and
also . This inconsistency is a result of our failure to recognize that the derivatives of

 produce new terms of the form  and these terms must be included in the forced
response. Accordingly, we let

(H.57)

and by substitution into (H.54) we obtain

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

(H.58)

We use MATLAB to solve (H.58)

% Must have Symbolic Math Tool box installed
format rat; [k3 k4]=solve(19*x+25*y, 25*x19*y4)

k3 =
 50/493
k4 =
 -38/493

Therefore, the total solution is

(H.59)

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)'); y=simple(y)

y =
  -38/493*cos(5*t)+50/493*sin(5*t)+C1*exp(-3*t)+C2*exp(-2*t)

In most engineering problems the right side of the nonhomogeneous ODE consists of elementary
functions such as  (constant),  where  is a positive integer, , , , and linear

25A 5tcos– 25A 5sin t– 6A 5tcos+ 19A 5tcos– 25A 5sin t– 4 5tcos= =

A 4– 19=

A 0=

A 5tcos B 5tsin

yF k3 5sin t k4 5tcos+=

25– k3 5tsin 25k4 5cos t 25k3 5cos t+– 25k4 5sin t–
6k3 5tsin 6k4 5cos t+ + 4 5cos t=

19k3 25k4+ 0=

25k3 19– k4 4=

y t  yN yF t + k1e 2t– k2e 3t– 50
493
--------- 5tsin 38–

493
--------- 5tcos+ + += =

k xn n ekx kxcos kxsin
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combinations of these. Table H.1 summarizes the forms of the forced response for a second order
ODE with constant coefficients.

We must remember that if  is the sum of several terms, the most general form of the forced
response  is the linear combination of these terms. Also, if a term in  is a duplicate of a
term in the natural response , we must multiply  by the lowest power of  that will
eliminate the duplication.

Example H.11  

Find the total solution of the ODE

(H.60)

Solution:

No initial conditions are given; therefore we will express solution in terms of the constants  and
. The roots of the characteristic equation are equal, that is, , and thus the natural

response has the form
(H.61)

To find the forced response (particular solution), we refer to Table H.1 and from the last row we
choose the term . This term with , , and , reduces to .

TABLE H.1 Form of the forced response for 2nd order differential equations

Forced Response of the ODE 

Form of Forced Response 

 (constant)  (constant)

 ( = positive integer)

 (  =real or complex)

 or  ( =constant)

 or  

+ 

ad2y
dt2
-------- bdy

dt
------ cy+ + f t =

f t  yF t 

k K

k t n n K0 t n K1 tn 1–  Kn 1– t Kn+ + + +

ker t r Ker t

k tcos k tsin  K1coat K2 tsin+

k t ner t tcos k t ner t sin t K0 t n K1 tn 1–  Kn 1– t Kn+ + + + er t tcos

K0 t n K1 tn 1–  Kn 1– t Kn+ + + + er t tsin

f t 
yF t  yF t 

yN t  yF t  t

t2

2

d

d y 4dy
dt
------ 4y+ + te 2t– e 2t––=

k1

k2 s1 s2 2–= =

yN k1e 2– t k2 te 2– t+=

k t ner t tcos n 1= r 2–=  0= kte 2– t
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Using the Method of Undetermined Coefficients for the Forced Response

Therefore the forced response will have the form

(H.62)

But the terms  and  are also present in (H.61); therefore, we multiply (H.62) by  to
obtain a suitable form for the forced response which now is

(H.63)

Now, we need to evaluate the constants  and . This is done by substituting (H.63) into the
given ODE of (H.60) and equating with the right side. We use MATLAB do the computations as
shown below.

