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Preface

This text is an introduction to the basic principles of electrical engineering. It is the outgrowth of
lecture notes prepared by this author while employed by the electrical engineering and computer
engineering departments as adjunct instructor at various colleges and universities. Many of the
examples and problems are based on the author’s industrial experience. The text is an expansion
of our previous publication, Circuit Analysis I with MATLAB® Applications, ISBN 978-0-
9709511-2-0, and this text, in addition to MATLAB scripts for problem solution, includes
several Simulink® and SimPowerSystems® models. The pages where these models appear are
indicated n the Table of Contents.

The book is intended for students of college grade, both community colleges and universities. It
presumes knowledge of first year differential and integral calculus and physics. While some
knowledge of differential equations would be helpful, it is not absolutely necessary. Chapters 9 and
10 include step—by—step procedures for the solutions of simple differential equations used in the
derivation of the natural and forces responses. Appendices D and E provide a thorough review of
complex numbers and matrices respectively.

In addition to several problems provided at the end of each chapter, this text includes multiple-
choice questions to test and enhance the reader’s knowledge of this subject. Moreover, the
answers to these questions and detailed solutions of all problems are provided at the end of each
chapter. The rationale is to encourage the reader to solve all problems and check his effort for
correct solutions and appropriate steps in obtaining the correct solution. And since this text was
written to serve as a self—study, primary, or supplementary textbook, it provides the reader with a
resource to test the reader’s knowledge.

A previous knowledge of MATLAB® would be very helpful. However he material of this text can
be learned without MATLAB, Simulink and SimPowerSystems. This author highly recommends
that the reader studies this material in conjunction with the inexpensive Student Versions of The
MathWorks™ Inc., the developers of these outstanding products, available from:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760
Phone: 508-647-7000,
www.mathworks.com
info@mathworks.com.

Appendix A of this text provides a practical introduction to MATLAB, Appendix B is an
introduction to Simulink, and Appendix C is an introduction to SimPowerSystems. These
packages will be invaluable in later studies such as the design of analog and digital filters.




Preface

Like any other new book, this text may contain some grammar and typographical errors;
accordingly, all feedback for errors, advice and comments will be most welcomed and greatly
appreciated.

Orchard Publications

39510 Paseo Padre Parkway
Suite 315

Fremont, California 94538
www.orchardpublications.com
info@orchardpublications.com
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Chapter 1

Basic Concepts and Definitions

his chapter begins with the basic definitions in electric circuit analysis. It introduces the

concepts and conventions used in introductory circuit analysis, the unit and quantities used

in circuit analysis, and includes several practical examples to illustrate these concepts.
Throughout this text, a left justified horizontal bar will denote the beginning of an example, and
a right justified horizontal bar will denote the end of the example. These bars will not be shown
whenever an example begins at the top of a page or at the bottom of a page. Also, when one
example follows immediately after a previous example, the right justified bar will be omitted.

1.1 The Coulomb
Two identically charged (both positive or both negative) particles possess a charge of one coulomb
when being separated by one meter in a vacuum, repel each other with a force of 107 ¢? newton

where ¢ = velocity of light=3 x 10® m/s. The definition of coulomb is illustrated in Figure 1.1.

@ 1@

Vacuum E = 10—702 N

q=1 coulomb

Figure 1.1. Definition of the coulomb

The coulomb, abbreviated as C, is the fundamental unit of charge. In terms of this unit, the

charge of an electron is 1.6 x 10 C and one negative coulomb is equal to 6.24 x 10" electrons.
Charge, positive or negative, is denoted by the letter q or Q.

1.2 Electric Current and Ampere

Electric current i at a specified point and flowing in a specified direction is defined as the instan-
taneous rate at which net positive charge is moving past this point in that specified direction, that
s,

i =99 - jim A9 (1.1)

dt  At—0At

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems® Modeling 1-1
Copyright © Orchard Publications



Chapter 1 Basic Concepts and Definitions

The unit of current is the ampere abbreviated as A and corresponds to charge g moving at the

rate of one coulomb per second. In other words,

1 coulomb

1 ampere =
P 1 second

(1.2)

Note: Although it is known that current flow results from electron motion, it is customary to

think of current as the motion of positive charge; this is known as conventional current flow.

To find an expression of the charge g in terms of the current i, let us consider the charge q trans-

ferred from some reference time t, to some future time t. Then, since

i = 49
dt
the charge q is t
t .
al,, = It idt
0

or
t

A -atty) = [ idt

or

t
() = | idt+a(ty)

Example 1.1

(1.3)

For the waveform of current i shown in Figure 1.2, compute the total charge q transferred

between
a.t=0andt =35
b.t=0andt =95
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Electric Current and Ampere
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30 1
Figure 1.2. Waveform for Example 1.1

Solution:

We know that .
q|tt_O = I idt = Area|(;
- 0

Then, by calculating the areas, we find that:

a.ForO<t<2s,area=Y2x (2x30mA) =30 mC
For2 <t<3s,area =1x30 =30mC

Therefore, for 0 < t < 3 s, total charge = total area = 30 mC + 30 mC = 60 mC.

b.ForO <t < 2s,area =2 x (2x30mA) = 30 mC
For2 <t<6s,area =4x30=120mC
For6 <t <8s,area = 2 x (2 x30mA) = 30 mC
For 8 < t < 9's, we observe that the slope of the straight line for t > 6 sis =30 mA / 2's, or —15
mA /s. Then, for 8§ <t < 9s,area = V2 x {Ix(-15)} = -7.5mC.

Therefore, for 0 < t < 9 s, total charge = total area = 30 + 120 + 30-7.5 = 172.5 mC.

Convention: We denote the current i by placing an arrow with the numerical value of the cur-
rent next to the device in which the current flows. For example, the designation shown in Figure
1.3 indicates either a current of 2 A is flowing from left to right, or that a current of -2 A is
moving from right to left.

2A -2A

—_—
-—

Figure 1.3. Direction of conventional current flow
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Chapter 1 Basic Concepts and Definitions

Caution: The arrow may or may not indicate the actual conventional current flow. We will see
later in Chapters 2 and 3 that in some circuits (to be defined shortly), the actual direction of the
current cannot be determined by inspection. In such a case, we assume a direction with an arrow
for said current i; then, if the current with the assumed direction turns out to be negative, we
conclude that the actual direction of the current flow is opposite to the direction of the arrow.

Obviously, reversing the direction reverses the algebraic sign of the current as shown in Figure
1.3.

In the case of time—varying currents which change direction from time-to—time, it is convenient
to think or consider the instantaneous current, that is, the direction of the current which flows at
some particular instant. As before, we assume a direction by placing an arrow next to the device
in which the current flows, and if a negative value for the current i is obtained, we conclude that
the actual direction is opposite of that of the arrow.

1.3 Two Terminal Devices

In this text we will only consider two—terminal devices. In a two—terminal device the current

. . . . . * . .
entering one terminal is the same as the current leaving the other terminal as shown in Figure

1.4.

7TA 7A
o Two terminal device ———————o°

\ Terminal A Terminal B /

Figure 1.4. Current entering and leaving a two—terminal device

Let us assume that a constant value current (commonly known as Direct Current and abbreviated
as DC) enters terminal A and leaves the device through terminal B in Figure 1.4. The passage of
current (or charge) through the device requires some expenditure of energy, and thus we say that
a potential difference or voltage exists “across” the device. This voltage across the terminals of the
device is a measure of the work required to move the current (or charge) through the device.

Example 1.2

In a two—terminal device, a current i(t) = 20cos 100wt mA enters the left (first) terminal.
a. What is the amount of current which enters that terminal in the time interval -10 <t<20 ms?
b. What is the current at t = 40 ms?

c. What is the charge q at t = 5 ms given that q(0) = 0?

* We will see in Chapter 5 that a two terminal device known as capacitor is capable of storing energy.
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Voltage (Potential Difference)

Solution:
a.
-3
il = 20505100 20310 50c0s1007(20 x 10°) — 20¢051007(~10 X 10°%)
0 -10x 10
= 20co0s2m — 20cos(-m) = 40 mA
b.
i, _o4ms = 20c0s100mt|, _ , = 20cos40m = 20 mA
C.
5x107° 5x107°
qt) = j idt+q(0) = j 20c0s100mtdt + 0
0 0
3
= %2gn100mtP* 0 = L26inT 0= 02 ¢
T 0 T 2 T

1.4 Voltage (Potential Difference)

The voltage (potential difference) across a two—terminal device is defined as the work required
to move a positive charge of one coulomb from one terminal of the device to the other terminal.

The unit of voltage is the volt (abbreviated as V or v) and it is defined as

1 volt = L Joule (1.4)
1 coulomb

Convention: We denote the voltage v by a plus (+) minus (=) pair. For example, in Figure 1.5,
we say that terminal A is 10 V positive with respect to terminal B or there is a potential differ-
ence of 10 V between points A and B. We can also say that there is a voltage drop of 10 V in
going from point A to point B. Alternately, we can say that there is a voltage rise of 10 V in
going from B to A.

A

|

,_
o
<
Two terminal
device

|

Figure 1.5. Illustration of voltage polarity for a two—terminal device

Caution: The (+) and (-) pair may or may not indicate the actual voltage drop or voltage rise.
As in the case with the current, in some circuits the actual polarity cannot be determined by
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Chapter 1 Basic Concepts and Definitions

inspection. In such a case, again we assume a voltage reference polarity for the voltage; if this ref-
erence polarity turns out to be negative, this means that the potential at the (+) sign terminal is
at a lower potential than the potential at the (-) sign terminal.

In the case of time—varying voltages which change (+) and (-) polarity from time—to—time, it is
convenient to think the instantaneous voltage, that is, the voltage reference polarity at some partic-
ular instance. As before, we assume a voltage reference polarity by placing (+) and (-) polarity
signs at the terminals of the device, and if a negative value of the voltage is obtained, we conclude
that the actual polarity is opposite to that of the assumed reference polarity. We must remember
that reversing the reference polarity reverses the algebraic sign of the voltage as shown in Figure

1.6.

A
- Two terminal device =

B — A—_ Same device

12v

+‘cv

-12v

Figure 1.6. Alternate ways of denoting voltage polarity in a two—terminal device

Example 1.3

The i —v (current—voltage) relation of a non-linear electrical device is given by

0.2sin3t

i(t) = 0.1(e 1)

a. Use MATLAB® " to sketch this function for the interval 0 <t<10 s

b. Use the MATLAB quad function to find the charge at t = 5's given that q(0) = 0

Solution:

a. We use the following script to sketch i(t).

t=0: 0.1: 10; it=0.1.*(exp(0.2.*sin(3.*t))-1);
plot(t,it), grid, xlabel('time in sec."), ylabel(‘current in amp.")

The plot for i(t) is shown in Figure 1.7.

(10.5)

* MATLAB® and Simulink® are registered marks of The MathWorks,™ Inc., 3 Apple Hill Drive, Natick, MA, 01760,
www.mathworks.com. An introduction to MATLAB is given in Appendix A, and an introduction to Simulink is given in
Appendix B. Simulink operates in the MATLAB environment. The SimPowerSystems® is another product of The
MathWorks and operates in the Simulink environment.
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Voltage (Potential Difference)
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Figure 1.7. Plot of i(t) for Example 1.3

b. The charge q(t) is the integral of the current i(t), that is,

tl tl .
q(t) = j i(t)dt = o.1j (2% _ 1)t (1.6)
0

fy

We will use the MATLAB int(f,a,b) integration function where f is a symbolic expression, and
a and b are the lower and upper limits of integration respectively.

Note:

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB
returns the following message when integration is attempted with the symbolic expression of

(1.6).

t=sym('t); % Refer to Appendix A, Page A-10, for a discussion on symbolic expressions
s=int(0.1*(exp(0.2*sin(3*t))-1),0,10)

When this script is executed, MATLAB displays the following message:

Warning: Explicit integral could not be found.
In C\MATLAB 12\t ool box\ synbolic\@ymint.mat |ine 58

s = int(1/10*exp(1/5*sin(3*t))-1/10,t = 0. . 10)
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Chapter 1 Basic Concepts and Definitions

We will use numerical integration with Simpson’s rule. MATLAB has two quadrature functions

for performing numerical integration, the quad” and quads. The description of these can be seen
by typing help quad or help quad8. at the MATLAB command prompt. Both of these functions
use adaptive quadrature methods; this means that these methods can handle irregularities such as
singularities. When such irregularities occur, MATLAB displays a warning message but still pro-
vides an answer.

For this example, we will use the quad function. It has the syntax q=quad(‘f’,a,b,tol), and per-
forms an integration to a relative error tol which we must specify. If tol is omitted, it is understood

to be the standard tolerance of 107°. The string ‘f is the name of a user defined function, and a
and b are the lower and upper limits of integration respectively.

First, we need to create and save a function m—file.T We define it as shown below, and we save it
as CA_1_Ex_1 3.m. This is a mnemonic for Circuit Analysis I, Example 1.3.

function t = fcn_example_1_3(t); t = 0.1*(exp(0.2*sin(3*t))-1);
With this file saved as CA_1_Ex_1 3.m, we write and execute the following script.
charge=quad('CA_1 Ex 1 3'0,5)
and MATLAB returns
charge =
0. 0170

1.5 Power and Energy

Power p is the rate at which energy (or work) W is expended. That is,

Power = p = dditv (L.7)

Absorbed power is proportional both to the current and the voltage needed to transfer one cou-
lomb through the device. The unit of power is the watt. Then,

_ joul ><coul _ joul

Power = p = volts xamperes = vi = = watts (1.8)
coul  sec sec

and

* For a detailed discussion on numerical analysis and the MATLAB functions quad and quad8, the reader may refer to
Numerical Analysis Using MATLAB® and Excel, ISBN 978—1—-934404—03—4.
1 For more information on function m—files, please refer to Appendix A, Page A—26.
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Power and Energy

1 watt = 1 volt x 1 ampere (1.9)

Passive Sign Convention: Consider the two—terminal device shown in Figure 1.8.

—»i'

A—— Two terminal device —B

+ v -

Figure 1.8. Illustration of the passive sign convention

In Figure 1.8, terminal A is v volts positive with respect to terminal B and current i enters the
device through the positive terminal A. In this case, we satisfy the passive sign convention and
power = p = Vi is said to be absorbed by the device.

The passive sign convention states that if the arrow representing the current i and the (+) (-)
pair are placed at the device terminals in such a way that the current enters the device terminal
marked with the (+) sign, and if both the arrow and the sign pair are labeled with the appropri-
ate algebraic quantities, the power absorbed or delivered to the device can be expressed as
p = vi. If the numerical value of this product is positive, we say that the device is absorbing
power which is equivalent to saying that power is delivered to the device. If, on the other hand,
the numerical value of the product p = vi is negative, we say that the device delivers power to

some other device. The passive sign convention is illustrated with the examples in Figures 1.9
and 1.10.

-2 A 2A
= Two terminal device _—B = A—_ Same device —_}1_3
i -12v —= ! 12v !
Power = p = (-12)(-2) = 24 w Power =p = (12)(2) = 24w

Figure 1.9. Examples where power is absorbed by a two—terminal device

i=06cos3¢t ~—— i=-5sin5t

B A | B

—+ Two terminal device 1 Two terminal device 2

v=—18sin3t—— : V=cos5t

p = (—=18sin3t) (6cos3t) = —54sin6tw  p = (cosdt) (=5sin5t) = —2.5sin10t w

Figure 1.10. Examples where power is delivered to a two—terminal device

In Figure 1.9, power is absorbed by the device, whereas in Figure 1.10, power is delivered to the
device.
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Chapter 1 Basic Concepts and Definitions

Example 1.4

[t is assumed a 12—volt automotive battery is completely discharged and at some reference time
t = 0, is connected to a battery charger to trickle charge it for the next 8 hours. It is also assumed
that the charging rate is

-t/3600
it) = {Se A 0<t<8 hr

otherwise
For this 8-hour interval compute:
a. the total charge delivered to the battery
b. the maximum power (in watts) absorbed by the battery
c. the total energy (in joules) supplied
d. the average power (in watts) absorbed by the battery
Solution:

The current entering the positive terminal of the battery is the decaying exponential shown in
Figure 1.11 where the time has been converted to seconds.

-t § 3600
€

t (s)

28800
Figure 1.11. Decaying exponential for Example 1.4
Then,
a.
15000 28800 28800
15000 _ L /3600 |, 8 ~t/3600
Ae=o = IO dt = IO Be U= 5000 o
— _8x3600(e°—1)~28800 C or 28.8 kC
b.
Imax = 8 A (occurs at t=0)
Therefore, :
Prmax = Vimax = 12x8 = 96 w
c.
28800 28800 28800
. - 96 ~t/3600
W = [pdt = vidt = 12 x 8¢t = —2 ¢
J jo jo 173600 0

3.456 x 10°(1 — e °) = 345.6 KJ.
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d.
T 28800 3
Poye = _%_J‘ pdt = @J‘ 12 % 8 /30004 _ M - 1w
0 0 28.8 x 10
|
Example 1.5
0.16t>

The power absorbed by a non-linear device is p = 9(e -1).Ifv = 3(60'4t +1), how much

charge goes through this device in two seconds?
Solution:

The power is

0.16t* 0.4t 0.4t
_vi iR 3% - 9T +1)(e =1 _ 3¢
p=vlL 1= v 0.4t - 0.4t B
37 +1) 3(e7+1)

0.4t

“1A
then, the charge for 2 seconds is

t 2 2
t . 0.4t 3 04t 2 0.8
ql, = J'tomt - 3j0 ("= Dydt = e’ | =3ty = 7.5(’*-1)-6 = 3.19C

The two—terminal devices which we will be concerned with in this text are shown in Figure 1.12.

Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device. Diodes and Transistors are non-linear
devices, that is, their voltage—current relationship is non-linear. These will not be discussed in
this text. A simple circuit with a diode is presented in Chapter 3.

1.6 Active and Passive Devices

Independent and dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device. Resistors, inductors and capacitors are passive
devices; they normally receive (absorb) power from an active device.
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Independent and Dependent Sources

-

vorv(t)

o

pori(t)

<€

K,V or Kyl

—e-

Ksi or kv

Ideal Independent Voltage Source — Maintains same voltage
regardless of the amount of current that flows through it.
Its value is either constant (DC) or sinusoidal (AC).

Ideal Independent Current Source — Maintains same current
regardless of the voltage that appears across its terminals.
Its value is either constant (DC) or sinusoidal (AC).

Dependent Voltage Source — Its value depends on another
voltage or current elsewhere in the circuit. Here,k; is a
constant and K, is a resistance as defined in linear devices
below. When denoted as k, Vv it is referred to as voltage
controlled voltage source and when denoted as ky iitis

referred to as current controlled voltage source.

Dependent Current Source — Its value depends on another
current or voltage elsewhere in the circuit. Here, K5 is a
constant and K, is a conductance as defined in linear devices
below. When denoted as Kji it is referred to as current
controlled current source and when denoted as kyv it is
referred to as voltage controlled current source.

Linear Devices

Resistance R VR Conductance G i
iR ) i
+ Vg ~ R . + vg ~ G~
. R . (%c}
Vg = Rig i = Gvg
Inductance L Capacitance C
oL L _ke ¢ =
T _owm ol — <—_ _qop?
+ ’UL — ‘)/ dl vc C g
’ L dve
3 LdlL dt = e dt
LT g c dt

Figure 1.12. Voltage and current sources and linear devices
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Circuits and Networks

1.7 Circuits and Networks

A network is the interconnection of two or more simple devices as shown in Figure 1.13.

Vs

Figure 1.13. A network but not a circuit

A circuit is a network which contains at least one closed path. Thus every circuit is a network but
not all networks are circuits. An example is shown in Figure 1.14.

Vs

Figure 1.14. A network and a circuit

1.8 Active and Passive Networks

Active Network is a network which contains at least one active device (voltage or current
source).

Passive Network is a network which does not contain any active device.

1.9 Necessary Conditions for Current Flow

There are two conditions which are necessary to set up and maintain a flow of current in a net-
work or circuit. These are:

1. There must be a voltage source (potential difference) present to provide the electrical work
which will force current to flow.

2. The circuit must be closed.
These conditions are illustrated in Figures 1.15 through 1.17.

Figure 1.15 shows a network which contains a voltage source but it is not closed and therefore,
current will not flow.
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AMN—TT
L

o

Vs

O

Figure 1.15. A network in which there is no current flow

Figure 1.16 shows a closed circuit but there is no voltage present to provide the electrical work for
current to flow.

Figure 1.16. A closed circuit in which there is no current flow

Figure 1.17 shows a voltage source present and the circuit is closed. Therefore, both conditions
are satisfied and current will flow.

M

N
@
AY|
PAl

Vs

Figure 1.17. A circuit in which current flows

1.10 International System of Units

The International System of Units (abbreviated SI in all languages) was adopted by the General
Conference on Weights and Measures in 1960. It is used extensively by the international scien-
tific community. It was formerly known as the Metric System. The basic units of the SI system are
listed in Table 1.1.
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TABLE 1.1 SI Base Units

Unit of Name Abbreviation
Length Metre m

Mass Kilogram kg

Time Second s

Electric Current Ampere A
Temperature Degrees Kelvin | °K

Amount of Substance | Mole mol
Luminous Intensity Candela cd

Plane Angle Radian rad

Solid Angle Steradian ST

The SI uses larger and smaller units by various powers of 10 known as standard prefixes. The com-
mon prefixes are listed in Table 1.2 and the less frequently in Table 1.3. Table 1.4 shows some
conversion factors between the SI and the English system. Table 1.5 shows typical temperature
values in degrees Fahrenheit and the equivalent temperature values in degrees Celsius and
degrees Kelvin. Other units used in physical sciences and electronics are derived from the SI
base units and the most common are listed in Table 1.6.

TABLE 1.2 Most Commonly Used SI Prefixes

Value | Prefix | Symbol | Example

9
10 Giga | G 12 GHz (Gigahertz) = 12 X 107 Hz

6
103 Mega | M 25 MW (Megaohms) = 25 x 10° W (ohms)
10 2 Kilo | K 13.2 KV (Kilovolts) = 13.2 x 107 volts
10 _ centi | c 2.8 cm (centimeters) = 2.8 x 10 ~? meter
10 5 milli | m 4 mH (millihenries) = 4 x 10 ~ henry
10 9 micro | p 6 puw (microwatts) = 6 X 10~ watt
0 _ nano | n 2 ns (nanoseconds) = 2 X 10~ second
w0 pico | p 3 pF (picofarads) = 3 x 10 -2 Farad
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Chapter 1 Basic Concepts and Definitions

TABLE 1.3 Less Frequently Used SI Prefixes

Value Prefix | Symbol | Example

10%8 Exa E 1 Em (Exameter) = 10'® meters

105 Peta P 5 Pyrs (Petayears) = 5 X 101 years

102 Tera T 3 T$ (Teradollars) = 3 x 10" dollars
1078 femto | f 7 fA (femtoamperes) = 7 X 10~ ampere
1078 atto a 9 aC (attocoulombs) = 9 x 10 ~18 coulomb

TABLE 1.4 Conversion Factors

1 in. (inch) 2.54 cm (centimeters)

1 mi. (mile) 1.609 Km (Kilometers)

1 Ib. (pound) 0.4536 Kg (Kilograms)

I gt. (quart) 946 cm> (cubic centimeters)
1 cm (centimeter) 0.3937 in. (inch)

1 Km (Kilometer) 0.6214 mi. (mile)

1 Kg (Kilogram) 2.2046 Ibs (pounds)

1 It. (liter) = 1000 cm® | 1.057 quanrts

1 A (Angstrom) 10 -1 meter

I mm (micron) 10 ~6 meter

TABLE 1.5 Temperature Scale Equivalents

°F °C °’K

-523.4 -273 0

32 0 273
0 -17.8 | 255.2
77 25 298
98.6 37 310
212 100 373
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Sources of Energy

TABLE 1.6 SI Derived Units

Unit of Name Formula

Force Newton (N) N = kg-m/s’
Pressure or Stress Pascal (Pa) Pa = N/m?
Work or Energy Joule (J) J=N-m
Power Watt (W) W =1J/s
Voltage Volt (V) V =W/A
Resistance Ohm (Q) Q=V/A
Conductance Siemens (S) or (Qfl) S=A/NV
Capacitance Farad (F) F=A-s/V
Inductance Henry (H) H=V-s/A
Frequency Hertz (HZ) Hz = 1/s
Quantity of Electricity Coulomb (C) C=A:s
Magnetic Flux Weber (Wb) Wh =V-s
Magnetic Flux Density Tesla (T) T = Wb /m2
Luminous Flux Lumen (Im) Im = cd-sr
[lluminance Lux (1X) Ix = Im/m?
Radioactivity Becquerel (BQ) Bq = gt
Radiation Dose Gray (Gy) S = J/kg
Volume Litre (L) L =m¥x10"

1.11 Sources of Energy

The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood
etc.) and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and
solar energy.

Example 1.6

A certain type of wood used in the generation of electric energy and we can get 12,000 BTUs
from a pound (Ib) of that wood when burned. Suppose that a computer system that includes a
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monitor, a printer, and other peripherals absorbs an average power of 500 w gets its energy from
that burned wood and it is turned on for 8 hours. It is known that 1 BTU is equivalent to 778.3 ft—
Ib of energy, and 1 joule is equivalent to 0.7376 ft-Ib.

Compute:

a. the energy consumption during this 8~hour interval

b. the cost for this energy consumption if the rate is $0.15 per kw—hr
c. the amount of wood in Ibs burned during this time interval.
Solution:

a. Energy consumption for 8 hours is

3600 s
1hr

Energy W = P,,.t = 500 w x 8 hrs x = 14.4 Mjoules

b. Since 1 kilowatt — hour = 3.6 x 10° joules,

$0.15 1 kw—hr

e - % 14.4x 10° = $0.60
W-NI'"36x10° joules

Cost =

¢. Wood burned in 8 hours,

ft—Ib>< 1 BTU v 11b
joule 7783 ft—Ib 12000 BTU

14.4 % 10° joules x 0.7376 = 1137 Ib
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1.12 Summary

e Two identically charged (both positive or both negative) particles possess a charge of one cou-
lomb when being separated by one meter in a vacuum, repel each other with a force of 107" ¢?

newton where ¢ = velocity of light=3x 10° m/s. Thus, the force with which two
electrically charged bodies attract or repel one another depends on the product of the charges
(in coulombs) in both objects, and also on the distance between the objects. If the polarities
are the same (negative/negative or positive/positive), the so—called coulumb force is repulsive;
if the polarities are opposite (negative/positive or positive/negative), the force is attractive. For
any two charged bodies, the coulomb force decreases in proportion to the square of the
distance between their charge centers.

e Electric current is defined as the instantaneous rate at which net positive charge is moving past
this point in that specified direction, that is,

i =499 _ jim Ad

~dt  At—o0At

e The unit of current is the ampere, abbreviated as A, and corresponds to charge ¢ moving at the
rate of one coulomb per second.

e In a two—terminal device the current entering one terminal is the same as the current leaving
the other terminal.

e The voltage (potential difference) across a two—terminal device is defined as the work required
to move a positive charge of one coulomb from one terminal of the device to the other termi-
nal.

e The unit of voltage is the volt (abbreviated as V or v) and it is defined as

1 VOIt = _1%
1 coulomb

e Power p is the rate at which energy (or work) W is expended. That is,

Power = p = dw

dt

e Absorbed power is proportional both to the current and the voltage needed to transfer one
coulomb through the device. The unit of power is the watt and

1 watt = 1 volt x 1 ampere

e The passive sign convention states that if the arrow representing the current i and the plus
(+) minus (=) pair are placed at the device terminals in such a way that the current enters the
device terminal marked with the plus (+) sign, and if both the arrow and the sign pair are
labeled with the appropriate algebraic quantities, the power absorbed or delivered to the
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device can be expressed as p = vi. If the numerical value of this product is positive, we say that
the device is absorbing power which is equivalent to saying that power is delivered to the
device. If, on the other hand, the numerical value of the product p = vi is negative, we say
that the device delivers power to some other device.

e An ideal independent voltage source maintains the same voltage regardless of the amount of
current that flows through it.

¢ An ideal independent current source maintains the same current regardless of the amount of
voltage that appears across its terminals.

e The value of an dependent voltage source depends on another voltage or current elsewhere in
the circuit.

e The value of an dependent current source depends on another current or voltage elsewhere in
the circuit.

e Ideal voltage and current sources are just mathematical models. We will discuss practical volt-
age and current sources in Chapter 3.

e Independent and Dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device.

e Resistors, inductors, and capacitors are passive devices; they normally receive (absorb) power
from an active device.

e A network is the interconnection of two or more simple devices.

e A circuit is a network which contains at least one closed path. Thus every circuit is a network
but not all networks are circuits.

e An active network is a network which contains at least one active device (voltage or current
source).

o A passive network is a network which does not contain any active device.

e To set up and maintain a flow of current in a network or circuit there must be a voltage source
(potential difference) present to provide the electrical work which will force current to flow
and the circuit must be closed.

e Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device.

e The International System of Units is used extensively by the international scientific commu-
nity. It was formerly known as the Metric System.

e The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood
etc.) and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and
solar energy.
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1.13 Exercises
Multiple choice

1. The unit of charge is the
A. ampere
B. volt
C. watt
D. coulomb
E. none of the above

2. The unit of current is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above

3. The unit of electric power is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above

4. The unit of energy is the
A. ampere
B. volt
C. watt
D. joule
E. none of the above

5. Power is
A. the integral of energy
B. the derivative of energy
C. current times some constant k

D. voltage times some constant k
E. none of the above

6. Active voltage and current sources
A. always deliver power to other external devices
B. normally deliver power to other external devices
C. neither deliver or absorb power to or from other devices
D. are just mathematical models
E. none of the above
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7. An ideal independent voltage source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage rating of that voltage source
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above

8. An ideal independent current source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage that appears across its terminals
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above

9. The value of a dependent voltage source can be denoted as
A. kV where k is a conductance value
B. kI where k is a resistance value
C. kV where k is an inductance value

D. kI where k is a capacitance value
E. none of the above

10. The value of a dependent current source can be denoted as
A. kV where k is a conductance value
B. kI where k is a resistance value
C. kV where k is an inductance value
D. kI where k is a capacitance value
E. none of the above

Problems

1. A two terminal device consumes energy as shown by the waveform below, and the current
through this device is i(t) = 2c0os4000nt A. Find the voltage across this device at t = 0.5, 1.5,
4.75 and 6.5 ms. Answers: 25 V,0V,25V,-25V

104 ---------;

W — === ==

N
G - - = -

oY

-
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2. A household light bulb is rated 75 watts at 120 volts. Compute the number of electrons per
second that flow through this bulb when it is connected to a 120 volt source.

Answer: 3.9 x 10 electrons/s

3. An airplane, whose total mass is 50,000 metric tons, reaches a height of 32,808 feet in 20 min-
utes after takeoff.

a. Compute the potential energy that the airplane has gained at this height.
Answer: 1, 736 MJ

b. If this energy could be converted to electric energy with a conversion loss of 10%, how
much would this energy be worth at $0.15 per kilowatt—hour? Answer: $65.10

c. If this energy were converted into electric energy during the period of 20 minutes, what
average number of kilowatts would be generated? Answer: 1, 450 Kw

4. The power input to a television station transmitter is 125 kw and the output is 100 kw which
is transmitted as radio frequency power. The remaining 25 kw of power is converted into
heat.

a. How many BTUs per hour does this transmitter release as heat? 1 BTU = 1054.8 J
Answer: 85,234 BTU/hr

b. How many electron—volts per second is this heat equivalent to?

1 electron—volt = 1.6 x107° J

23 electron — volts
sec.

Answer: 1.56 x 10
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1.14 Answers / Solutions to End-of-Chapter Exercises
Dear Reader:

The remaining pages on this chapter contain answers to the multiple—choice questions and solu-
tions to the exercises.

You must, for your benefit, make an honest effort to answer the multiple-choice questions and
solve the problems without first looking at the solutions that follow. It is recommended that first
you go through and answer those you feel that you know. For the multiple—choice questions and
problems that you are uncertain, review this chapter and try again. If your answers to the prob-
lems do not agree with those provided, look over your procedures for inconsistencies and compu-
tational errors. Refer to the solutions as a last resort and rework those problems at a later date.

You should follow this practice with the multiple-choice and problems on all chapters of this
book.
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Multiple choice

1.D
2.A
3.C
4.D
5.B
6.B
7. A
8.B
9.B
10. A
Problems
1.
v=D0_ dVY/dt _ slqpe
i i i
a.
slope|; ™ = %7%§ =510/s
20s4000m(0.5 X 10°%) A
> slope|imS =0
Vli-1sms = ? =0V
c.
slope|; ™ = _15nTSJ = 51/s
VIe-ars s = A TsionA " Tesn AT IA
20540007 (4.75 % 10°°%) A

=25V
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d.
slope|. ™ = =2mJ 5y
1ms
v _ -51J/s _ _—=5J/s _—53/82_2_5\/
t=6.5ms

2¢0s4000m(6.5x 10 %) A 2C0s26m A 2 A

2.
i P_ 7w _5,
v 120V 8
t
q= j idt
to
1s ls
5 5 5
18
2 C/s><6'24><10 electrons = 3.9><1018 electrons/s
8 1C
3.

1 2

where m = mass in kg and v = velocity in meters/sec.

33, 808 ftxgg%%g-m = 10,000 m = 10 Km
20 minutes x M = 1, 200 sec.
min
v lo.000m _25
1, 200 sec. 3
50, 000 metric tons x =220 K& _ 5. 107 kg

metric ton
Then,
a.

2
W, = W, = %(5x107)(%) = 173.61x 10" J=1, 736 MJ
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b.
1 joule = 1 watt-sec
6, 1 watt-sec 1 Kw 1 hr
1,736 x 10°J x 1 joule X 1. 000 Wx 3,600 sec. 482.22 Kw-hr
and with 10% conversion loss, the useful energy is
482.22 x 0.9 = 482.22 x 0.9 = 434 Kw-hr
_ $0.15 e
Cost of Energy = _Kw—th434 Kw-hr = $65.10
C.
Pooe=W_ LIOM __ 5 Mw = 1450 Kw
t .60 sec
20 min x —
4.
a.
1 BTU = 1054.8 J
1 joule/sec. . 1 BTU _ 3600 sec. _
25, 000 watts x watt X 1054.8JX Thr - 85,234 BTU/hr
b.

1 electron—volt = 1.6 x107°

1 electron —volt _ 1.6x107%° 7
sec. sec.

= 16X 10_19 waltt

25. 000 watts x 1 electron jl\glolt/ seC. _ 156x 102 electron — volts
1.6 x 10 watt Sec.
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Chapter 2

Analysis of Simple Circuits

his chapter defines constant and instantaneous values, Ohm’s law, and Kirchhoff's Current

and Voltage laws. Series and parallel circuits are also defined and nodal, mesh, and loop

analyses are introduced. Combinations of voltage and current sources and resistance com-
binations are discussed, and the voltage and current division formulas are derived.

2.1 Conventions

We will use lower case letters such as v, i, and p to denote instantaneous values of voltage, cur-
rent, and power respectively, and we will use subscripts to denote specific voltages, currents,
resistances, etc. For example, vg and ig will be used to denote voltage and current sources

respectively. Notations like vp; and iz, will be used to denote the voltage across resistance R,
and the current through resistance R, respectively. Other notations like v, or v; will represent
the voltage (potential difference) between point A or point 1 with respect to some arbitrarily cho-
sen reference point taken as “zero” volts or “ground”.

The designations v,g or v;, will be used to denote the voltage between point A or point 1 with

respect to point B or 2 respectively. We will denote voltages as v(t) and i(t) whenever we wish
to emphasize that these quantities are time dependent. Thus, sinusoidal (AC) voltages and cur-
rents will be denoted as v(t) and i(t) respectively. Phasor quantities, to be introduced in Chapter
6, will be represented with bold capital letters, V for phasor voltage and | for phasor current.

2.2 Ohm’s Law

We recall from Chapter 1 that resistance R is a constant that relates the voltage and the current
as:

This relation is known as Ohm'’s law.

The unit of resistance is the Ohm and its symbol is the Greek capital letter Q. One ohm is the
resistance of a conductor such that a constant current of one ampere through it produces a volt-
age of one volt between its ends. Thus,
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[y

10-=LV (2.2)

[EEN

Physically, a resistor is a device that opposes current flow. Resistors are used as a current limiting
devices and as voltage dividers.