syms t k3 k4                            % Define symbolic variables
f0=(k3*t^3+k4*t^2)*exp(2*t);  % Forced response (H.64)
f1=diff(f0); f1=simple(f1)          % Compute and simplify first derivative

f1 =
 -t*exp(-2*t)*(-3*k3*t-2*k4+2*k3*t^2+2*k4*t)

f2=diff(f0,2); f2=simple(f2)     % Compute and simplify second derivative

f2 =
 2*exp(-2*t)*(3*k3*t+k4-6*k3*t^2-4*k4*t+2*k3*t^3+2*k4*t^2)

f=f2+4*f1+4*f0; f=simple(f)% Form and simplify the left side of the given ODE

f = 2*(3*k3*t+k4)*exp(-2*t)

Finally, we equate f above with the right side of the given ODE, that is

(H.64)

and we find  and . By substitution of these values into (H.64) and combining
the forced response with the natural response, we obtain the total solution

(H.65)

We verify this solution with MATLAB.

% Must have Symbolic Math Tool box installed
z=dsolve('D2y+4*Dy+4*y=t*exp(2*t)exp(2*t)')

z =
1/6*exp(2*t)*t^31/2*exp(2*t)*t^2
+C1*exp(2*t)+C2*t*exp(2*t)

yF k3 t k4+ e 2– t=

e 2t– te 2t– t2

yF k3 t3 k4 t2+ e 2– t=

k3 k4

2 3k3 t k4+ e 2t– te 2t– e 2t––=

k3 1 6= k4 1 2–=

y t  k1e 2– t k2te 2– t 1
6
---t3e 2– t 1

2
---t2e 2– t

–+ +=
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H.6  Using the Method of Variation of Parameters for the Forced Response

In certain nonhomogeneous ODEs, the right side  cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters.
This method will work with all linear equations including those with variable coefficients such as

(H.66)

provided that the general form of the natural response is known.

Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants  and  by two variables  and
 that satisfy the following three relations:

(H.67)

(H.68)

(H.69)

Simultaneous solution of (H.68) and (H.69) will yield the values of  and ; then,
integration of these will produce  and , which when substituted into (H.67) will yield the
total solution.

Example H.12  

Find the total solution of
(H.70)

in terms of the constants  and  by the

a. method of undetermined coefficients

b. method of variation of parameters

Solution:
With either method, we must first find the natural response. The characteristic equation yields
the roots  and . Therefore, the natural response is

f t 

d2y
dt2
--------  t dy

dt
------  t y+ + f t =

k1 k2 u1

u2

y u1 y1 u2 y2+=

du1

dt
------- y1

du2

dt
------- y2+ 0=

du1

dt
------- dy1

dt
-------

du2

dt
-------- dy2

dt
--------+ f t =

du1 dt du2 dt
u1 u2

d2y
dt2
-------- 4dy

dt
------ 3y+ + 12=

k1 k2

s1 1–= s2 3–=
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Using the Method of Variation of Parameters for the Forced Response

(H.71)

a. Using the method of undetermined coefficients we let  (a constant). Then, by substi-
tution into (H.70) we obtain  and thus the total solution is

(H.72)

b. With the method of variation of parameters we start with the natural response found above as
(H.71) and we let the solutions  and  be represented as

(H.73)

Then by (H.67), the total solution is

or
(H.74)

Also, from (H.68),

or
(H.75)

and from (H.69),

or
(H.76)

Next, we find  and  by Cramer’s rule as follows:

(H.77)

and

(H.78)

Now, integration of (H.77) and (H.78) and substitution into (H.75) yields

yN k1e t– k2 e 3– t+=

yF k3=

k3 4=

y t  yN yF+ k1e t– k2e 3– t 4+ += =

y1 y2

y1 e t–=   and  y2 e 3t–=

y u1y1 u2y2+=

  y u1e t– u2e 3t–+=

du1

dt
--------y1

du2

dt
--------y2+ 0=

  
du1

dt
--------e t– du2

dt
--------e 3t–+ 0=

du1

dt
------- dy1

dt
-------

du2

dt
-------- dy2

dt
--------+ f t =

  
du1

dt
-------- e t–– 

du2

dt
-------- 3e 3t–– + 12=

du1 dt du2 dt

du1

dt
--------

0 e 3t–

12 3e 3t––

e t– e 3t–

e t–– 3e 3t––

------------------------------------------ 12e 3t––

3e 4t–– e 4t–+
------------------------------ 12e 3t––

2e 4t––
----------------- 6et= = = =

du2

dt
--------

e t– 0

e t–– 12
2e 4t––

--------------------------------- 12e t–

2e 4t––
-------------- 6– e3t= = =
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(H.79)

(H.80)

We observe that the last expression in (H.80) is the same as (H.72) of part (a).

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+4*Dy+3*y=12')

y =
(4*exp(t)+C1*exp(-3*t)*exp(t)+C2)/exp(t)

Example H.13  

Find the total solution of

(H.81)

in terms of the constants  and  by any method.

Solution:
This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use
the method of variation of parameters.

The characteristic equation is  from which  and thus the natural response is

(H.82)
We let

(H.83)
Then, by (H.67) the solution is

(H.84)
Also, from (H.68),

or
(H.85)

u1 6 et td 6et k1+= = u2 6– e3t td 2– e3t k2+= =

y u1e t– u2e 3t–+=

6et k1+ e t– 2– e3t k2+ e 3t–+ =

6 k1e t– 2 k2e 3t–+–+ =

k1e t– k2e 3t– 4+ + =

d2y
dt2
-------- 4y+ 2ttan=

k1 k2

s2 4+ 0= s j2=

yN k1ej2t k2e j– 2t+=

y1 2tcos=   and  y2 2tsin=

y u1y1 u2y2 + u1 2tcos u2 2tsin  += =

du1

dt
-------y1

du2

dt
--------y2+ 0=

  
du1

dt
------- 2tcos

du2

dt
-------- 2tsin+ 0=
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Using the Method of Variation of Parameters for the Forced Response

and from (H.69),

(H.86)

Next, we find  and  by Cramer’s rule as follows:

(H.87)

and

(H.88)

Now, integration of (H.87) and (H.88) and substitution into (H.84) yields

(H.89)

(H.90)

(H.91)

Check with MATLAB:

% Must have Symbolic Math Tool box installed
y=dsolve('D2y+4*y=tan(2*t)')

y =
-1/4*cos(2*t)*log((1+sin(2*t))/cos(2*t))+C1*cos(2*t)+C2*sin(2*t)

du1

dt
------- dy1

dt
-------

du2

dt
-------- dy2

dt
--------+ f t  du1

dt
-------= = 2 2tsin– 

du2

dt
-------- 2 2tcos + 2ttan=

du1 dt du2 dt

du1

dt
-------

0 2tsin
2ttan 2 2tcos
2tcos 2tsin

2 2tsin– 2 2tcos

------------------------------------------------------

2t2sin
2tcos

--------------–

2 2t2cos 2 2t2sin+
------------------------------------------- 2t2sin–

2 2tcos
------------------= = =

du2

dt
--------

2tcos 0
2 2tsin– 2ttan

2
-------------------------------------------------- 2tsin

2
------------= =

u1
1
2
---–

2t2sin
2tcos

-------------- td 2tsin
4

------------ 1
4
--- 2tsec 2ttan+ ln– k1+= =

u2
1
2
--- 2tsin td 2tcos

4
-------------– k2+= =

y u1y1 u2y2 + 2t 2tcossin
4

--------------------------- 1
4
--- 2t 2tsec 2ttan+ lncos– k1 2tcos+ 2t 2tcossin

4
---------------------------– k2 2tsin+= =

1
4
--- 2t 2tsec 2ttan+ lncos– k1 2tcos k2 2tsin+ +=
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H.7 Exercises
Solve the following ODEs by any method.

1. 

        

Answer: 

 
2. 

        

Answer: 

3. 

         Hint: Use 

Answer: 

4. 