In the previous chapter we defined conductance G as the constant that relates the current and the
voltage as

This is another form of Ohm’s law since by letting i = iz and vg = vg, we obtain

G = (2.4)

Dl

The unit of conductance is the siemens or mho (ohm spelled backwards) and its symbol is S or
Q™ Thus,

[N
{o|

IIH
>

(2.5)

[y
<

Resistances (or conductances) are commonly used to define an “open circuit” or a “short circuit”.
An open circuit is an adjective describing the “open space” between a pair of terminals, and can be
thought of as an “infinite resistance” or “zero conductance”. In contrast, a short circuit is an adjec-
tive describing the connection of a pair of terminals by a piece of wire of “infinite conductance” or
a piece of wire of “zero” resistance.

The current through an “open circuit” is always zero but the voltage across the open circuit termi-
nals may or may not be zero. Likewise, the voltage across a short circuit terminals is always zero
but the current through it may or may not be zero. The open and short circuit concepts and their
equivalent resistances or conductances are shown in Figure 2.1.

A|+ A+ A+ A+

I Open R =00 1 Short — s R=0

.1 Circuit . G=0 i | Circuit i <G=o0

i=0 i=0 V] = -
BL B_ AB B VAB =0

Figure 2.1. The concepts of open and short circuits

The fact that current does not flow through an open circuit and that zero voltage exists across the
terminals of a short circuit, can also be observed from the expressions vy = Rig and ig = Gvg.
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That is, since G = é, infinite R means zero G and zero R means infinite G. Then, for a finite
voltage, say Vg, and an open circuit,

limiz = limGv, =0 2.6
G—)OG G—-0 G ( )

Likewise, for a finite current, say ig, and a short circuit,

limvg = limRig =0 (2.7)
R—0 R—0

Reminder:

We must remember that the expressions
Vg = Rig
and .
Ig = Gvg
are true only when the passive sign convention is observed. This is consistent with our classifica-
tion of R and G being passive devices and thus vg = Rig implies the current direction and

voltage polarity are as shown in Figure 2.2.

Ir R R Ir
— AMAN—— AN

Figure 2.2. Voltage polarity and current direction in accordance with the passive sign convention

But if the voltage polarities and current directions are as shown in Figure 2.3, then,

Vg = —Rig 2.8)
I R R IR
— AN YV —
= PAAARS

Figure 2.3. Voltage polarity and current direction not in accordance to passive sign convention

Note: “Negative resistance,” as shown in (2.8), can be thought of as being a math model that
supplies energy.

2.3 Power Absorbed by a Resistor

A resistor, being a passive device, absorbs power. This absorbed power can be found from Ohm'’s
law, that is,
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Vg = Rig
and the power relation
Pr = Vrlr
Then,
. L : v V2
Pr = Vgig = (Rig)ig = Rig = VR(—R-?) = ER (2.9)

The voltage, current, resistance and power relations are arranged in the pie chart shown in Figure

2.4.

Figure 2.4. Pie chart for showing relations among voltage, current, resistance, and power
Note:

A resistor, besides its resistance rating (ohms) has a power rating in watts commonly referred to as
the wattage of the resistor. Common resistor wattage values are Y4 watt, 2 watt, 1 watt, 2 watts, 5
watts and so on. This topic will be discussed in Section 2.16.

2.4 Energy Dissipated in a Resistor

A resistor, by its own nature, dissipates energy in the form of heat; it never stores energy. The
energy dissipated in a resistor during a time interval, say from t; to t,, is given by the integral of

the instantaneous power pg.Thus,

P
WR diss = J-t PR dt (2.10)
1
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If the power is constant, say P, then (2.10) reduces to

Alternately, if the energy is known, we can find the power by taking the derivative of the energy,
that is,

d
pr = W

dt R diss (2'12)

Reminder:

When using all formulas, we must express the quantities involved in their primary units. For
instance in (2.11) above, the energy is in joules when the power is in watts and the time is in sec-
onds.

2.5 Nodes, Branches, Loops and Meshes
Definition 2.1

A node is the common point at which two or more devices (passive or active) are connected. An
example of a node is shown in Figure 2.5.

Figure 2.5. Definition of node
Definition 2.2

A branch is a simple path composed of one single device as shown in Figure 2.6.

M e O

Branch—J

Figure 2.6. Definition of branch

® Node

Definition 2.3

A loop is a closed path formed by the interconnection of simple devices. For example, the net-
work shown in Figure 2.7 is a loop.
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Figure 2.7. Definition of a loop

Definition 2.4

A mesh is a loop which does not enclose any other loops. For example, in the circuit shown in Fig-
ure 2.8, ABEF is both a loop and a mesh, but ABCDEF is a loop but not a mesh.

Figure 2.8. Example showing the difference between mesh and loop

2.6 Kirchhoff’'s Current Law (KCL)

KCL states that the algebraic sum of all currents leaving (or entering) a node is equal to zero. For
example, in Figure 2.9, if we assign a plus (+) sign to the currents leaving the node, we must assign
a minus (-) sign to the currents entering the node. Then by KCL,

i .
L \Iz
T

i3
Figure 2.9. Node to illustrate KCL

But if we assign a plus (+) sign to the currents entering the node and minus (-) sign to the cur-
rents leaving the node, then by KCL,

iy +iy—iy—i, =0 (2.14)

o —ij—iy+ig+i, = 0 (2.15)
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We observe that (2.13) and (2.15) are the same; therefore, it does not matter which we choose
as plus (+).
Convention:

In our subsequent discussion we will assign plus (+) signs to the currents leaving the node.

2.7 Kirchhoff’s Voltage Law (KVL)

KVL states that the algebraic sum of the voltage drops (voltages from + to —) or voltage rises
(voltages from —to +) around any closed path (mesh or loop) in a circuit is equal to zero. For
example, in the circuit shown in Figure 2.10, voltages v,, v,, v5, and v, represent the voltages

across devices 1, 2, 3, and 4 respectively, and have the polarities shown.

Device 2
— +
+ \Z +
Device 1| V4 V3 | Device 3
= Vy =
— . +
A Device 4

Figure 2.10. Circuit to llustrate KVL

Now, if we assign a (+) sign to the voltage drops, we must assign a (=) sign to the voltage rises.
Then, by KVL starting at node A and going clockwise we obtain:

-V, —V,+Vg+Vv, =0 (2.16)
or going counterclockwise, we obtain:

Alternately, if we assign a (+) sign to the voltage rises, we must assign a (=) sign to the voltage
drops. Then, by KVL starting again at node A and going clockwise we obtain:

Vi+V,-V3-Vv, =0 (2.18)
or going counterclockwise, we obtain:

Vy+Vy—-V,-Vvy =0 (2.19)
We observe that expressions (2.16) through (2.19) are the same.

Convention:

In our subsequent discussion we will assign plus (+) signs to voltage drops.
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Definition 2.5

Two or more devices are said to be connected in series if and only if the same current flows through
them. For example, in the circuit of Figure 2.11, the same current i flows through the voltage

source, the resistance, the inductance and the capacitance. Accordingly, this is classified as a
series circuit.

Figure 2.11. A simple series circuit
Definition 2.6

Two or more devices are said to be connected in parallel if and only if the same voltage exists across
each of the devices. For example, in the circuit of Figure 2.12, the same voltage v g exists across

the current source, the conductance, the inductance, and the capacitance and therefore it is clas-
sified as a parallel circuit

A A A A A
Is L /C o 's<> §G % L xc
B B B B

Figure 2.12. A simple parallel circuit

Convention:

In our subsequent discussion we will adopt the conventional current flow, i.e., the current that
flows from a higher (+) to a lower (-) potential. For example, if in Figure 2.13 we are given the
indicated polarity,

R

MN—
VR

+

Figure 2.13. Device with established voltage polarity

then, the current arrow will be pointing to the right direction as shown in Figure 2.14.
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iR R
MN
+ Vi

Figure 2.14. Direction of conventional current flow in device with established voltage polarity

Alternately, if current flows in an assumed specific direction through a device thus producing a
voltage, we will assign a (+) sign at the terminal of the device at which the current enters. For
example, if we are given this designation a device in which the current direction has been estab-
lished as shown in Figure 2.15,

MY

Figure 2.15. Device with established conventional current direction
then we assign (+) and (-) as shown in Figure 2.16.

a'A'A
+ e

Figure 2.16. Voltage polarity in a device with established conventional current flow

Note:

Active devices, such as voltage and current sources, have their voltage polarity and current
direction respectively, established as part of their notation. The current through and the voltage
across these devices can easily be determined if these devices deliver power to the rest of the circuit.
Thus with the voltage polarity as given in the circuit of Figure 2.17 (a), we assign a clockwise
direction to the current as shown in Figure 2.17 (b). This is consistent with the passive sign con-
vention since we have assumed that the voltage source delivers power to the rest of the circuit.

i
Vs Vg ﬁ
C_D Rest of the C-'D Rest of the

Circuit Circuit

(a) (b)
Figure 2.17. Direction of conventional current flow produced by voltage sources
Likewise, in the circuit of Figure 2.18 (a) below, the direction of the current source is clockwise,

and assuming that this source delivers power to the rest of the circuit, we assign the voltage
polarity shown in Figure 2.18 (b) to be consistent with the passive sign convention.
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+
ig is T
@) Rest of the Q) v Rest of the
Circuit l Circuit
(a) (b)

Figure 2.18. Voltage polarity across current sources

The following facts were discussed in the previous chapter but they are repeated here for empha-
sis.

There are two conditions required to setup and maintain the flow of an electric current:

1. There must be some voltage (potential difference) to provide the energy (work) which will force

electric current to flow in a specific direction in accordance with the conventional current flow
(from a higher to a lower potential).

2. There must be a continuous (closed) external path for current to flow around this path (mesh

or loop).

The external path is usually made of two parts: (a) the metallic wires and (b) the load to which the
electric power is to be delivered in order to accomplish some useful purpose or effect. The load
may be a resistive, an inductive, or a capacitive circuit, or a combination of these.

2.8 Single Mesh Circuit Analysis

We will use the following example to develop a step—by—step procedure for analyzing (finding cur-
rent, voltage drops and power) in a circuit with a single mesh.

Example 2.1

For the series circuit shown in Figure 2.19, we want to find:
a. The current i which flows through each device
b. The voltage drop across each resistor

c. The power absorbed or delivered by each device
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4 Q 64 V
) '\/3\,Q
\_/
Vsq 1 Vs? Ry |Vss

200 \gi) CD
W wh

10 Q 8 Q
Figure 2.19. Circuit for Example 2.1

Solution:

a. Step 1: We do not know which voltage source(s) deliver power to the other sources, so let us

- . . . . * . .
assume that the current i flows in the clockwise direction as shown in Figure 2.20.

4 Q 64V
= (D
1 Vs? R

Vs1 2 Vs3
A 7 ¥
CNIRI¢:

200V] R, 4 C R, POV
A 10Q 8Q

Figure 2.20. Circuit for Example 2.1 with assumed current direction

Step 2: We assign (+) and (-) polarities at each resistor’s terminal in accordance with the
established passive sign convention.

Step 3: By application of KVL and the adopted conventions, starting at node A and going
clockwise, we obtain:

and by Ohm’s law,
Then, by substitution of given values into (2.20), we obtain

—-200+4i+64+6i+80+8i+10i =0
or .
281 = 56
o i=2A 2.21)

* Henceforth, the current direction will be assumed to be that of the conventional current flow.
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b. Knowing the current i from part (a), we can now compute the voltage drop across each resis-
tor using Ohm’s law v = Ri.

VR1=4X2=8V VR2=6X2212V
(2.22)
VR3:8X2:16V VR4:10X2:20V

c. The power absorbed (or delivered) by each device can be found from the power relation
p = vi. Then, the power absorbed by each resistor is

Pry = 8X2=16w Pro=12x2=24w

(2.23)
Prz = 16x2=32w pg,=20x2=40w
and the power delivered (or absorbed) by each voltage source is
P, = -200x2=-400w p, =64x2=128w p, =80x2=160w  (2.24)

From (2.24), we observe that the 200 volt source absorbs —400 watts of power. This means
that this source delivers (supplies) 400 watts to the rest of the circuit. However, the other two
voltage sources receive (absorb) power from the 200 volt source. Table 2.1 shows that the con-
servation of energy principle is satisfied since the total absorbed power is equal to the power
delivered.

TABLE 2.1 Power delivered or absorbed by each device on the circuit of Figure 2.19

Device Power Delivered (watts) Power Absorbed (watts)

200 V Source 400

64 V Source 128
80 V Source 160
4 W Resistor 16
6 W Resistor 24
8 W Resistor 32
10 W Resistor 40
Total 400 400

Example 2.2

Repeat Example 2.1 with the assumption that the current i flows counterclockwise.
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Solution:

We denote the current as i' (i prime) for this example. Then, starting at Node A and going
counterclockwise, the voltage drops across each resistor are as indicated in Figure 2.21.

64V
4Q Q 6 Q
+‘V|¥:_ \_J +'RT

Vsp Vs 2 |Vss3

O 0

200V] R _ Ry.

WS WA
10 Q 8 Q

Figure 2.21. Circuit for Example 2.2

Repeating Steps 2 and 3 of Example 2.1, we obtain:

Next, by Ohm’s law,

VRl = Rlil VRZZRZiI VR3:R3iI VR4:R4iI
By substitution of given values, we obtain

200+41'—64+61'-80+81'+101' = 0

or .
281 = -56
or
I' = —2A (2.26)
Comparing (2.21) with (2.26) we observe that 1I' = —I as expected.

Definition 2.7

A single node—pair circuit is one in which any number of simple elements are connected between
the same pair of nodes. For example, the circuit of Figure 2.22 (a), which is more conveniently
shown as Figure 2.22 (b), is a single node—pair circuit.
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A A A A A
Is L /C - 's<> §G 3L ;;C

B B B B

(a) (b)

Figure 2.22. Circuit with a single node—pair

2.9 Single Node-Pair Circuit Analysis

We will use the following example to develop a step—by—step procedure for analyzing (finding cur-
rents, voltage drop and power) in a circuit with a single node—pair.

Example 2.3

For the parallel circuit shown in Figure 2.23, find:
a. The voltage drop across each device
b. The current i which flows through each conductance

c. The power absorbed or delivered by each device

Is1 Is) Is3

O = o (O ze
12 A 4 ot 18 A 6 0L 24 A g ot

Figure 2.23. Circuit for Example 2.3
Solution:

a. Step 1: We denote the single node—pair with the letters A and B as shown in Figure 2.24. It is
important to observe that the same voltage (or potential difference) exists across each
device. Node B is chosen as our reference node and it is convenient to assume that

this reference node is at zero potential (ground) as indicated by the symbol —
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Figure 2.24. Circuit for Example 2.3 with assumed current directions

Step 2: We assign currents through each of the conductances G;, G,, and G5 in accordance

with the conventional current flow. These currents are shown as g, ig,, and igs.

Step 3: By application of KCL and in accordance with our established convention, we choose
node A which is the plus (+) reference point and we form the algebraic sum of the
currents leaving (or entering) this node. Then, with plus (+) assigned to the currents
leaving this node and with minus (-) entering this node we obtain

_i51+i61+i52+ iez—i53+ igg =0 (2.27)
and since
i1 = GiVag  Ig2=GyVag g3 =G3Vag (2.28)

by substitution into (2.27),
—ig1+ G Vg +igy + GoVpag — g3+ G3vpag = 0 (2.29)

Solving for v,g, we obtain

iSl iSZ I iSS
VvV = —_—— > 2'30
AB Gl + Gz + G3 ( )

and by substitution of the given values, we obtain

1218+ 24
_12-18+24 231
YaB T T 648 (2.31)
o Vag = 1 V (2.32)
b. From (2.28),
i, =4 ig,=6  ig=8 (2.33)

and we observe that with these values, (2.27) is satisfied.
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c. The power absorbed (or delivered) by each device can be found from the power rela-

tion p = vi. Then, the power absorbed by each conductance is
Pgr = 1x4=4w
Pg, = 1x6=6Ww (2.34)
Pgz = 1x8=8w

and the power delivered (or absorbed) by each current source is

p; = 1x(-12)=-12w
P, =1x18=18w (2.35)
Pz = 1x(-24)=-24w

From (2.35) we observe that the 12 A and 24 A current sources absorb —12 w and -24 w
respectively. This means that these sources deliver (supply) a total of 36 w to the rest of the
circuit. The 18 A source absorbs power.

Table 2.2 shows that the conservation of energy principle is satisfied since the absorbed power
is equal to the power delivered.

TABLE 2.2 Power delivered or absorbed by each device of Figure 2.23

Device Power Delivered (watts) Power Absorbed (watts)

12 A Source 12

18 A Source 18
24 A Source 24

4 Q! Conductance 4
6 Q" Conductance 6
8 Q! Conductance 8
Total 36 36
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2.10 Voltage and Current Source Combinations

Definition 2.8

Two or more voltage sources connected in series are said to be series aiding when the plus (+)
terminal of any one voltage source is connected to the minus (-) terminal of another, or when
the minus (-) terminal of any one voltage source is connected to the plus (+) terminal of
another.

Two or more series aiding voltage sources may be replaced by an equivalent voltage source
whose value is the algebraic sum of the individual voltage sources as shown in Figure 2.25.

A__200V/EN 64 VTN 80 VAT B
Vlu Vzu V3u

+ 200+ 64 +80=344V

Figure 2.25. Addition of voltage sources in series when all have same polarity

A good example of combining voltage sources as series aiding is when we connect several AA size
batteries each rated at 1.5 v to power up a hand calculator, or a small flashlight.

Definition 2.9

Two or more voltage sources connected in series are said to be series opposing when the plus (+)
terminal of one voltage source is connected to the plus (+) terminal of the other voltage source
or when the minus (=) of one voltage source is connected to the minus (-) terminal of the other
voltage source. Two series opposing voltage sources may be replaced by an equivalent voltage
source whose value is the algebraic difference of the individual voltage sources as shown in Fig-

ure 2.26.

A 200V 64V B

Vap = V1—V,
+ —200-64=136 V—— —

Figure 2.26. Addition of voltage sources in series when they have different polarity

Definition 2.10

Two or more current sources connected in parallel are said to be parallel aiding when the arrows
indicating the direction of the current flow have the same direction. They can be combined into
a single current source as shown in Figure 2.27.
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12 ;Clt) 18 ;CZID 54 :CI)

Figure 2.27. Addition of current sources in parallel when all have same direction

Definition 2.11

Two or more current sources connected in parallel are said to be parallel opposing when the arrows
indicating the direction of the current flow have opposite direction. They can be replaced by an
equivalent current source whose value is the algebraic difference of the individual current sources
as shown in Figure 2.28.

d @ — O
18 A 24 A 6 A

Figure 2.28. Addition of current sources in parallel when they have opposite direction

2.11 Resistance and Conductance Combinations

Often, resistors are connected in series or in parallel. With either of these connections, series or
parallel, it is possible to replace these resistors by a single resistor to simplify the computations of
the voltages and currents. Figure 2.29 shows n resistors connected in series.