        

Answer:       

d2y
dt2
-------- 4dy

dt
------ 3y+ + t 1–=

y k1e t– k2e 3t– 1
3
---t 7

9
---–+ +=

d2y
dt2
-------- 4dy

dt
------ 3y+ + 4e t–=

y k1e t– k2e 3t– 2te t–+ +=

d2y
dt2
-------- 2dy

dt
------ y+ + t2cos= t2cos 1

2
--- 2t 1+cos =

y k1e t– k2te t– 1
2
--- 3 2tcos 4 2tsin–

50
---------------------------------------–+ +=

d2y
dt2
-------- y+ tsec=

y k1 tcos k2 tsin t tsin t tcosln cos+ + +=
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Appendix I

Constructing Semilog Paper with Excel® and with MATLAB®

his appendix contains instructions for constructing semilog plots with the Microsoft Excel
spreadsheet. Semilog, short for semilogarithmic, paper is graph paper having one logarithmic
and one linear scale. It is used in many scientific and engineering applications including fre-

quency response illustrations and Bode Plots.

I.1 Instructions for Constructing Semilog Paper with Excel
Figure I.1 shows the Excel spreadsheet workspace and identifies the different parts of the Excel win-
dow when we first start Excel.

 
Figure I.1. The Excel Spreadsheet Workspace

T

Menu bar
ChartWizard

Chart toolbar (hidden)
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Figure I.2 shows that whenever a chart is selected, as shown by the visible handles around the
selected chart, the Chart drop menu appears on the Menu bar and that the Chart toolbar now is visi-
ble. We can now use the Chart Objects Edit Box and Format Chart Area tools to edit our chart.

Figure I.2. The Excel Spreadsheet with Chart selected

1. Begin with a blank spreadsheet as shown in Figure I.1.

2. Click Chart Wizard.

3. Click XY (Scatter) Chart type under the Standard Types tab on the Chart Wizard menu.

4. The Chart subtype shows five different subtypes. Click the upper right (the one showing two
continuous curves without square points.)

5. Click Next, Series tab, Add, Next.

6. Click Gridlines tab and click all square boxes under Value Xaxis and Value Yaxis to place
check marks on Major and Minor gridlines.

Menu bar ChartWizard

Chart Objects Edit Box Format Chart Area Handles

Chart drop menu
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Instructions for Constructing Semilog Paper with Excel

7. Click Next, Finish, click Series 1 box to select it, and press the Delete key on the keyboard to
delete it.

8. The plot area normally appears in gray color. To change it to white, first make sure that the chart
is selected, that is, the handles (black squares) around the plot are visible. Point the mouse on the
Chart Objects Edit Box tool (refer to Figure I.2), scroll down, click Plot Area, then click For-
mat Plot Area (shown as Format Chart Area tool in Figure I.2).

9. The Area section on the Patterns tab shows several squares with different colors. Click the white
square, fifth row, rightmost column, and click OK to return to the Chart display. You will
observe that the Plot Area has now a white background.

10. Click anywhere near the xaxis (lowest horizontal line on the plot) and observe that the Chart
Objects Edit box now displays Value (X) axis. Click the Format Chart Area tool which now
displays Format Axis, click the Scale tab and make the following entries:

Minimum: 1     Maximum: 100000     Major Unit: 10     Minor Unit: 10

Make sure that the squares to the left of these values are not checked.

Click Logarithmic scale to place a check mark, and click OK to return to the plot.

11. Click anywhere near the yaxis (leftmost vertical line on the plot) and observe that the Chart
Objects Edit box now displays Value (Y) axis. Click the Format Chart Area tool which now
displays Format Axis, click he Scale tab and make the following entries:

Minimum: 80     Maximum: 80     Major Unit: 20     Minor Unit: 20

Make sure that the squares to the left of these values are not checked. Also, make sure that the 
Logarithmic scale is not checked. Click OK to return to the plot.