R1 R2 RS RN
A —WA—MWA—W M— B

1

Rest of the circuit

Figure 2.29. Addition of resistances in series

The combined or equivalent resistance Req 1

\' \% \'% \'%
R _AB=R1+I32+R3+ RN

ed i i i

or
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n
Reg = Ri+Ry+ R+ .. +R = ZR

(2.36)
For Resistors in Series

Example 2.4

For the circuit of Figure 2.30, find the value of the current i after combining the voltage sources
to a single voltage source and the resistances to a single resistor.

200vV] _R, 4 Ry 4 |30V

Figure 2.30. Circuit for Example 2.4

Solution:

We add the values of the voltage sources as indicated in Definitions 8 and 9, we add the resis-
tances in accordance with (2.36), and we apply Ohm'’s law. Then,

Zv _ 200 (64+80) _ 56
>R 28 28

| = =2A (2.37)

Next, we consider the case where n resistors are connected in parallel as shown in Figure 2.31.

VaB

Figure 2.31. Addition of resistances in parallel
By KCL, i .. .
IT = |1+|2+...+|n (238)
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The same voltage exists across each resistor; therefore, dividing each term of (2.38) by Vg, we
obtain
it iy P in
L O B (2.39)
Vas  VaB Vas VaB

and since v/i = R, then i/v = 1/R and thus (2.39) can be written as

T &
RAB Rl R2 Rn
or

11,1, 1

Reg Ri Ry R, (2.40)
For Resistors in Parallel

For the special case of two parallel resistors, (2.40) reduces to

1 1,1
Req Ri R
or
R;-R
R., = R,||R, = —+—2 241
eq 1” 2 Rl+ R2 ( )
where the designation R,||R, indicates that R, and R, are in parallel.
Also, since G = 1/R, from (2.38),
n
Geq = G1+Gy+...+G, = Zek (2.42)
k=1

that is, parallel conductances combine as series resistors do.

|
Example 2.5
In the circuit of Figure 2.32,

a. Replace all resistors with a single equivalent resistance Ry,

b. Compute the voltage v,g across the current source.
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) +
Is R, Ry Rs R, R
(D Vvae 239 12 Q 40 200 350
11
6 " |

Figure 2.32. Circuit for Example 2.5

Solution:

a. We could use (2.40) to find the equivalent resistance R

eq However, it is easier to form

groups of two parallel resistors as shown in Figure 2.33 and use (2.41) instead.

T PR IS 1
Is R, IRy Rs\\ ;| Ra Rs .
( I \
(D Vag 330 (3120 49\ 2200 §5£2//
11 - > -7
- A ~ - - ~S—___-F
6 _
Figure 2.33. Groups of parallel combinations for the circuit of Example 2.5.
Then,
12x4
R,|IR; = =3Q
2R = 552
Also, 0% 5
R4lIRs = 2 = 4 Q
20+ 5
and the circuit reduces to that shown in Figure 2.34.
is 7 Rl \\
/ \
C) Vag ! $30 3Q! §4Q
11 AN d
5 A I SR P
Figure 2.34. Partial reduction for the circuit of Example 2.5
Next,
3x3
33 ====15Q
| 3+3
Finally, L5xa 12
— — . X — —
Reg= 114 =152 =11

and the circuit reduces to that shown in Figure 2.35
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_|_
Is Req
O ™ 3
1 A 12 Q
6 _ 11

Figure 2.35. Reduction of the circuit of Example 2.5 to its simplest form
b. The voltage v g across the current source is

Vag = IR, = = £ =2V (2.43)

2.12 Voltage Division Expressions

In the circuit of Figure 2.36, vg, R;, and R, are known.

Ry
YV
O i

Figure 2.36. Circuit for the derivation of the voltage division expressions

For the circuit of Figure 2.36, we will derive the voltage division expressions which state that:

R,
R, +R,

—L d
\'% = Ve and Vi, =
R1 R, +R, s R2

Vs

These expressions enable us to obtain the voltage drops across the resistors in a series circuit sim-
ply by observation.

Derivation:

By Ohm’s law in the circuit of Figure 2.36 where i is the current flowing through i, we obtain

Also, )
(Ry+R)I = vg
or
. Vg
i = 2.45
R, +R, ( )
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and by substitution of (2.45) into (2.44) we obtain the voltage division expressions below.

R,
R, +R,

VvV =
RL™ R, +R,

VOLTAGE DIVISION EXPRESSIONS

Example 2.6

(2.46)

In the network of Figure 2.37, the arrows indicate that resistors R; and R, are variable and that

the power supply is set for 12 V.

a. Compute Vg, and Vg, if R; and R, are adjusted for 7 Q and 5 Q respectively.

b. To what values should R; and R, be adjusted so that vg; = 3V, vg, =9V, and

. . . . * .
c. Using Simulink and SimPowerSystems , create a model to simulate the voltage vg,

+ VR-1'_ /ARl
st [0y
(Voltage +
Sgurce) Ve, I R,

Figure 2.37. Network for Example 2.6
Solution:

a. Using the voltage division expressions of (2.46), we obtain

Vep = 2y 2 T g2 7V

RLTR,+R, 57 745 -
and R

Vg, = =2 -2 x12-5V

R,+R,’S 745"

* For an introduction to Simulink and SimPowerSystems, please refer to Appendices B and C respectively.
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b. Since vg, +Vvg, = 3+9 =12V, R, +R, = 12 Q, and the voltage drops are proportional to
the resistances, it follows that if we let R; = 3 Q and R, = 9 Q, the voltage drops vg; and
Vg, willbe 3 V and 9 V respectively.

C.
R1=7 Ohm, R2=5 Ohm VM = Voltage Measuremt
AN~ '
L vi—» 5.00
R1 -
ﬂ_ r M Display
1
12v DC -|— R2 —
I Powergui is an environmental block. Itis
I Continuous necessary for simulation of any Simulink
- model containg SimPowerSystems blocks
- powergui

Figure 2.38. Simulink / SimPower Systems model for Example 2.6

2.13 Current Division Expressions

In the circuit shown in Figure 2.39, ig, G;, and G, are known.

. i)
Ig1 Gl G2 GZ

CD N (Ry) (Rz)

Is

Figure 2.39. Circuit for the derivation of the current division expressions
For the circuit of Figure 2.39, we will derive the current division expressions which state that

. G 4 i = G, .
lg1 = Gl+Gzls and gy = G1+G2|S

and these expressions enable us to obtain the currents through the conductances (or resistances)
in a parallel circuit simply by observation.
Derivation:
By Ohm'’s law for conductances, we obtain

i, = GV and ig, = G,V (2.47)
Also,
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or i
vV = S (2.48)
G, +G,
and by substitution of (2.48) into (2.47)
g, = o and gy = =2 i 2.49
g1 = Gl+Gz|S and g, = Gl+Gz|S (2.49)
Also, since 1 1
R,== R,==
17 G, 2= G,
by substitution into (2.49) we obtain
R
. 2 . . 1.
ipy = — i and i, = ——i
RL™ R, +R, S RZTR,+R, S (2.50)
CURRENT DIVISION EXPRESSIONS

Example 2.7

For the circuit inFigure 2.40, compute the voltage drop v. Verify your answer with a Simulink /

SimPowerSystems model.

Figure 2.40. Circuit for Example 2.7
Solution:

The current source ig divides into currents i; and i, as shown in Figure 2.40. We observe that

the voltage v is the voltage across the resistor R, . Therefore, we are only interested in current

i; . This is found by the current division expression as

R,+R;+R, . 4+5+20

T R TR, +R;+R, 8 12+4+5+20

7
3==—=A
41
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R,
W
Rl Ig
wise  Lize ()
Tb 20 Q IM SA
Yy
Ry

Figure 2.41. Application of current division expressions for the circuit of Example 2.7

and observing the passive sign convention, the voltage v is

_ iR, = 8.y o 104,
Ve T e T Ty
or
v = -25.46 V
Resistances in Ohms —>| -0.88 | > 212
Display 2 Display 3
CCS = Current Controlled Source
T ra|+ v 1—» 2546
VM Display 4
L Py
R2 =12 - VM = Voltage Measurement
s i
-3 - * Continuous
+ I
Constant - E'—l M2 | CM3 l Sowergu
CM 1 - —
—i— -
CM = Current Measurement ) ||7300 |

Display 1

Figure 2.42. Simulink / SimPower Systems model for Example 2.7

2.14 Standards for Electrical and Electronic Devices

Standardization of electronic components such as resistors, capacitors and diodes is carried out by
various technical committees. In the United States, the Electronics Industries Association (EIA)
and the American National Standards Institute (ANSI) have established and published several
standards for electrical and electronic devices to provide interchangeability among similar prod-
ucts made by different manufacturers. Also, the U.S. Department of Defense or its agencies issue
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standards known as Military Standards, or simply MIL—stds. All of the aforementioned standards
are updated periodically. The interested reader may find the latest revisions in the Internet or
the local library.

2.15 Resistor Color Code

The Resistor Color Code is used for marking and identifying pertinent data for standard resistors.
Figures 2.43 and 2.44 show the color coding scheme per EIA Standard RS-279 and MIL-STD-
1285A respectively.

Significant st 7 Tolerance
Figures 2nd Wider Space to

n

3rd Identify Direction
of Reading
Left to Right

Multiplier
Figure 2.43. Resistor Color Code per EIA Standard RS—279

Failure Rate Level
on Established

Reliability Levels
Only

Significant Ist
Figures 2nd

Multiplier
Tolerance
Figure 2.44. Resistor Color Code per MIL-STD-1285A

In a color coded scheme, each color represents a single digit number, or conversely, a single digit
number can be represented by a particular color band as shown in Table 2.3 that is based on
MIL-STD-1285A color code.

As shown in Figure 2.44, the first and second bands designate the first and second significant
digits respectively, the third represents the multiplier, that is, the number by which the first two
digits are multiplied, and the fourth and fifth bands, if they exist, indicate the tolerance and fail-
ure rate respectively. The tolerance is the maximum deviation from the specified nominal value
and it is given as a percentage. The failure rate is the percent probability of failure in a 1000-hour
time interval.
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TABLE 2.3 Resistor values per MIL-STD-1285A

Ist & 2nd Multiplier Tolerance Fail Rate
Color Code Digits (3rd Digit) (Percent) (Percent)
Black 0 1
Brown 1 10 1 1
Red 2 100 2 0.1
Orange 3 1000 0.01
Yellow 4 10000 0.001
Green 5 100000 0.5
Blue 6 1000000 0.25
Violet 7 0.1
Gray 8
White 9
Gold 0.1 5
Silver 0.01 10
No Color 20

Let A and B represent the first and second significant digits and C represent the multiplier. Then
the resistance value is found from the expression

R = (10 x A + B)x10° (2.51)

|
Example 2.8

The value of a resistor is coded with the following colored band code, left to right: Brown, Green,
Blue, Gold, Red. What is the value, tolerance, and probability of failure for that resistor?

Solution:

Table 2.3 yields the following data: Brown (1st significant digit) = 1, Green (2nd significant digit)
= 5, and Blue (multiplier) = 1,000,000. Therefore, the nominal value of this resistor is
15,000,000 Ohms or 15 MQ. The 4th band is Gold indicating a 5% tolerance meaning that the
maximum deviation from the nominal value is 15,000,000 £5% = 15,000,000 x +0.05 =
+750,000 Ohms or +0.75 MQ. That is, this resistor can have a value anywhere between 14.25
MQ and 15.75 MQ. Since the 5th band is Red, there is a 0.1% probability that this resistor will
fail after 1000 hours of operation.
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2.16 Power Rating of Resistors

As it was mentioned in Section 2.2, a resistor, besides its resistance rating (ohms) has a power
rating (watts) commonly referred to as the wattage of the resistor, and common resistor wattage
values are Y4 watt, V2 watt, 1 watt, 2 watts, 5 watts and so on. To appreciate the importance of
the wattage of a resistor, let us refer to the voltage divider circuit of Example 2.6, Figure 2.37

where the current is 12 V/12 Q = 1 A. Using the power relation pg = i’R, we find that the

wattage of the 7 Q and 5 Q resistors would be 7 watts and 5 watts respectively. We could also
divide the 12 volt source into two voltages of 7V and 5V using a 7 kQ and a 5 kQ resistor.
Then, with this arrangement the current would be 12 V/12 kQ = 1 mA. The wattage of the

3.2 _
7kQ and 5kQ resistors would then be (107°) x7x10® = 7x10°W = 7 mW and
3.2
(10°)" x5x10® = 5 mW respectively.

2.17 Temperature Coefficient of Resistance

The resistance of any pure metal, such as copper, changes with temperature. For each degree
that the temperature of a copper wire rises above 20°C Celsius, up to about 200°C, the resis-
tance increases 0.393 of 1 percent of what it was at 20 degrees Celsius. Similarly, for each degree
that the temperature drops below 20°C, down to about —50°C, the resistance decreases 0.393 of

1 percent of what it was at 20 °C . This percentage of change in resistance is called the Tempera-
ture Coefficient of Resistance. In general, the resistance of any pure metal at temperature T in
degrees Celsius is given by

R = Ryl 1+ (T~ 20)] (2.52)
where R, is the resistance at 20°C and o, is the temperature coefficient of resistance at

20°C.

I

Example 2.9

The resistance of a long piece of copper wire is 48 Q at 20°C.

a. What would the resistance be at 50°C?

b. Construct a curve showing the relation between resistance and temperature.
Solution:

a. The temperature rise is 50 — 20 = 30 degrees Celsius and the resistance increases 0.393% for
every degree rise. Therefore the resistance increases by 30 x 0.393 = 11.79% . This represents
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an increase of 0.1179 x 48 Q in resistance or 5.66 Q. Therefore, the resistance at 50 degrees
Celsius is 48 +5.66 = 53.66 Q.

b. The relation of (2.52) is an equation of a straight line with slope = R,y0.,,. This straight line

is easily constructed with the Microsoft Excel spreadsheet shown in Figure 2.45.

From Figure 2.45, we observe that the resistance reaches zero value at approximately —235°C.

Temp Resistance
(deg C)  (Ohms) Resistance of Copper Wire versus Temperature
-250 -2.9328
-240 -1.0464 100
-220 2.7264
© 60 |
-210 46128 £
z
-200 6.4992 O 40
-190 8.3856 20 |
-180 10.272 o
170 12.1584 -250 -200 -150 -100 -50 0 50 100 150 200 250
-160 14.0448 5 o
-150 15.9312 egrees Celsius
-140 17.8176

Figure 2.45. Spreadsheet for construction of equation (2.52)

2.18 Ampere Capacity of Wires

For public safety, electric power supply (mains) wiring is controlled by local, state and federal
boards, primarily on the National Electric Code (NEC) and the National Electric Safety Code. More-
over, many products such as wire and cable, fuses, circuit breakers, outlet boxes and appliances
are governed by Underwriters Laboratories (UL) Standards which approves consumer products
such as motors, radios, television sets etc.

Table 2.4 shows the NEC allowable current—carrying capacities for copper conductors based on
the type of insulation.

The ratings in Table 2.4 are for copper wires. The ratings for aluminum wires are typically 84% of
these values. Also, these rating are for not more than three conductors in a cable with tempera-
ture 30°C or 86°F. The NEC contains tables with correction factors at higher temperatures.

2.19 Current Ratings for Electronic Equipment

There are also standards for the internal wiring of electronic equipment and chassis. Table 2.5
provides recommended current ratings for copper wire based on 45°C (40°C for wires smaller
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than 22 AWG. Listed also, are the circular mils and these denote the area of the cross section of
each wire size. A circular mil is the area of a circle whose diameter is 1 mil (one—thousandth of an
inch). Since the area of a circle is proportional to the square of its diameter, and the area of a cir-
cle one mil in diameter is one circular mil, the area of any circle in circular mils is the square of
its diameter in mils.

TABLE 2.4 Current Ratings for Electronic Equipment and Chassis Copper Wires

Wire Size Maximum Current (Amperes)
Nominal
Resistance
(Ohms/1000 ft) Wire in Free Wire Confined
AWG Circular Mils at 100 °C Air in Insulation
32 63.2 188 0.53 0.32
30 100.5 116 0.86 0.52
28 159.8 72 1.4 0.83
26 254.1 45.2 2.2 1.3
24 404 28.4 3.5 2.1
22 642.4 22 7 5
20 10.22 13.7 11 7.5
18 1624 6.5 16 10
16 2583 5.15 22 13
14 4107 3.2 32 17
12 6530 2.02 41 23
10 10380 1.31 55 33
8 16510 0.734 73 46
6 26250 0.459 101 60
4 41740 0.29 135 80
2 66370 0.185 181 100
1 83690 0.151 211 125
0 105500 0.117 245 150
00 133100 0.092 283 175
000 167800 0.074 328 200
0000 211600 0.059 380 225

T Dry Locations Only

¥ Nickel or nickel-coated copper only
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A mil—-foot wire is a wire whose length is one foot and has a cross—sectional area of one circular
mil.

The resistance of a wire of length | can be computed with the relation

R = p_z (2.53)

where p = resistance per mil-foot, | = length of wire in feet, d = diameter of wire in mils, and
R is the resistance at 20°C.

|
Example 2.10

Compute the resistance per mile of a copper conductor 1/8 inch in diameter given that the resis-
tance per mil-foot of copper is 10.4 Q at 20°C.

Solution:

(1/8) in = 0.125 in = 125 mils
and from (2.53)
pl _ 10.4 x5280

R =
d? 1252

=351 Q

Column 3 of Table 2.5 shows the copper wire resistance at 100°C . Correction factors must be
applied to determine the resistance at other temperatures or for other materials. For copper, the
conversion equation is

Ry = Rygol1+ 0.004(T - 100)] (2.54)

where Ry is the resistance at the desired temperature, R, is the resistance at 100°C for copper,
and T is the desired temperature.

1

Example 2.11

Compute the resistance of 1000 ft of size AWG 12 copper wire at 30°C.