12. You will observe that the xaxis values appear at the middle of the plot. To move them below the
plot, click Format Chart Area tool, click Patterns tab, click Tick mark labels (lower right sec-
tion), and click OK to return to the plot area.

13. To expand the plot so that it will look more useful and presentable, make sure that the chart is
selected (the handles are visible). This is done by clicking anywhere in the chart area. Bring the
mouse close to the lower center handle until a bidirectional arrow appears and stretch down-
wards. Repeat with the right center handle to stretch the plot to the right. Alternately, you may
bring the mouse near the lower right handle and stretch the plot diagonally.

14. You may wish to display the xaxis values in exponential (scientific) format. To do that, click any-
where near the xaxis (zero point), and observe that the Chart Objects Edit box now displays
Value (X) axis. Click the Format Chart Area tool which now displays Format Axis, click the
Number tab and under Category click Scientific with zero decimal places.

15. If you wish to enter title and labels for the x and yaxes, with the chart selected, click Chart (on
the Menu bar), click Chart Options, and on the Titles tab enter the Title and the x and yaxis
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labels. Remember that the Chart drop menu on the Menu bar and the Chart toolbar are hidden
when the chart is deselected.

16. With the values used for this example, your semilog plot should look like the one in Figure I.3,
and it can be printed for creating Bode plots.

Figure I.3. Semilog paper created with Excel

I.2 Instructions for Constructing Semilog Paper with MATLAB
It is much easier to construct semilog paper with MATLAB. The procedure is as follows:

1. Begin with the MATLAB script below.

x=linspace(1,10^6,7); y=linspace(-40,90,7); semilogx(x,y);...
grid; xlabel('Frequency (log scale)'); ylabel('Gain (linear scale)')

With this script, MATLAB creates the plot shown in Figure I.4. 

2. To change the background from gray to white, scroll down the Figure Color icon  and
select the white (blank) square by clicking it.

3. To erase the unwanted line segment, click it, and now the plot appears as shown in Figure I.5.
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Instructions for Constructing Semilog Paper with MATLAB

Figure I.4. MATLAB plot generated with the script above

Figure I.5. Selecting the unwanted line segment to erase it
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4. Change the Line parameter shown in Figure 1.6 to no line*. The plot now appears as shown in
Figure 1.7, and can be printed for use with Bode plots.

Figure I.6. Changing line to no line

Figure I.7. Semilog paper created with MATLAB

*. The unwanted line segment can also be erased with the Delete key.
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element-by-element division and frequency scaling F-1 integration in 

     exponentiation in MATLAB A-21 frequency selectivity 2-5      complex frequency domain 4-7

element-by-element multiplication frequency shifting property 4-3      time domain 4-6

     in MATLAB A-18, A-20 full rectification waveform 4-31 inverse hybrid parameters 10-27

Elements library in function block parameters inverse Laplace transform 4-1

     SimPowerSystems C-3      in Simulink B-10 inverse Laplace transform integral 5-1

elements of the matrix E-1 function file in MATLAB A-26 inverse matrix method of solution E-24

energy efficiencyin transformers 9-45 fzero in MARLAB A-26, A-28 inverse of  a matrix E-22

Environmental block C-2
eps in MATLAB A-22, A-27 G J
equivalent circuit 9-34

Equivalent Delta and g parameters 10-26 j operator D-1

    Y-connected loads 11-10 Gain block in Simulink B-18

Euler’s identities D-5 gamma function 4-14 L
exit in MATLAB A-2 Gaussian elimination method E-19
expand(s) MATLAB function 5-10 generalized factorial function 4-14 L’Hôpital’s rule 1-22, 4-15

exponential and polar forms geometric mean 2-14 laplace MATLAB function 4-26

     of complex numbers D-4 grid in MATLAB A-12 Laplace transform of 

exponential order function 4-2 Ground block in      common functions 4-12
eye(n) in MATLAB E-7      SimPowerSystems C-3 Laplace transform of 