Solution:

From Table 2.5 we find that the resistance of 1000 ft of size AWG 12 copper wire at 100°C is
2.02 Q. Then, by (2.54), the resistance of the same wire at 30°C is

Rapec = 2.02[1+0.004(30-100)] = 1.45 Q
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2.20 Copper Conductor Sizes for Interior Wiring

In the design of an interior electrical installation, the electrical contractor must consider two
important factors:

a. The wiring size in each section must be selected such that the current shall not exceed the
current carrying capacities as defined by the NEC tables. Therefore, the electrical contractor
must accurately determine the current which each wire must carry and make a tentative
selection of the size listed in Table 2.4.

b. The voltage drop throughout the electrical system must then be computed to ensure that it
does not exceed certain specifications. For instance, in the lighting part of the system referred
to as the lighting load, a variation of more than 5% in the voltage across each lamp causes an
unpleasant variation in the illumination. Also, the voltage variation in the heating and air
conditioning load must not exceed 10%.

Important!

The requirements stated here are for instructional purposes only. They change from time to
time. It is, therefore, imperative that the designer consults the latest publications of the applica-
ble codes for compliance.

Example 2.12

Figure 2.46 shows a lighting load distribution diagram for an interior electric installation.

| L, Lighting
kw—hr ! | Load

Utility Meter Panel ! h“

L

Company Circuit Board | ) [ L2
Switch B | / |

reaker \

. — | I T |

/

|
Main L
Lines Byanch < ) :
Lines : &[ |
I L3

_________

Figure 2.46. Load distribution for an interior electric installation

The panel board is 200 feet from the meter. Each of the three branches has 12 outlets for 75 w,
120 volt lamps. The load center is that point on the branch line at which all lighting loads may be
considered to be concentrated. For this example, assume that the distance from the panel to the
load center is 60 ft. Compute the size of the main lines. Use T (thermoplastic insulation) type
copper conductor and base your calculations on 25°C temperature environment.
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Solution:

It is best to use a spreadsheet for the calculations so that we can compute sizes for more and dif-
ferent branches if need be.

The computations for Parts I and II are shown on the spreadsheet in Figures 2.47 and 2.48 where
from the last line of Part II we see that the percent line drop is 12.29 and this is more than twice
the allowable 5% drop. With the 12.29% voltage variation the brightness of the lamps would
vary through wide ranges, depending on how many lamps were in use at one time.

A much higher voltage than the rated 120 V would cause these lamps to glow far above their
rated candle power and would either burn them immediately, or shorten their life considerably. It
is therefore necessary to install larger than 12 AWG main line. The computations in Parts III
through V of the spreadsheet of Figures 2.47 and 2.48 indicate that we should not use a conduc-
tor less than size 6 AWG.
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Figure 2.47. Spreadsheet for Example 2.12, Parts I and 11
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Figure 2.48. Spreadsheet for Example 2.12, Parts 111, IV, and V
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2.21 Summary

Ohm’s Law states that the voltage across a device is proportional to the current through that
device and the resistance is the constant of proportionality.

Open circuit refers to an open branch (defined below) in a network. It can be thought of as a
resistor with infinite resistance (or zero conductance). The voltage across the terminals of an
open may have a finite value or may be zero whereas the current is always zero.

Short circuit refers to a branch (defined below) in a network that contains no device between
its terminals, that is, a piece of wire with zero resistance. The voltage across the terminals of a
short is always zero whereas the current may have a finite value or may be zero.

A resistor absorbs power.

A resistor does not store energy. The energy is dissipated in the form of heat.

A node is a common point where one end of two or more devices are connected.
A branch is part of a network that contains a device and its nodes.

A mesh is a closed path that does not contain other closed paths

A loop contains two or more closed paths.

Kirchoff’s Current Law (KCL) states that the algebraic sum of the currents entering (or leav-
ing) a node is zero.

Kirchoff’s Voltage Law (KVL) states that the algebraic sum of the voltage drops (or voltage
rises) around a closed mesh or loop is zero.

Two or more devices are said to be connected in series if and only if the same current flows
through them.

Two or more devices are said to be connected in parallel if and only if the same voltage exists
across their terminals.

A series circuit with a single mesh can be easily analyzed by KVL.
A parallel circuit with a single node pair can be easily analyzed by KCL.

If two or more voltage sources are in series, they can be replaced by a single voltage source
with the proper polarity.

If two or more current sources are in parallel, they can be replaced by a single current source
with the proper current direction.

If two or more resistors are connected in series, they can be replaced by an equivalent resis-
tance whose value is
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n
Reg = Ri+Rp+Rg+ ... +R = ZRK
k=1

e If two or more resistors are connected in parallel, they can be replaced by an equivalent resis-
tance whose value is

11,1, 42
Req Ry Ry R,

e For the special case of two parallel resistors, the equivalent resistance is found from the relation

Req = RullR; = R. +R
17T

€q

e Conductances connected in series combine as resistors in parallel do.
e Conductances connected in parallel combine as resistors in series do.

e For the simple series circuit below

Ry
NW
FVee™
_.I_
O s
VS -
the voltage division expressions state that:
R, q R,
VR = ==V Vg, = v
RIZ R 4R, 8 M0 TRETR GIR,'S
e For the simple parallel circuit below
- i |
igy G, G2 G,
v
iS(D (Ry) (Rz)
the current division expressions state that:
R
) 2 . , 1.
gy = —— =g and g, = =———i
RILT R +R, S RRTR+R, S
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e In the United States, the Electronics Industries Association (EIA) and the American National
Standards Institute (ANSI) have established and published several standards for electrical
and electronic devices to provide interchangeability among similar products made by different
manufacturers.

e The resistor color code is used for marking and identifying pertinent data for standard resis-
tors. Two standards are the EIA Standard RS-279 and MIL-STD-1285A.

e Besides their resistance value, resistors have a power rating.

e The resistance of a wire increases with increased temperature and decreases with decreased
temperature.

e The current ratings for wires and electronic equipment are established by national standards
and codes.
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2.22 Exercises
Multiple Choice

1. Ohm’s Law states that

A.
B.
C.

D.

E.

the conductance is the reciprocal of resistance
the resistance is the slope of the straight line in a voltage versus current plot

the resistance is the sum of the voltages across all the devices in a closed path divided by the
sum of the currents through all the devices in the closed path

the sum of the resistances around a closed loop is zero

none of the above

2. Kirchoff’s Current Law (KCL) states that

A.

B.

C.

D.
E.

the sum of the currents in a closed path is zero

the current that flows through a device is inversely proportional to the voltage across that
device

the sum of the currents through all the devices in a closed path is equal to the sum of the
voltages across all the devices

the sum of the currents entering a node is equal to the sum of the currents leaving that node
none of the above

3. Kirchoff’s Voltage Law (KCL) states that

A.

B.

C.

D.

E.

the voltage across a device is directly proportional to the current through that device
the voltage across a device is inversely proportional to the current through that device

the sum of the voltages across all the devices in a closed path is equal to the sum of the cur-
rents through all the devices

the sum of the voltages in a node is equal to the sum of the currents at that node

none of the above

4. For the three resistors connected as shown below, the equivalent resistance R,g is computed

with the formula

MN— WNW— N\
R, R, Rs

A Rag B
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B. Rpg = R:+Rs+R’

R1R;R;
R;+R,+Rg

D.R.. = |[_RiRoRs
AB R, +R,+R;

E. none of the above

C.Rpg =

5. For the three conductances connected as shown below, the equivalent conductance G,g is
computed with the formula

MN—WWN—WWN
| Gl Gz GE
A Gag B

B.Gpg = /G2 +GZ+GS

G,G,G,

C.G S - S
AR T G +G,+G,

1_1.1.1
Gag G1 G, G
E. none of the above

6. For the three resistances connected as shown below, the equivalent conductance G,g is

Ao
R, R, Rs
Gag — 240 e 330
Bo
A 2107t
B.15Q™
C. 27307
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D. 144/19 Q1

E. none of the above

7. In the network shown below, when R = 4 Q, the voltage vg = 6 V. When R = 0 Q,

+
Rest of the N
Circuit VR § R
v
A. 6V
B. 24 Vv
C.8v
D. 16 vV

E. none of the above

8. The node voltages shown in the partial network below are relative to some reference node not
shown. The value of the voltage vy is

10V
2 A
‘ 30
AR
2V VX 1+ u o8V
8 Q 6V 2 A
4 Q
20V
A. -6V
B. 16 V
C.ov
D. 10V

E. none of the above
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9. For the network below the value of the voltage v is

A.8V
B.2V
C.-2V
D. -8V

E. none of the above

10. For the circuit below the value of the current i is

A.2A
B.0A
C. e A
D.1A

E. none of the above

M

4 Q

12 Q
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Problems

1. In the circuit below, the voltage source and both resistors are variable.

+
-4 R,

+E/AR2

a. With vg = 120 V, R; = 70 Q, and R, = 50 Q, compute the power absorbed by R, .
Answer: 50 w

b. With vg = 120 V and R; = 0 Q, to what value should R, be adjusted so that the power
absorbed by it will be 200 w? Answer: 72 Q

c. With R; = 0Q and R, = 100 Q, to what value should vg be adjusted to so that the
power absorbed by R, will be 100 w? Answer: 100 V

2. In the circuit below, R, gap represents the load of that circuit.

—3A N\
MY MV
> 8 5AT< % 2@ + ‘iLOAD
® O e ows how
75V ! - Rl oaD

Compute:

a. i_gap Answer: 8 A
b. V| gap Answer: 20 V

C. PLoap Answer: 160 w
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3. For the circuit below, compute the power supplied or absorbed by each device.

24 A—— ——6A
B D

A |12V c|60V El3Vv

Answers: py = 288 W, pg = 1152 W, pe = —1800 W, pp = 144 w, pz = 216 W

4. In the circuit below, compute the power delivered or absorbed by the dependent voltage
source.

R, 2Q R; 10Q

Answer: 62.5 w

5. In the network below, each resistor is 10 Q. Compute the equivalent resistance Req .

Answer: 360/21 Q

6. In the network below, R; = 10 Q and R, = 20 Q. Compute the current i supplied by the 15
V source.

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling  2-45
Copyright © Orchard Publications



Chapter 2 Analysis of Simple Circuits

Ry

Hint: Begin at the right end and by series and parallel combinations of the resistors, reduce the
circuit to a simple series circuit. This method is known as analysis by network reduction.

Answer: 0.75 A

7. For the circuit below, use the voltage division expression to compute vy and vy, .

+

T

5Q§ Vx §20£2

|

24V

Answers: vy = 8/3V, vy = 16/3V

8. For the circuit below, use the current division expression to compute iy and iy .

.
XS50

16 A 20 Q

Answers: iy = -16/3V, iy = -8/3V

9. A transformer consists of two separate coils (inductors) wound around an iron core as shown in
below. There are many turns in both the primary and secondary coils but, for simplicity, only
few are shown. It is known that the primary coil has a resistance of 5.48 Q at 20 degrees Cel-

sius. After two hours of operation, it is found that the primary coil resistance has risen to 6.32
Q. Compute the temperature rise of this coil.
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Primary (
Coil q

Secondary
N Coil

Iron Core

Answer: 36°C

10. A new facility is to be constructed at a site which is 1.5 miles away from the nearest electric
utility company substation. The electrical contractor and the utility company have made
load calculations, and decided that the main lines from the substation to the facility will
require several copper conductors in parallel. Each of these conductors must have insulation

type THHN and must carry a maximum current of 220 A in a 20°C temperature environ-
ment.

a. Compute the voltage drop on each of these conductors from the substation to the facility
when they carry the maximum required current of 220 A in a 20°C temperature environ-
ment.

Answer: 70 V

b. The power absorbed by each conductor under the conditions stated above.
Answer: 15.4 Kw

c. The power absorbed per square cm of the surface area of each conductor under the condi-
tions stated above.

Answer: 0.02 w/cm?

11. For the network below, each of the 12 resistors along the edges of the cube are 1 Q each.
Compute the equivalent resistance R,g. Hint: Use any tricks that may occur to you.

A

=
3 MV ===
< ’ <

Answer: 5/6 Q
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12. A heating unit is rated at 5 Kw, and to maintain this rating, it is necessary that a voltage of
220 V is applied to establish an initial temperature of 15 °C. After the heating unit has
reached a steady state, it is required that the voltage must be raised to 240 V to maintain the
5 Kw rating. Find the final temperature of the heating element in °C if the temperature

coefficient o is 0.0006 Q per 1 °C.

Answer: 332 °C.
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2.23 Answers / Solutions to End-of-Chapter Exercises

Multiple Choice

1.B

2.D

3.E

4.E

5.D

6.C

7.B When R =4 Q, the voltage vg = 6 V. Therefore, iz = 6/4 = 1.5 A. Also, when
R=0Q, ig =2A, and thus vg = 0 (short circuit). When R = e, ig = 0 but vg
has a finite value and it is denoted as vg _ , in the figure below. Now, we observe that the

triangles abc and dbe are similar. Then be _de , 20-15__6
ac 2.0 VR - o

and thus

VR_o = 24V
Vg (V)
a

d

| €

b
05 10 15 20 ir(A)

8. D We denote the voltage at the common node as v, shown on the figure below.

10V
2 A
‘ 30
/AR
2V Vx I+ Va N o8V
8 Q 5V 2A
4 Q
20V
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va—10

Then, from the branch that contains the 3 Q resistor, we observe that =2 or

Vo = 16 and thus vy = —6+16 = 10 V

9. A This is an open circuit and therefore no current flows through the resistor. Accordingly,
there is no voltage drop across the resistor and thus v = 8 V.

10. A The 12 Q resistor is shorted out by the short on the right side of the circuit and thus the
only resistance in the circuit is the 4 Q resistor.

Problems

1.
a. Withvg =120 V,R; = 70 Q, and R, = 50 Q, the circuit is as shown below.

70 Q
AW\
Rl
Vs
@) R2§ 50 Q
120 V

Using the voltage division expression, we obtain

50
vR2_70+50><120_50V
Then,
V3 2
p 212:&:50W
R2 7 R, 50

b. With vg = 120 V and R; = 0 Q, the circuit is as shown below.

0Q
R
+5 2
(t) VR,S72 Q
120 V -

We observe that
VR, = Vs = 120V
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and
2
VR
—2 = 200w
2
or
120°
22— 200 w
RZ
or 9
— 1_2_0__ = 72 Q
27 200

c. WithR; = 0Q and R, = 100 Q, the circuit is as shown below.

0Q
R
+L 2
(t) VR,2100 Q
100 V -
Then, ,
== =100 w
2
or 9
\'
—S = 100 w
100
or
vZ = 100 x 100 = 10, 000
or
Vg = /10,000 = 100 V

2.
a. Application of KCL at node A of the circuit below yields

—3A

A lLoap
AW — ()
5Q 5A!
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b. Application of KVL around Mesh 1 yields
—-754+3(5)+Vpg =0

or

Application of KVL around Mesh 2 yields

or
-60+24+2%x8+V gap =0

or
Vioap = 20V

PLoab = Vioap XiLoap = 20x8 = 160 w (absorbed power)

3. Where not shown, we assign plus (+) and minus (=) polarities and current directions in accor-
dance with the passive sign convention as shown below.
i i
24 A8 b

6 A
X _
BT DL
+ JiA Vg icl|+ Vg gl
Val A Vel C VE| E
T 12V — 60 V 36V

We observe that i, = ig and ig = ip. Also, by KCL at Node X

ig+ip =24+6 =30 A

Ic

Then,
Pa = Valia = 12x24 = 288 w (absorbed)
Pg = Vegig = 36 x6 = 216 w (absorbed)
Pc = Ve(=ig) = 60x(-30) = -1800 w (supplied)
By KVL
Va+Vg = V¢
o Vg = Vo—Va = 6012 = 48 V
and thus :
Pg = Vgig = 48x24 = 1152 w (absorbed)
Also by KVL
Vp+ Vg = V¢
or
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and thus _
Pp = Vpip = 24x6 = 144 w (absorbed)

Check: We must show that Power supplied = Power absorbed

P = Pa+Pg+Pc+Pp = 288+ 216 + 1152 + 144 = 1800 w

4. We assign voltages and currents Vg _, Vg , ig _, ig , and iy as shown in the circuit below.
2 4’ R3? 'Ry

R, 2Q R;10QX

+LRy
(t vR4§ 10 Q
50V Sig, v
By KVL,
Y Vg, = 50-2x10 = 30 V
and by Ohm’s law,
o= 2 30 _ga
R R, 6

Therefore, the value of the dependent voltage source is

5ig, = 5x5 = 25V

and .
Then, v
in = —%=2_25A

s~ R, 10

By KCL at Node X .
here

v ip, = 10-ip = 10-5=5A
and thus

with the indicated direction through the dependent source. Therefore,

Pp = 5iR2iD = 25%x25 = 62.5w (absorbed)
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5. The simplification procedure begins with the resistors in parallel as indicated below.

10
5 10
Reg
5 10
10
% 5 l
Reg
%‘
§ 80,21 —
Re; Req —- Rog— S 160/21
§ 80/21 —

6. We begin with the right side of the circuit where the last two resistors are in series as shown
below.
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Then,
R +R; = 10+10 = 20 Q
Next,
201120 = 10 Q@
10+10 = 20 Q

and so on. Finally, addition of the left most resistor with its series equivalent yields

10+10 = 20 Q
and thus

i =15/20 = 0.75 A
7. We first simplify the given circuit by replacing the parallel resistors by their equivalents. Thus,

5x20 _

51120 = e

5+ 20

and 0% 40
101140 = 10x40 _ g ¢

10 + 40

The voltage sources are in series opposing connection and they can be replaced by a single
voltage source with value 24 — 16 = 8 V. The simplified circuit is shown below.

) <_'__>8 v
- 8 Q §_VY

+
Now, by the voltage division expression,
4 8
Yx = 378%% =3V
and 8 16
V=83V

8. We first simplify the given circuit by replacing the series resistors by their equivalents. Thus,

5+20 =25 Q

and
10+40 = 50 Q

The current sources are in parallel opposing connection and they can be replaced by a single
current source with value 24 — 16 = 8 A. The simplified circuit is shown below.
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() i)} 25Q ilgsog

By the current division expression,

50 16

X = 25450 (B ="FA
and ” o
V= g0 (B =3 A

9. We construct the resistance versus temperature plot shown below.

Ry = 632 Q

a

{ §5
-234.5

T (°C)

From the similar triangles acd and abe, we obtain

Ry  2345+T,+Ty 2345+20+ Ty 2545+ T,

Ry,  2345+T,  2345+20 2545
or
Rx 6.32 S
AT= Ty = == x2545-2545 = === x 25452545 = 36°C
Ry 5.48
10.

a. From Table 2.4 we find that the cable size must be 0000 AWG and this can carry up to
235 A. Also, from Table 2.5 we find that the resistance of this conductor is

0.059 ©,/1000 ft at 100°C. Then, the resistance of this conductor that is 1.5 miles long is
Q 5280

0'0591000ftx 1 miIeXl'S miles = 0.4673 Q at 100°C

To find the resistance of this cable at 20°C, we use the relation of (2.54). Thus,

Ryo = Rygol1+0.004(20 - 100)] = 0.4673(1-0.32) = 0.3178 Q
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and the voltage drop on each of these conductors is
v = iR = 220x0.3178 = 70 V
b. The power absorbed by each conductor is
p=vi=70x220 = 15,400 w = 15.4 Kw

c. Table 2.5 gives wire sizes in circular mils. We recall that a circular mil is the area of a circle
whose diameter is 0.001 in. To find the diameter in cm, we perform the following conver-
sion:

1 circular mil

’idz = 2—15(0.001)2 = 7.854x107 in®

2
7.854x 107 in?x Z24EM) _ 5 067 % 10°° cm”
In

From Table 2.5 we find that the cross section of a 0000 AWG cable is 211,600 circular

. . . . 2,
mils. Then, the cross—section of this cable in cm* is

5.067 x 10° cm?
circular mil

211, 600 circular mils x = 1.072 cm?

Therefore, the cable diameter in cm is

d= ./1.072 = 1.035 cm
The cross—section circumference of the cable is
nd = ©x 1.035 = 3.253 cm

and the surface area of the cable is

5
Surface area = wdl = 3.253 cm x 1.5 miles x 1.609_Km X 10 cm = 7.851x 10° cm®
1 mile 1 Km

Then, the power absorbed per cm? is

_ Total power _ 15, 400 w — 0.02 w/cm?
, = = = 0.
em cm? 7.851 x 10° cm?

11. Let us connect a voltage source of 1 volt across the corners A and B of the cube as shown
below, and let the current produced by this voltage source be 1.
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:—-I A
PR
1/3 "
V v‘v‘v
© R | 3
>
1 volt |=: Ry o -MAV2---
1/6
LZ_U5R
'I VVv B

Since all resistors are equal (1 Q each), the current | entering node A will be split into 3
equal currents 1/3 each. The voltage drop Vg will be 1 volt regardless of the path from

node A to node B. Arbitrarily, we choose the path through resistors R;, R;, and R, and the
currents through these resistors are 1/3, 1/6, and 1/3 respectively. Then, by KVL,

and since R; = R, = Rg = 1 Q,

| 1.1 _5 _
§+é+§_6I_IRAB
from which

12. The power P, absorbed by the heating unit when the applied voltage is 220 V is 5 Kw and
the resistance R, is found from the relation P, = V5/R, or

2
_ Vi _ (220)° _ 48400

. = 068 Q
P, 5Kw 5000

The power P, absorbed by the heating unit when the applied voltage is 240 V is still 5 Kw

and the resistance R, is

2
Vi _ (240)° _ 57600

R = 5 = 5kw ~ 5000
1

= 1152 Q
From relation (2.52),

or
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or

R,-R;  1152-9.68

T,-T, = =
217 Ry 9.68x0.0006

= 316.8

Therefore, the final temperature T, of the heating element is

T, =3168+T; = 316.8+15=332 °C
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Chapter 3

Nodal and Mesh Equations - Circuit Theorems

his chapter begins with nodal, loop and mesh equations and how they are applied to the
T solution of circuits containing two or more node—pairs and two or more loops or meshes.

Other topics included in this chapter are the voltage—to—current source transformations
and vice versa, Thevenin’s and Norton’s theorems, the maximum power transfer theorem, linear-
ity, superposition, efficiency, and regulation.

3.1 Nodal, Mesh, and Loop Equations

Network Topology is a branch of network theory concerned with the equations required to com-
pletely describe an electric circuit. In this text, we will only be concerned with the following two
theorems.

Theorem 3.1

Let N = number of nodes in a circuit; then N — 1 independent nodal equations are required to
completely describe that circuit. These equations are obtained by setting the algebraic sum of the
currents leaving each of the N — 1 nodes equal to zero.

Theorem 3.2

Let L = M = number of loops or meshes, B = number of branches, N = number of nodes
in a circuit; then L = M = B- N+ 1 independent loop or mesh equations are required to com-
pletely describe that circuit. These equations are obtained by setting the algebraic sum of the
voltage drops around each of the L = M = B—-N + 1 loops or meshes equal to zero.

3.2 Analysis with Nodal Equations
In writing nodal equations, we perform the following steps:

1. For a circuit containing N nodes, we choose one of these as a reference node assumed to be zero
volts or ground.

2. At each non-reference node we assign node voltages vy, v,, ..., v, _; where each of these volt-
ages is measured with respect to the chosen reference node, i.e., ground.

3. If the circuit does not contain any voltage sources between nodes, we apply KCL and write a

nodal equation for each of the node voltages vy, vy, ..., v, _;.
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4. If the circuit contains a voltage source between two nodes, say nodes j and k denoted as node

variables v and v, , we replace the voltage source with a short circuit thus forming a com-

bined node and we write a nodal equation for this common node in terms of both \J and vy ;

then we relate the voltage source to the node variables \J and v, .

|
Example 3.1

Write nodal equations for the circuit shown in Figure 3.1, and solve for the unknowns of these
equations using matrix theory, Cramer’s rule, or the substitution method. Verify your answers
with Excel® or MATLAB® . Please refer to Appendix A for discussion and examples.

MN M
8 Q 10 Q

O ez ® 603 0,

12 A 18 A 24 A

Figure 3.1. Circuit for Example 3.1

Solution:

We observe that there are 4 nodes and we denote these as @, @, ®, and G (for ground) as shown
in Figure 3.2.

vy 8 Q Vs 10 Q Vj
O I B
O ez O ezt (D
12A 18 A 24 A
_t_G

Figure 3.2. Circuit for Example 3.1

For convenience, we have denoted the currents with a subscript that corresponds to the resistor
value through which it flows through; thus, the current that flows through the 4 Q resistor is
denoted as i,, the current through the 8 Q resistor is denoted as ig, and so on. We will follow

this practice in the subsequent examples.

For the circuit of Figure 3.2, we need N—-1 = 4—1 = 3 nodal equations. Let us choose node G
(ground) as our reference node, and we assign voltages v;, v,, and v, at nodes D, @, and ®

respectively; these are to be measured with respect to the ground node G. Now, application of
KCL at node @ vyields
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i, +ig—12 = 0
r

© iy +ig = 12 (3.1)
where ig is the current flowing from left to right. Expressing (3.1) in terms of the node voltages,
we obtain

V —

1y VizVo _ 12

2778
o 1. 1 1

(Z+§)V1—§V2 =12

or

Next, application of KCL at node @ yields

o ig +iy0 = ~18 (3.3)

- . . . * - .
where ig is the current flowing from right to left = and i, is the current that flows from left to
right.
Expressing (3.3) in terms of node voltages, we obtain

VooVi Voo Vs _ g
8 10

v+ (Fe Ly, o dv - o
gVt T V2= 1gVs = 18

or

or

* The direction of the current through the 8 W resistor from left to right in writing the nodal equation at Node 1, and from
right to left in writing the nodal equation at Node 2, should not be confusing. Remember that we wrote independent node
equations at independent nodes and, therefore, any assumptions made in writing the first equation need not be held in
writing the second since the latter is independent of the first. Of course, we could have assumed that the current through
the 8 W resistor flows in the same direction in both nodal equations. It is advantageous, however, to assign a (+) sign to
all currents leaving the node in which we apply KCL. The advantage is that we can check, or even write the node equa-
tions by inspection. With reference to the above circuit and equation (3.1) for example, since G = 1/R, we denote the
coefficients of v; (1/4 and 1/8 siemens) as self conductances and the coefficient of v, (—=1/8) as mutual conductance.

Likewise, in equation (3.3) the coefficients of v, (1/8 and 1/10 siemens) are the self conductances and the coefficients of
vy (=1/8) and v3 (—=1/10) are the mutual conductances. Therefore, we can write a nodal equation at a particular node
by inspection, that is, we assign plus (+) values to self conductances and minus (—) to mutual conductances.
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5v; - 9v, +4v, = 720 (3.4)

Similarly, application of KCL at node @ yields
i +ig—24 = 0
or S

where i, is the current flowing from right to left. Then, in terms of node voltages,

Vi3—Vy V3

=24 3.5
10 6 (3:5)
o 1 1 1
or
-3v,+8v; = 720 (3.6)

Equations (3.2), (3.4), and (3.6) constitute a set of three simultaneous equations with three
unknowns. We write them in matrix form as follows:

3-10 Vi 96
5 -9 4| |v, 720
- 3,
0-3 8 |v| ~ 720 G-1)
G \V; |

We can use Cramer’s rule or Gauss’s elimination method as discussed in Appendix A, to solve
(3.7) for the unknowns. Simultaneous solution yields v; = 20.57 V, v, = -34.29 V, and

vy = 77.14 V. With these values we can determine the current in each resistor, and the power

absorbed or delivered by each device.
Check with MATLAB® :

G=[3 -1 0;5 -9 4;0 -3 8];1=[96 720 720]; V=G\I;...
fprintf(' \n"); fprintf('vl = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n’)

vl = 20.57 volts v2 = -34.29 wvolts v3 = 77.14 volts
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Check with Excel® :

The spreadsheet of Figure 3.3 shows the solution of the equations of (3.7). The procedure is dis-
cussed in Appendix A.

A B C D E F G

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 3 -1 0 96
4 G= 3 -9 4 I= 720
5 0 -3 8 720
]

7 0.423 -0.057 0.023 20.57143
8 G'= 0.286 -0.171 0.086 V=| -34.2857
g 0.107 -0.064 0.157 77.14286

Figure 3.3. Spreadsheet for the solution of (3.7)
|
Example 3.2

For the circuit of Figure 3.4, write nodal equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with
Excel or MATLAB. Please refer to Appendix A for procedures and examples. Then construct a
table showing the voltages across, the currents through and the power absorbed or delivered by
each device. Verify your answer with a Simulink / SimPowerSystems model.

© ez O, 602 @,
12V 18 A 24 A

Figure 3.4. Circuit for Example 3.2

Solution:

We observe that there are 4 nodes and we denote these as as @, @, @, and G (for ground) as
shown in Figure 3.5. We assign voltages v,, v,, and v; at nodes @, @, and @ respectively; these

are to be measured with respect to the ground node G. We observe that v, is a known voltage,

that is, v; = 12 V and thus our first equation is

v, = 12 (3.8)
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\' \
@Vl 'é/\é\, @2 @ @3
10V
© 403 O, 0ag @
12V 18 A 24 A

—= G
Figure 3.5. Circuit for Example 3.2 with assigned nodes and voltages

Next, we move to node @ where we observe that there are three currents flowing out of this
node, one to the left, one to the right, and one down. Therefore, our next nodal equation will
contain three terms. We have no difficulty writing the term for the current flowing from node @
to node @, and for the 18 A source; however, we encounter a problem with the third term
because we cannot express it as term representing the current flowing from node @ to node ®. To
work around this problem, we temporarily remove the 10 V voltage source and we replace it with
a “short” thereby creating a combined node (or generalized node or supernode as some textbooks call
it), and the circuit now appears as shown in Figure 3.6.

80 /},/" "~ ~. _.— Combined Node

y ’ (N

o] W I\@Z @/i/\ 3

N I

T e 6Q

12V 18 A i A I}gﬁiﬁd@n ’
short

—— G
Figure 3.6. Circuit for Example 3.2 with a combined node

Now, application of KCL at this combined node yields the equation

or S
ig+ig =6

or \Y \Y Vv
2- 1,3 _ 6" (3.9)
8 6

* The combined node technique allows us to combine two nodal equations into one but requires that we use the proper node
-V
1

v
designations. In this example, to retain the designation of node 2, we express the current ig as 2 3

. Likewise, at node 3,

Vv

. 3
we express the current ig as 3
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or

DI

1 1
—gVitgVatgVs = 6

or

—3v, +3V, +4v, = 144 (3.10)

To obtain the third equation, we reinsert the 10 V source between nodes @ and ®. Then,

V-V, = 10 (3.11)

In matrix form, equations (3.8), (3.10), and (3.11) are

1 0 O Vi 12
-3 3 4 Vs, 144
= 3.12
0 -1 1 Vs 10 ( )
%/_j H/_/
G Vi |

Simultaneous solution yields v, = 12V, v, = 20 V , and v; = 30 V . From these we can find

the current through each device and the power absorbed or delivered by each device.
Check with MATLAB:

G=[1 0 0;-3 3 4;0 -1 1];1=[12 144 10]; V=G\;...
fprintf(’ \n"); fprintf('vl = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n’)

vl = 12.00 wvolts v2 = 20.00 wvolts v3 = 30.00 volts
Check with Excel:

A | B | c | bp|] E [F] 6 [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 1 0 0 12
4 G= -3 3 4 I= 144
5 0 -1 1 10
6

7 1.000, 0.000/ 0.000 12
8 G'=| 0.429| 0.143] -0.571 V= 20
9 0.429| 0.143| 0.429 30

Figure 3.7. Spreadsheet for the solution of (3.12)

Table 3.1 shows that the power delivered is equal to the power absorbed.
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TABLE 3.1 Table for Example 3.2

Power (watts)

Device Voltage (volts) Current (amps) | Delivered Absorbed
12 V Source 12 2 24

10 V Source 10 19 190
18 A Source 20 18 360
24 A Source 30 24 720

4 W Resistor 12 3 36
6 W Resistor 30 5 150
8 W Resistor 8 1 8
Total 744 744

—' 2000
+ a—
12.00 vt 51 A

VM 2
4 Cvs 2

= R2=8 - 10v -10
T e
—

cvs 1 @ ccs 1
12V R1=4 \

12

R3=6

IContinuous

e -18 I 24
= 1
= Constant 2 L cons@nt3

powergui

Figure 3.8. Simulink / SimPower Systems model for Example 3.2

3.3 Analysis with Mesh or Loop Equations
In writing mesh or loop equations, we follow these steps:

1. For a circuit containing M = L = B—- N+ 1 meshes (or loops), we assign a mesh or loop cur-

rent iy, iy, ..oy for each mesh or loop.

n-1
2. If the circuit does not contain any current sources, we apply KVL around each mesh or loop.

3. If the circuit contains a current source between two meshes or loops, say meshes or loops j and

k denoted as mesh variables i i and iy, we replace the current source with an open circuit thus

forming a common mesh or loop, and we write a mesh or loop equation for this common mesh
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or loop in terms of both i and iy . Then, we relate the current source to the mesh or loop vari-

ables ij and i .

|
Example 3.3

For the circuit of Figure 3.9, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with
Excel or MATLAB. Please refer to Appendix A for procedures and examples. Then construct a
table showing the voltages across, the currents through, and the power absorbed or delivered by
each device.

A O)—WW vy
C_‘) §4Q §6Q §1zg
12V
)\
S 24V

Figure 3.9. Circuit for Example 3.3

Solution:

For this circuit we need M = L = B-N+1 = 9-7+1 = 3 mesh or loop equations and we
arbitrarily assign currents iy, i,, and i; all in a clockwise direction as shown in Figure 3.10.

MO VY
CD §4Q §6Q i §1zg
12V |4 i1 i
()
= S 24V

Figure 3.10. Circuit for Example 3.3

Applying KVL around each mesh we obtain:

Mesh #1: Starting with the left side of the 2 Q resistor, going clockwise, and observing the pas-
sive sign convention, we obtain the equation for this mesh as

or
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6i, — 4i, = 12 (3.13)

Mesh #2: Starting with the lower end of the 4 Q resistor, going clockwise, and observing the
passive sign convention, we obtain the equation

or

— 4i, +18i, - 6i5 = —36 (3.14)

Mesh #3: Starting with the lower end of the 6 Q resistor, going clockwise, and observing the
passive sign convention, we obtain:

or

— i, + 28iy = —24 (3.15)

Note: For this example, we assigned all three currents with the same direction, i.e., clockwise.
This, of course, was not mandatory; we could have assigned any direction in any mesh. It is
advantageous, however, to assign the same direction to all currents. The advantage here is that
we can check, or even write the mesh equations by inspection. This is best explained with the fol-
lowing observations:

1. With reference to the circuit of Figure 3.10 and equation (3.13), we see that current i, flows
through the 2 Q and 4 Q resistors. We call these the self resistances of the first mesh. Their
sum, i.e., 2+4 = 6 is the coefficient of current i, in that equation. We observe that current
i, also flows through the 4 Q resistor. We call this resistance the mutual resistance between the

first and the second mesh. Since i, enters the lower end of the 4 Q resistor, and in writing

equation (3.13) we have assumed that the upper end of this resistor has the plus (+) polarity,
then in accordance with the passive sign convention, the voltage drop due to current i, is —4i,

and this is the second term on the left side of (3.13).

2. In Mesh 2, the self resistances are the 4 Q, 8 Q, and 6 Q resistors whose sum, 18, is the coef-
ficient of i, in equation (3.14). The 4 Q and 6 Q resistors are also the mutual resistances

between the first and second, and the second and the third meshes respectively. Accordingly,
the voltage drops due to the mutual resistances in the second equation have a minus () sign,

ie, —4i; and -6i,.

3. The signs of the coefficients of i, and i; in (3.15) are similarly related to the self and mutual

resistances in the third mesh.
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Simplifying and rearranging (3.13), (3.14) and (3.15) we obtain:

3i, - 2i, = 6 (3.16)
3i,-14i, = 12 (3.18)
and in matrix form
3 -2 0 I 6
2 -9 3| i _ |18 (3.19)
0 3-14 | 12
R 0 Vv

Simultaneous solution yields i; = 0.4271, i, = -2.3593, and i; = -1.3627 where the negative
values for i, and i, indicate that the actual direction for these currents is counterclockwise.
Check with MATLAB:

R=[3 -2 0;2 -9 3;0 3 -14]; v=[6 18 12]; I=R\V;...
fprintf(' \n"); fprintf('il = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps’, 1(3)); fprintf(' \n")

il = 0.43 amps i2 = -2.36 amps i3 = -1.36 amps

Excel produces the same answers as shown in Figure 3.11.