gtext in MATLAB A-13      several waveforms 4-21

F Laplace transformation 4-1

H leakage flux 9-37
factor(s) MATLAB function 5-4 left-hand rule 9-2

Faraday’s law of h parameters 10-22 Leibnitz’s rule 4-6

     electromagnetic induction 9-2 half-power bandwidth 2-12 Lenz’s law 9-3

feedback path 8-3 half-power frequencies 2-11, 2-12 lims = in MATLAB A-27

     negative 8-4 half-power point 2-12, 8-3 line currents 11-5

     path 8-3 half-rectified sine wave 4-25 linear inductor 9-2

     positive 8-4 Heavyside(t) in MATLAB 3-18 linear transformer 9-4, 9-19

figure window in MATLAB A-13 Hermitian matrix E-9 linearity property 4-2, 5-2

filter higher order delta functions 3-13 line-to-line voltages 11-6

     low-pass homogeneous differential equation 1-1 linkage flux 9-4, 9-6

          multiple feed back 1-30 hybrid parameters 10-22 linspace in MATLAB A-14

final value theorem 4-10 hysteresis 9-37, 9-42, 9-61, 9-64 ln A-13

first-order circuit 7-1 log A-13

first-order simultaneous I log(x) in MATLAB A-13

     differential equations 7-1 log10(x) in MATLAB A-13

Flip block command in Simulink B-11 ideal transformer 9-27 log2(x) in MATLAB A-13

flux linkage 9-2 identity matrix E-7 loglog(x,y) in MATLAB A-13

fmin in MATLAB A-27 IF amplifier 2-19 loose-coupled transformer 9-18

forced response H-7 ilaplace MATLAB function 5-4 lower triangular matrix E-6

format in MATLAB A-31 imag(z) in MATLAB A-23

four-wire, three-phase system image-frequency interference 2-18 M
     11-12, 11-3 imaginary axis D-2
fplot in MATLAB A-27 imaginary number D-2 magnetic flux 9-2

frequency impedance matching 9-30 magnitude scaling F-1

     corner 8-9 impedance Z(s) 6-11 Math operations in Simulink B-11

     cutoff 8-3 impractical connections 12-8 MATLAB demos A-2

     half-power 2-13 improper integral 4-15 MATLAB’s editor/debugger A-1

     natural improper rational function 5-1 matrix, matrices

          damped 1-3, 1-15, 7-14 increments between points      adjoint of E-20

     resonant 1-3, 2-2, 2-8      in MATLAB A-14      cofactor of E-12

     response A-12 inductive network transformation 6-1      conformable for addition E-2

     scaling F-1 initial value theorem 4-9      conformable for multiplication E-4

     selectivity 2-5 instantaneous power in      congugate of E-8

frequency response A-12      three-phase systems 11-22, 11-23      defined E-1
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     diagonal of E-1, E-2, E-6 O proper rational function 5-1

     Hermitian E-9 properties of the Laplace transform 4-2

     identity E-6 octave 8-4 pu (per unit system) G-1

     inverse of E-21 ODE - see ordinary differential equation

     left division in MATLAB E-25 one-dimensional wave equation H-3 Q
     lower triangular E-6 one-port network 10-1

     minor of E-12 one-sided Laplace transform 4-1 quality factor at parallel resonance 2-9

     multiplication using MATLAB A-18 open circuit impedance quality factor at series resonance 2-4

     non-singular E-21      parameters 10-17 quit in MATLAB A-2

     singular E-21 open circuit input impedance 10-18

     scalar E-6 open circuit output impedance 10-19 R
     skew-Hermitian E-9 open circuit test 9-38, 9-39

     skew-symmetric E-9 open circuit transfer radio frequency amplifier 2-18

     square E-1      impedance 10-18, 10-19 radio receiver 2-18

     symmetric E-8 open Delta  configuration 11-29 ramp function 3-8

     trace of E-2 order of differential equation H-3 rationalization of the quotient D-4

     transpose E-7 ordinary differential equation H-3 real axis D-2

     upper triangular E-5 orthogonal vectors 7-19 real inductor 2-16

     zero E-2 orthonormal basis 7-19 real number D-2

matrix power series 7-9 oscillatory natural response 1-3 real(z) in MATLAB A-23

maximum power transfer 9-30 overdamped natural response 1-3 reciprocal two-port networks 10-31

Measurements library C-3 reciprocity theorem 10-15
mesh(x,y,z) in MATLAB A-17 P rectangular form D-5
meshgrid(x,y) in MATLAB A-17 rectangular pulse 3-3

method of clearing the fractions 5-14 parallel resonance 2-6 reflected impedance 9-25

method of undetermined coefficients parallel RLC circuit 1-15 relationship between state equations 

     in differential equations H-10 parallel RLC circuit with AC excitation 1-26      and laplace transform 7-29

method of variation of parameters parallel RLC circuit with DC excitation 1-17 repeated poles 5-8

     in differential equations H-20 partial differential equation H-3 repeated roots of characteristic

m-file in MATLAB A-1, A-26 partial fraction expansion 5-2      equation H-9

MINVERSE in Excel E-27 PDE - see partial differential equation residue 5-2, 5-3

MMULT in Excel E-27 per unit system G-1 resistive network transformation 6-1

most general solution H-6 phase currents 11-5 resonant frequency 1-3, 2-1, 2-7

Multiple Feed Back (MFB) phase voltages 11-6 right-hand rule 9-2

     low-pass filter 1-30 phase-sequence indicator 12-5 roots of polynomials A-3

multiple poles 5-8 Phasors method in SimPowerSystems C-2 roots(p) MATLAB function 5-6, A-3

multiplication of complex numbers D-3 pie network 10-31 round(n) in MATLAB A-24

mutual inductance 9-5, 9-6 plot in MATLAB A-10 row vector in MATLAB A-3

mutual voltages 9-7 plot3 in MATLAB A-15 running Simulink B-7

polar form D-6

N polar plot A-24 S
polar(theta,r)  MATLAB function A-23

NaN in MATLAB A-26 polarity marking in transformersw 9-11 sampling property of the delta function 3-11

natural response H-7 poles 5-1, 5-2, 8-6 sawtooth waveform 4-31

     critically damped 1-3 poly(r) in MATLAB A-4 scalar matrix E-7

     overdamped 1-3 polyder(p) in MATLAB A-6 scaling property 4-4

     underdamped 1-3 polynomial construction from known Scope block in Simulink B-12

negative feedback 8-4      roots using MATLAB A-4 script file A-26

negative phase sequence 12-10 polyval in MATLAB A-6 secondary winding 9-4

network port 10-1 secord-order circuit 1-1

     bridged 10-31 positive feedback 8-4 secord-order circuit 7-1

     pie 10-31 positive phase sequence 11-6, 12-10 selectivity 2-5

no-load test 9-38, 9-60 possible transformer connections 11-28 self-induced voltages 9-7

non-homogeneous ordinary power factor 11-20 self-inductance 9-1, 9-4, 9-5

     differential equation H-6 powerlib in SimPowerSystems C-1 semicolons in MATLAB A-8

non-singular matrix E-21 practical transformer connections 12-8 semilog paper with Excel I-1

nth-order delta function 3-13 preselector 2-19 semilog paper with MATLAB I-4

nth-order differential equation 7-1 primary winding 9-4 semilogx in MATLAB A-12
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semilogy in MATLAB A-12 tf2ss MATLAB function 7-33 two wattmeter method of reading 

series resonance 2-1 theorems of the Laplace transform 4-2      three-phase power 11-28