A | B[ c|] bpl] E |F] ¢ [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 3 -2 0 6
4 R= 2 -9 3 V= 18

5 0 3 -14 12
6

7 0.397| -0.095| -0.020 0.4271
8 R'=[ 0.095| -0.142| -0.031 I=] -2.3593
9 0.020| -0.031| -0.078 -1.3627

Figure 3.11. Spreadsheet for the solution of (3.19)

Table 3.2 shows that the power delivered by the voltage sources is equal to the power absorbed
by the resistors.
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TABLE 3.2 Table for Example 3.3

Power (watts)
Device Voltage (volts) Current (amps) Delivered Absorbed
12 V Source 12.000 0.427 5.124
36 V Source 36.000 2.359 84.924
24 V Source 24.000 1.363 32.712
2 W Resistor 0.854 0.427 0.365
4 W Resistor 11.144 2.786 30.964
8 W Resistor 18.874 2.359 44.530
6 W Resistor 5.976 0.996 5.952
10 W Resistor 13.627 1.363 18.570
12 W Resistor 16.352 1.363 22.288
Total 122.760 122.669

Example 3.4

For the circuit of Figure 3.12, write loop equations in matrix form, and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel
or MATLAB. Please refer to Appendix A for procedures and examples. Then, construct a table
showing the voltages across, the currents through and the power absorbed or delivered by each
device.

O  gw g zue
12V
)
= \J 24V

Figure 3.12. Circuit for Example 3.4
Solution:
This is the same circuit as that of the previous example where we found that we need 3 mesh or
loop equations. We choose our loops as shown in Figure 3.13, and we assign currents iy, i,, and

i, all in a clockwise direction.
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8Q . 10Q .
A ANV
§69 §129
[

f \.'/24 VAR
Figure 3.13. Circuit for Example 3.4 with assigned loops
Applying of KVL around each loop, we obtain:

Loop 1 (abgh): Starting with the left side of the 2 Q resistor and complying with the passive sign
convention, we obtain:
2(iy+iy+i3)+4i;,-12 =0

or . . .
6iy +2i,+2i; = 12

or

Loop 2 (abcfgh): As before, starting with the left side of the 2 Q resistor and complying with the
passive sign convention, we obtain:
2(i+i,+1i3) +36+8(i,+i5)+6i,-12 = 0

or . . '
21, +16i, + 10i; = 24

or

i, +8i,+5i; = -12 (3.21)

Loop 3 (abcdefgh): Likewise, starting with the left side of the 2 Q resistor and complying with
the passive sign convention, we obtain:

2(I+i,+1i3) +36 +8(i, +1i5) +10i3+ 12i3+24-12 = 0
or

2i, +10i, + 32i; = —48
or

i, +5i,+16i; = -24 (3.22)

and in matrix form
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3 11 Iy 6
1 8 5 I -12
1 5 16 ] = | (3.23)
H—/
R I V

Solving with MATLAB we obtain:

R=[3 1 1;1 8 5;1 5 16]; V=[6 -12 -24]; I=R\V;...
fprintf( \n"); fprintf(il = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps', 1(3)); fprintf(' \n’)

il = 2.79 amps i2 = -1.00 amps i3 = -1.36 amps
Excel produces the same answers.

Table 3.3 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors and the values are approximately the same as those of the previous example.

TABLE 3.3 Table for Example 3.4

Power (watts)

Device Voltage (volts) Current (amps) | Delivered | Absorbed
12 V Source 12.000 0.427 5.124

36 V Source 36.000 2.359 84.924

24 V Source 24.000 1.363 32.712

2 W Resistor 0.854 0.427 0.365
4 W Resistor 11.146 2.786 31.053
8 W Resistor 18.872 2.359 44519
6 W Resistor 5.982 0.997 5.964
10 W Resistor 13.627 1.363 18.574
12 W Resistor 16.352 1.363 22.283
Total 122.760 122.758

|
Example 3.5

For the circuit of figure 3.14, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with Excel or
MATLARB. Please refer to Appendix A for procedures and examples.
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MO A
O g g goo
12V
mSA
- \_J

Figure 3.14. Circuit for Example 3.5
Solution:

This is the same circuit as those of the two previous examples except that the 24 V voltage
source has been replaced by a 5 A current source. As in Examples 3.3 and 3.4, we need

M=L=B-N+1=9-7+1 = 3 mesh or loop equations, and we assign currents i, i,, and

i5 all in a clockwise direction as shown in Figure 3.15.

2Q 36V 8Q 10Q
()
t—wWw AN
4Q §6Q §1ZQ
iy i3
()
= \_/5A

Figure 3.15. Circuit for Example 3.5 with assigned currents

For Meshes 1 and 2, the equations are the same as in Example 3.3 where we found them to be

6i, —4i, = 12
or
3i;-2i, =6 (3.24)
and : S
—4i; + 181, -6i; = -36
or

2i,-9i, + 3i; = 18 (3.25)

For Mesh 3, we observe that the current iy is just the current of the 5 A current source and thus
our third equation is simply

i, =5 (3.26)

and in matrix form,
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3 20 |k 6
2 -9 3| i 18
0 0 1] [ig] — |5 (3.27)
H_/
R I V

Solving with MATLAB we obtain:

R=[3 -2 0;2 -9 3;0 0 1]; V=[6 18 5]; I=R\V;...
fprintf(' \n"); fprintf(il = %5.2f amps \t', 1(1)); ...
fprintf('i2 = %5.2f amps \t', 1(2)); fprintf('i3 = %5.2f amps', 1(3)); fprintf(' \n’)

il = 2.09 amps i2 = 0.13 amps i3 = 5.00 amps

Example 3.6

Write mesh equations for the circuit of Figure 3.16 and solve for the unknowns using MATLAB
or Excel. Then, compute the voltage drop across the 5 A source. Verify your answer with a Simu-
link / SimPowerSystems model.

20 36V 80

O g60

= AM AW
- 10 Q 16 Q
(j) §1zgz §2og
v
G
W v

Figure 3.16. Circuit for Example 3.6
Solution:

Here, we would be tempted to assign mesh currents as shown in Figure 3.17. However, we will
encounter a problem as explained below.

The currents i; and i, for Meshes 3 and 4 respectively present no problem; but for Meshes 1 and

2 we cannot write mesh equations for the currents i; and i, as shown because we cannot write a
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term which represents the voltage across the 5 A current source. To work around this problem
we temporarily remove (open) the 5 A current source and we form a “combined mesh” (or gener-
alized mesh or supermesh as some textbooks call it) and the current that flows around this com-
bined mesh is as shown in Figure 3.18.

20 36V~ 80
A >

Figure 3.18. Circuit for Example 3.6 with correct current assignments

Now, we apply KVL around this combined mesh. We begin at the left end of the 2 Q resistor,
and we express the voltage drop across this resistor as 2i; since in Mesh 1 the current is essen-

tially i, .
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Continuing, we observe that there is no voltage drop across the 4 Q resistor since no current
flows through it. The current now enters Mesh 2 where we encounter the 36 V drop due to the
voltage source there, and the voltage drops across the 8 Q and 6 Q resistors are 8i, and 6i,

respectively since in Mesh 2 the current now is really i,. The voltage drops across the 16 Q and
10 Q resistors are expressed as in the previous examples and thus our first mesh equation is

or . . . .
12i, + 30i,-10i,-161, = -24

or

6i, + 15i,-5i,~8i, = —12 (3.28)

Now, we reinsert the 5 A current source between Meshes 1 and 2 and we obtain our second equa-
tion as

For meshes 3 and 4, the equations are
10(i3 - iy) + 12(ig—i,) + 18- 12 = 0
or
and o . .
16(i,—1,) +20i,-24 +12(i,—i3) = 0
or
and in matrix form
6 15 -5 -8 Iy _12
1-1 0 0 P 5
5 0-20 6 i = |6 (3.32)
0 4 3-12 |j 6
%/_j %/_J
R | Y

We find the solution of (3.32) with the following MATLAB script:

R=[6 15 -5 -8;1-1 0 0;5 0 -20 6;0 4 3 -12]; V=[-12 5 -6 -6]'; I=R\V;...
fprintf(* \n');...

fprintf('il = %5.4f amps \t',1(1)); fprintf('i2 = %5.4f amps \t',1(2));...

fprintf('i3 = %5.4f amps \t',1(3)); fprintf('i4 = %5.4f amps',1(4)); fprintf(' \n')

11=3.3975 amps 12=-1.6025 amps 1i3=1.2315 amps 14=0.2737 amps
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Now, we can find the voltage drop across the 5 A current source by application of KVL around
Mesh 1 using the following relation:

2x3.3975+4 x(3.3975 + 1.6025) + vg o + 10 x (3.3975-1.2315)-12 = 0

This yields

We can verify this value by application of KVL around Mesh 2 where beginning with the lower
end of the 6 w resistor and going counterclockwise we obtain

(6 +8)x1.6025 - 36 + 4 x (3.3975 + 1.6025) — 36.455 + 16 x (1.6025 + 0.2737) = 0

With these values, we can also compute the power delivered or absorbed by each of the voltage
sources and the current source.

rcﬁH ) I @H%‘—L
v 1) “

[%2] 1 4 6
3 -1.60 <—L
12 12 i+'J
®CCS1 I
K1 5 5 A CM 2
n 1
K2

|
10 %

0.27
14 ‘_l_i + J
' 123 &wa
CVS 4 24
K4 13 24V Continuous
_ K5
T AN (3

g H
powergui
CM3 1y —

Figure 3.19. Simulink / SimPower Systems model for Example 3.6
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3.4 Transformation between Voltage and Current Sources

In the previous chapter we stated that a voltage source maintains a constant voltage between its
terminals regardless of the current that flows through it. This statement applies to an ideal voltage
source which, of course, does not exist; for instance, no voltage source can supply infinite current
to a short circuit. We also stated that a current source maintains a constant current regardless of
the terminal voltage. This statement applies to an ideal current source which also does not exist;
for instance, no current source can supply infinite voltage when its terminals are open—circuited.

A practical voltage source has an internal resistance which, to be accounted for, it is represented
with an external resistance Rg in series with the voltage source vg as shown in Figure 3.20 (a).
Likewise a practical current source has an internal conductance which is represented as a resistance
R, (or conductance Gp) in parallel with the current source ig as shown in Figure 3.20 (b).

h O 3=

b b
(@) (b)

Figure 3.20. Practical voltage and current sources

In Figure 3.20 (a), the voltage of the source will always be vg but the terminal voltage v, will be
Vap = Vs— VR, if a load is connected at points a and b. Likewise, in Figure 3.20 (b) the current of
the source will always be ig but the terminal current iy, will be iy, = ig~ig_if a load is con-

nected at points a and b.

Now, we will show that the networks of Figures 3.20 (a) and 3.20 (b) can be made equivalent to
each other.

In the networks of Figures 3.21 (a) and 3.21 (b), the load resistor R, is the same in both.

r-—=-—==11" a r—==== =
| Vg: =3l | H? .
| | lab | I ab
| @) | VSR |<D RP§ I Vab§ R,
Vs | 4 'S L
T ) Le—e - == dJd b

(@) (b)

Figure 3.21. Equivalent sources

From the circuit of Figure 3.21 (a),
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__R
Vab = R+ RLVS (3.33)
and y
— s
iy = ey (3.34)
From the circuit of Figure 3.21 (b),
v, = PR (3.35)
TR +R
and
Re (3.36)

b = RFR, S
Since we want v, to be the same in both circuits 3.21 (a) and 3.21 (b), from (3.33) and (3.35)

we must have:

Ry ReR, .
Y T RTR, S T Ry 4R.S (3:37)

Likewise, we want i,y to be the same in both circuits 3.21 (a) and 3.21 (b). Then, from (3.34)
and (3.36) we obtain:

'ab = Re+R, sz+RL'S (3.38)
and for any R, from (3.37) and (3.38)
Vs = Ryig (3.39)
and
R, = Rs (3.40)

Therefore, a voltage source vg in series with a resistance Rg can be transformed to a current
source ig whose value is equal to vg/Rg), in parallel with a resistance R, whose value is the same

as Rg.

Likewise, a current source ig in parallel with a resistance R, can be transformed to a voltage

source Vg whose value is equal to igx Rg, in series with a resistance whose value is the same as

R,.

The voltage—to—current source or current—to—voltage source transformation is not limited to a
single resistance load; it applies to any load no matter how complex.
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Example 3.7

Find the current i, through the 10 Q resistor in the circuit of Figure 3.22.

AM——
20 l
4Q i1
(D §1og
12V
32V

Figure 3.22. Circuit for Example 3.7
Solution:

This problem can be solved either by nodal or by mesh analysis; however, we will transform the
voltage sources to current sources and we will replace the resistances with conductances except
the 10 Q resistor. We will treat the 10 Q resistor as the load of this circuit so that we can com-

pute the current i, through it. Then, the circuit becomes as shown in Figure 3.23.

. ]
©) Zos50" 20250 100

6A 8A

Figure 3.23. Circuit for Example 3.7 with voltage sources transformed to current sources

Combination of the two current sources and their conductances yields the circuit shown in Figure

3.24.

() §o.75 Q™ § 10Q

2A

Figure 3.24. Circuit for Example 3.7 after combinations of current sources and conductances

Converting the 0.75 Q" conductance to a resistance and performing current—to—voltage source
transformation, we obtain the circuit of Figure 3.25.

M
e |,

8/3 \GD 2 100

Figure 3.25. Circuit for Example 3.7 in its simplest form
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Thus, the current through the 10 Q resistor is

- 83 _ 457

iin = =
07 10+4/3

3.5 Thevenin’s Theorem

. . . . . . . . * .
This theorem is perhaps the greatest time saver in circuit analysis, especially in electronic cir-
cuits. It states that we can replace a two terminal network by a voltage source vy in series with

a resistance Ry as shown in Figure 3.26.

Rrn
X MN
Network Load Load
to be replaced %
by a Thevenin Vxy (Rest (_) Vy (fR§St
equivalent l/ of the Vg \L of the
circuit 3 circuit) circuit)
Yy
y

(a) (b)
Figure 3.26. Replacement of a network by its Thevenin’s equivalent

The network of Figure 3.26 (b) will be equivalent to the network of Figure 3.26 (a) if the load is

removed in which case both networks will have the same open circuit voltages Viy and conse-

quently,

Therefore,

(3.41)

VTH = Vxy open

The Thevenin resistance Ry represents the equivalent resistance of the network being replaced

by the Thevenin equivalent, and it is found from the relation

v Vih
Ryyy = yopen - 0 (3.42)
xy short SC

where ige stands for short—circuit current.

* For an introduction to electronic circuits, please refer to Electronic Devices and Amplifier Circuits with MAT-

LAB Applications, ISBN 978-1-934404-13-3.
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If the network to be replaced by a Thevenin equivalent contains independent sources only, we
can find the Thevenin resistance Ry by first shorting all (independent) voltage sources, opening

all (independent) current sources, and calculating the resistance looking into the direction that is
opposite to the load when it has been disconnected from the rest of the circuit at terminals x and

y.
|
Example 3.8

Use Thevenin’s theorem to find i, gpp and V| gap for the circuit of Figure 3.27.

AN AN AN _
3Q 3Q Q4 ‘ILOAD
§6§2 §IOQ VLOAD§ RioaD
12V 58 “18Q
N

Figure 3.27. Circuit for Example 3.8
Solution:

We will apply Thevenin’s theorem twice; first at terminals x and y and then at X' and y' as shown
in Figure 3.28.

3Q X 7Q X Rry X
AN AN AN MN
3Q + l iLOAD
(’_D § 6Q §10 Q VLOAD§ RioaD CD
12V 50 B VTH
AN .
Y y Y

Figure 3.28. First step in finding the Thevenin equivalent of the circuit of Example 3.8

Breaking the circuit at X —y, we are left with the circuit shown in Figure 3.29.

3Q X
MN

(_) 6Q§ < Ry

12V

y
Figure 3.29. Second step in finding the Thevenin equivalent of the circuit of Example 3.8

Applying Thevenin’s theorem at x and y and using the voltage division expression, we obtain
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6
VTH:VXy:3+—6X12:8V 33
Rry| =3x6_5 g 04
™lvi=0" 3+6

(o3}

and thus the equivalent circuit to the left of points x and x is as shown in Figure 3.30.

2Q
O
THI 8V
y

Figure 3.30. First Thevenin equivalent for the circuit of Example 3.8

Next, we attach the remaining part of the given circuit to the Thevenin equivalent of Figure
3.30, and the new circuit now is as shown in Figure 3.31.

Ry <
M AN M
20 30 79 1l oo
(‘_D §10 Q VLOAD§ R 0AD
VTHTS V 50 ~] 8L
M\ G
y

Figure 3.31. Circuit for Example 3.8 with first Thevenin equivalent

Now, we apply Thevenin’s theorem at points x' and y' and we obtain the circuit of Figure 3.32.

Ry ¢

AV A AM—
20 30 70
O £ 00
TH 8V ,\S/V%
y/

Figure 3.32. Applying Thevenin’s theorem at points X' and y' for the circuit for Example 3.8

Using the voltage division expression, we obtain

o _ 10 q_
Vi = Vey = 5 3e 1045 0 0 4 Y
R, = [2+3+5)][101+7 = 12 ©
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This Thevenin equivalent with the load resistor attached to it, is shown in Figure 3.33.

Ry o
120 + l iLOAD
C) VLOAD§ Rioap
ViruTay “18Q
¥

Figure 3.33. Entire circuit of Example 3.8 simplified by Thevenin’s theorem

The voltage v| gap is found by application of the voltage division expression, and the current
iLoap by Ohm’s law as shown below.

8
Vi oAD = 12+8><4 =16V

[t is imperative to remember that when we compute the Thevenin equivalent resistance, we must
always look towards the network portion which remains after disconnecting the load at the x and
y terminals. This is illustrated with the two examples that follow.

Let us consider the network of Figure 3.34 (a).

Begin with

this series PN

combination > X
/

Load | Then, comput;: ~— - <Ry
100 € § the equivalent 100 Q§
(‘D resistance
looking to the
240V left of points

x and y
@ b

Figure 3.34. Computation of the Thevenin equivalent resistance when the load is to the right

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the 240 V voltage source, and computing the equivalent resistance looking to the left of
points X and y as indicated in Figure 3.34 (b). Thus,

Rey = (250 +50)](100 = 220100 _ 75 ¢
300 + 100
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Now, let us consider the network of Figure 3.35 (a).