Series RLC Branch block C-3 Thevenin equivalent circuit 9-32 two-port network 10-11

series RLC circuit 1-15 three-phase systems 11-1 two-sided Laplace transform 4-1

series RLC circuit with AC excitation 1-11      balanced currents 11-2 types of differential equation H-3

series RLC circuit with DC excitation 1-2      computation by reduction

settling time 1-20           to single phase 11-19 U
short circuit input admittance 10-11      Delta to Y conversion 11-11

short circuit output admittance 10-12      four-wire system 11-2, 11-13 unbalanced three-phase

short circuit transfer admittance 10-12      equivalent Delta and      power systems 12-1

short-circuit test 9-39           Y-connected loads 11-10 underdamped (oscillatory)

sifting property of the delta function 3-12      instantaneous power 11-22, 11-23      natural response 1-3

signal-to-noise (S/N) ratio 2-18      line currents 11-5 unilateral Laplace transform 4-1

simout To Workspace block B-13      line-to-line voltages 11-6 unit eigenvectors 7-19

simple differential equations H-1      phase currents 11-5 unit impulse function 3-8

SimPowerSystems C-1      phase voltages 11-6 unit ramp function 3-8, 3-9

SimPowerSystems connection lines C-4      positive phase sequence 11-6, 12-10 unit step function 3-2

SimPowerSystems electrical ports C-4      power 11-20 upper triangular matrix E-6

Simulation drop menu in Simulink B-12      power factor 11-20 Using the Simulink Transfer Fcn Block 6-20

simulation start icon in Simulink B-12      three-wire Y-system 11-3

Simulink icon B-7      three-wire Delta system 11-4 V
Simulink Library Browser B-8      two wattmeter method of 

single-phase systems 11-1           reading 3-phase power 11-28 variac 9-36

single-phase three-wire system 11-5      unbalanced 12-1 Voltage Measurement block

singular matrix E-21 three-phase transformer modeling in      in SimPowerSystems C-3

Sinks library in Simulink B-18      SimPowerSystems 11-31 voltage regulation 9-46

size of a matrix E-7 three-wire three-phase Y-system 11-3

skew-Hermitian matrix E-9 Three-wire, three-phase W
skew-symmetric matrix E-9      Delta load system 11-4

solution of the homogeneous ode H-8 time periodicity property 4-8 wattmeter 11-25

solutions of ordinary differential time shifting property 4-3 weber 9-2

     equations H-6 title(‘string’) in MATLAB A-12 Wronskian determinant H-10
solve(equ) MATLAB function 8-23 trace of a matrix E-2

space equations 7-1 transfer admittance 10-4 X
square matrix E-1 transfer function 6-16, 8-4
ss2tf MATLAB function 7-32 transformer xlabel in MATLAB A-12

start simulation in Simulink B-12      coefficient of coupling 9-18

state equations 7-1      DC isolation 9-19 Y
state transition matrix 7-8      dot convention 9-8

state variables 7-1      equivalent circuit 9-31, 9-34 y parameters 10-4, 10-11

State-Space block in Simulink B-12      ideal 9-27 Y to Delta conversion 11-11

step-down transformer 9-14      linear 9-4, 9-19 ylabel in MATLAB A-12

step-up transformer 9-14      mutual inductance 9-5, 9-6

string in MATLAB A-16      mutual voltages 9-7 Z
subplot(m,n,p) in MATLAB A-18      polarity markings 9-11

sum of unit step functions 3-7      self-induced voltages 9-7 z parameters 10-17

summing point 8-4      self-inductance 9-1, 9-4, 9-5 zero matrix E-2

symmetric matrix E-8      step-down 9-14 zero phase sequence 12-10

symmetric network 10-16, 10-31      step-up 9-14 zeros 5-1, 5-2, 8-6

symmetric rectangular pulse 3-5      windings

symmetric triangular waveform 3-6           close-coupled 9-18

symmetrical components 12-10           loose-coupled 9-18

transpose of a matrix E-8

T tree pane in Simulink  B-7

triplet function 3-13

tee network 10-31 turns ratio in transformer 27
text in MATLAB A-14 TV receiver 2-18
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