Begin with this
- series combination
X X 7\;\/\, TN /
;-\6\/2'2 ~ 50 Q ', Then, compute the
l/ | equivalent resistance
250 Q 250 Q § \ ! looking to the right of
Load IOOQ§ Ry s \\\ 1OOQ§,/ points x and y
240V
y y
(a) (b)

Figure 3.35. Computation of the Thevenin equivalent resistance when the load is to the left

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the 240 V voltage source, and computing the equivalent resistance looking to the right
of pointsx and y as indicated in Figure 3.35 (b). Thus,

150 x 250
150 + 250

Ry = (50 + 100)||250 = = 93.75 Q

We observe that, although the resistors in the networks of Figures 3.34 (b) and 3.35 (b) have the
same values, the Thevenin resistance is different since it depends on the direction in which we
look into (left or right).

Example 3.9

Use Thevenin’s theorem to find i, gpp and v gap for the circuit of Figure 3.36.

24 VO
I;Ag 30 ~ e li|_0AD
CD §6 Q § 10Q VLOAD§ Rioap
12V 50 BELS
MV

Figure 3.36. Circuit for Example 3.9
Solution:
This is the same circuit as the previous example except that a voltage source of 24 V has been

placed in series with the 7 Q resistor. By application of Thevenin’s theorem at points x and y as
before, and connecting the rest of the circuit, we obtain the circuit of Figure 3.37.
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5{: X 24 Vfl—\ X’
20 30 ~ 70 bioas
O 00 VowZ Mow
T8 v 5o §0
y W y

Figure 3.37. Circuit for Example 3.9 with first Thevenin equivalent

Next, disconnecting the load resistor and applying Thevenin’s theorem at points X' and y' we
obtain the circuit of Figure 3.38.

Ry X 24V X’
A
MN NN F— NN X
20 30 ' 7a
+ 10Q
VTH<>8 v 3
50
NN X
Yy y’

Figure 3.38. Application of Thevenin’s theorem at points X' and y' for the circuit for Example 3.9

There is no current flow in the 7 Q resistor; thus, the Thevenin voltage across the x' and y'
points is the algebraic sum of the voltage drop across the 10 Q resistor and the 24 V source, i.e.,

10

VTH = VX'y' = m)(8—24 =-20 V

and the Thevenin resistance is the same as in the previous example, that is,

Rl o = [2+3+5)[[10]+7 = 120

Finally, connecting the load R 5aop as shown in Figure 3.39, we compute V| gap and i gap as

follows:
R/

I\MTH <

12Q j .
n I oaD
C_D VLoADS Rioap

V'TH 20V -1 8 Q
Y/

Figure 3.39. Final form of Thevenin equivalent with load connected for circuit of Example 3.9
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8
Vioap = 355 % (-20) = 8 V

—20

i|_0AD = 12+8 =-1A

Example 3.10

For the circuit of Figure 3.40, use Thevenin’s theorem to find i; gpop and v, gap -

PN
X +| " 'Loap
G—D ixl §6 « §10 Q § 1Q VLOAD_§ Rioap
12V 50 80
MN

Figure 3.40. Circuit for Example 3.10
Solution:

This circuit contains a dependent voltage source whose value is twenty times the current

through the 6 Q resistor. We will apply Thevenin’s theorem at points a and b as shown in Figure
3.39.

N\ a
X +| 'LoaD
(‘_D g §6 Q §10 Q § 4Q VLOAD_§ R 0ap
12V 50 8 Q
Wy 3

Figure 3.41. Application of Thevenin’s theorem for Example 3.10

In the circuit of Figure 3.41, we cannot short the dependent source; therefore, we will find the
Thevenin resistance from the relation

VLOAD’

\'% R

Ry = Y00 R (344
Isc ILOAD‘RL_W

To find the open circuit voltage vy = v,;,, we disconnect the load resistor and our circuit now

is as shown in Figure 3.42.
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W MA—— > A2
i 20iy 70
O \¥ze \gwao |z
12V 1
ANN——+ b
5Q =

Figure 3.42. Circuit for finding Voc = Vg, of Example 3.10

We will use mesh analysis to find vy which is the voltage across the 4 Q resistor. We chose

mesh analysis since we only need three mesh equations whereas we would need five equations had
we chosen nodal analysis. Please refer to Exercise 16 at the end of this chapter for a solution
requiring nodal analysis.

Observing that iy = i; —i,, we write the three mesh equations for this network as
9i, - Biy = 12
~6i, +24i,~10i; = 0 (3.45)
20(i; — i) + 4is +10(i5— ip) = 0

and after simplification and combination of like terms, we write them in matrix form as

3 -2 0 Iy 4
3 -12 5 Ll _ o (3.46)
10 -15 7 I, 0

R | V

Using the spreadsheet of Figure 3.43, we find that i; = -3.53 A

A | B | c | b | E F G |[H

1 |spreadsheet for Matrix Inversion and Matrix Multiplication

3 3 -2 0 4
4 R= 3 -12 5 V= 0
5 10 -15 7 0
7 0.106 -0.165 0.118 0.42
8 R'=| -0.341 -0.247 0.176 I= -1.36
9 -0.882 -0.294 0.353 -3.53

Figure 3.43. Spreadsheet for Example 3.10

Thus, the Thevenin voltage at points a and b is
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Viy = (-353)x4 = 1412 V

Next, to find the Thevenin resistance Ry, we must first compute the short circuit current I .

Accordingly, we place a short across points a and b and the circuit now is as shown in Figure 3.44
and we can find the short circuit current ige from the circuit of Figure 3.45 where igc = iy,

N a
MV MV & MV
3Q 3Q })-/ 7Q \
Ix
(D ixgég §1OQ §4Q Isc
12V 50
NMNN———
= b
Figure 3.44. Circuit for finding igc = i, in Example 3.10
3Q 3Q 7Q a
w AW <> A
20iy \
O, Jxgpe 3o izee ) i
L 12 i 4
12V 3
5 = b

Figure 3.45. Mesh equations for finding igc = iy, in Example 3.10

The mesh equations for the circuit of Figure 3.45 are

—6i, +24i,-10i, = 0
o T (3.47)
and after simplification and combination of like terms, we write them in matrix form as
3 2 00 [h 4
3.12 5 0 |i, 0
10-15 7-2| |iy] = |0 (3.48)
0 0-411] | 0
H4_/ Hf_/
R I \Y/
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We will solve these using MATLAB as follows:

R=[3 -2 00;3 -12 5 0;10 -15 7 -2;0 0 -4 11]; Vv=[4 0 0 O]; I=R\V;
fprintf(’ \n’);...

fprintf('il = %3.4f A\t',1(1,1)); fprintf('i2 = %3.4f A \t',1(2,1));...

fprintf('i3 = %3.4f A \t',1(3,1)); fprintf('i4 = %3.4f A \t',1(4,1));...

fprintf(" \n");...fprintf(" \n")

il = 0.0173 A i2 = -1.9741 A i3 = -4.7482 A i4 = -1.7266 A

Therefore,

and
Voc _ -14.12 _ 82 0

R = = =
™™g 1727

The Thevenin equivalent is as shown in Figure 3.46.

Ry a

MN

8.2Q

VTH [ -14.18 V
b

Figure 3.46. Final form of Thevenin’s equivalent for the circuit of Example 3.10

Finally, with the load R 5p attached to points a and b, the circuit is as shown in Figure 3.47.

Ry 4
MN
8.2Q _
<> y _|_§ ILoaD
+ LoADS Rioap
VTH T80
-14.18V
b

Figure 3.47. Circuit for finding V| gap and i gap n Example 3.10

Therefore, using the voltage division expression and Ohm’s law we obtain

VLOAD = 8.2+8X(_14.18) = _700V

. -14.18
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3.6 Norton’s Theorem

This theorem is analogous to Thevenin’s theorem and states that we can replace everything,
except the load, in a circuit by an equivalent circuit containing only an independent current
source which we will denote as iy in parallel with a resistance which we will denote as Ry, as

shown in Figure 3.48.

X X
Network Load Load
to be replaced T R T
by a Norton | Vxy (Rest <¢> RyS Vyy (Rest
equivalent \L of the In J of the
circuit circuit) ) circuit)
y y
(a) (b)

Figure 3.48. Replacement of a network by its Norton equivalent

The current source 1 has the value of the short circuit current which would flow if a short were

connected between the terminals x and y, where the Norton equivalent is inserted, and the resis-
tance Ry is found from the relation

Ry = Voc (3.49)

where v is the open circuit voltage which appears across the open terminals x and y.

Like Thevenin’s, Norton’s theorem is most useful when a series of computations involves chang-
ing the load of a network while the rest of the circuit remains unchanged.

Comparing the Thevenin’s and Norton’s equivalent circuits, we see that one can be derived from
the other by replacing the Thevenin voltage and its series resistance with the Norton current
source and its parallel resistance. Therefore, there is no need to perform separate computations
for each of these equivalents; once we know Thevenin’s equivalent we can easily draw the Nor-
ton equivalent and vice versa.

Example 3.11

Replace the network shown in Figure 3.49 by its Thevenin and Norton equivalents.
iy
M\ MN X
3Q 3Q

260

Figure 3.49. Network for Example 3.11

20i, V
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Solution:

We observe that no current flows through the 3 Q resistor; Therefore, iy = 0 and the dependent

current source is zero, i.e., a short circuit. Thus,

Vth = Voc = Vxy = 0
and also )

This means that the given network is some mathematical model representing a resistance, but we
cannot find this resistance from the expression

Ry =

since this results in the indeterminate form 0/0. In this type of situations, we connect an external
source (voltage or current) across the terminals x and y. For this example, we arbitrarily choose to
connect a 1 volt source as shown in Figure 3.50.

AWV AN—— X
30 30
g0 )
20iy V v

y

Figure 3.50. Network for Example 3.11 with an external voltage source connected to it.
In the circuit of Figure 3.50, the 1 V source represents the open circuit voltage vy and the cur-
rent i represents the short circuit current ig. . Therefore, the Thevenin (or Norton) resistance

will be found from the expression

\
RTH=RN=£—¥=% (3.50)

Now, we can find i from the circuit of Figure 3.51 by application of KCL at Node ®.

Ix

Vi
oo Yo |
goe (9
20i, V LV

y
Figure 3.51. Circuit for finding iy in Example 3.11
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v, — 20i v, .
%+€1+IX=O (3.51)
where v,-1
iy = 3 (3.52)

Simultaneous solution of (3.51) and (3.52) yields v; = 34/25 and iy = 3/25. Then, from
(3.50),

Rin =Ry =752 = %

and the Thevenin and Norton equivalents are shown in Figure 3.52.

RTH
—AMA—
25/3 Q Ry
Vrn =0 =020
L

Figure 3.52. Thevenin’s and Norton’s equivalents for Example 3.11

3.7 Maximum Power Transfer Theorem

Consider the circuit shown in Figure 3.53. We want to find the value of R 5p that will absorb

maximum power from the voltage source vg whose internal resistance is Rg.

AN

s ‘ iLOAD
+

(i' VLOAD§ R oab

VS -

Figure 3.53. Circuit for computation of maximum power delivered to the load R| 5 ap

The power p, gap delivered to the load is found from

. Ri0AD Vs
PLoab = Vioa X iLoap = ( ve)( )
LOAD LOAD LOAD RS + RLOAD S RS + RLOAD
or
B Rl oAb 2 353
PLoab = Vs (3.53)

2
(Rs+Rioap)
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To find the value of R gap which will make p, jop maximum, we differentiate (3.53) with

respect to R gap - Recalling that

d d
i(g) _ vﬁ(u)—uw(v)
dx\Vv V2

and differentiating (3.53), we obtain

22 2
dpoap _ (Rs+Rioap) Vs=VsRi0an(2)(Rs + Rioap)

n (3.54)
dR| oaD (Rs+Ri0aD)
and (3.54) will be zero if the numerator is set equal to zero, that is, if
2.2 2
(Rs+ R 0ap) Vs —VsRLoaD(2)(Rs+ R pap) = 0
or
Rs+Rioap = 2R0aD
or
Rioap = Rs (3.55)

Therefore, we conclude that a voltage source with internal series resistance Rg or a current
source with internal parallel resistance Rp delivers maximum power to a load R gop When
Rioap = Rs or R gap = Rp. For example, in the circuits of Figure 3.54, the voltage source vg
and current source iy deliver maximum power to the adjustable” load when
Rioap = Rs = Rp = 5 Q

5Q
CD RLOAD/g/s Q (D Ry RLOABZS Q
Vg i 5Q

Figure 3.54. Circuits where R| g ap IS Set to Teceive maximum power

We can use Excel or MATLAB to see that the load receives maximum power when it is set to the
same value as that of the resistance of the source. Figure 3.55 shows a spreadsheet with various
values of an adjustable resistive load. We observe that the power is maximum when

*  An adjustable resistor is usually denoted with an arrow as shown in Figure 3.54.
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Maximum Power Transfer - Power vs. Resistance

Rioap PLoan ( Maximum Power Transfer h
0 0.00 6
1 2.78 5 d ]
2 4.08 4 / —
3 4.69 3 / E—
4 4.94 2 /
e 5 5.00 1 -/
6 4.96 0 =+
7 4.86 0 5 10 15 20
8 273 \L Power (watts) vs Resistance (Ohms)- Linear Scale J
9 459 _ N\
10 444 . Maximum Power Transfer
11 4.30
12 4.15 4
13 4.01 2
14 3.88 0 j - 100
12 222 \_ Power (watts) vs Resistance (Ohms)- Log Scale J

Figure 3.55. Spreadsheet to illustrate maximum power transfer to a resistive load

The condition of maximum power transfer is also referred to as resistance matching or impedance
matching. We will define the term “impedance” in Chapter 6.

The maximum power transfer theorem is of great importance in electronics and communications
applications where it is desirable to receive maximum power from a given circuit and efficiency is
not an important consideration. On the other hand, in power systems, this application is of no
use since the intent is to supply a large amount of power to a given load by making the internal
resistance Rg as small as possible.

3.8 Linearity
A linear passive element is one in which there is a linear voltage—current relationship such as

. d. . d
Vg = Rig v = L ic = Cove (3.56)

Definition 3.1

A linear dependent source is a dependent voltage or current source whose output voltage or cur-
rent is proportional only to the first power of some voltage or current variable in the circuit or a
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linear combination (the sum or difference of such variables). For example, v,,,, = 2v, - 3i, is a lin-

Xy

. . . . . v/nV .
ear relationship but p = vi = Ri? = v3/R and i = Ise ' are non-linear.
Definition 3.2

A linear circuit is a circuit which is composed entirely of independent sources, linear dependent
sources and linear passive elements or a combination of these.

3.9 Superposition Principle

The principle of superposition states that the response (a desired voltage or current) in any branch
of a linear circuit having more than one independent source can be obtained as the sum of the
responses caused by each independent source acting alone with all other independent voltage
sources replaced by short circuits and all other independent current sources replaced by open cir-
cuits.

Note: Dependent sources (voltage or current) must not be superimposed since their values depend on
the voltage across or the current through some other branch of the circuit. Therefore, all
dependent sources must always be left intact in the circuit while superposition is applied.

Example 3.12

In the circuit of Figure 3.56, compute ig by application of the superposition principle.

2Q 36V@ g/\% 118\5\’2
©) 240 i6\§6§2 2120
12V
mSA
— /

Figure_ 3.56. Circuit for Example 3.12
Solution:

Let i'y represent the current due to the 12 V source acting alone, i"s the current due to the

36 V source acting alone, and " the current due to the 5 A source acting alone. Then, by the

principle of superposition,

First, to find i'y we short the 36 V voltage source and open the 5 A current source. The circuit
then reduces to that shown in Figure 3.57.
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20 36\/}2{ 8Q x 10 Q

MN MN MN

@ $40 ‘§6Q s1e

12V I'e

A

4

Figure 3.57. Circuit for finding i'g in Example 3.12

Applying Thevenin’s theorem at points x and y of Figure 3.57, we obtain the circuit of Figure

3.58 and from it we obtain
_ _4x12
Viy = V1H = Vi 8V

12V

Figure 3.58. Circuit for computing the Thevenin voltage to find i'g in Example 3.12

Next, we will use the circuit of Figure 3.59 to find the Thevenin resistance.

X
MN MN X
2Q 8 Q

240

= X
= y

Figure 3.59. Circuit for computing the Thevenin resistance to find i'g in Example 3.12

RTH

4x2 28
Ro, = 84+4%x2 _ 28
TH= "1 27 3
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The current i'g is found from the circuit of Figure 3.60 below.

Ry
M
V| 8@
Jg 6Q
8V Ve

Figure 3.60. Circuit for computing i'g in Example 3.12

L 8 12
|6_28/3+6_23A (3.57)

Next, the current i"g due to the 36 V source acting alone is found from the circuit of Figure 3.61.

2Q 36V 8Q 10Q

@ §4Q \gég §1zg

I's

_ )

Figure 3.61. Circuit for finding i"g in Example 3.12

and after combination of the 2 Q and 4 Q parallel resistors to a single resistor, the circuit simpli-
fies to that shown in Figure 3.62.

Figure 3.62. Simplification of the circuit of Figure 3.61 to compute i"g for Example 3.12

From the circuit of Figure 3.62, we obtain

L 3% _ 54
6= "2/3+8+6 23 (3.58)
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Finally, to find i™g, we short the voltage sources, and with the 5 A current source acting alone

the circuit reduces to that shown in Figure 3.63.

2Q @ 8 Q 10 Q

MA— MW M
@ 1Q " ‘§6Q §129
)
= ' 5A

Figure 3.63. Circuit for finding i"'g in Example 3.12

Replacing the 2 Q, 4 Q, and 8 Q resistors, and 10 Q and 12 Q by single resistors, we obtain

N

2x4 g _ 28 10412 =22 Q

2+4 3

and the circuit of Figure 3.63 reduces to that shown in Figure 3.64.

§23—89 ‘gég 2u0

A
- U

Figure 3.64. Simplification of the circuit of Figure 3.63 to compute i"'g for Example 3.12

We will use the current division expression in the circuit of Figure 3.64 to find i"g. Thus,

_ 28/3 _ 70
6 — 28/3 +6 X (_5) = 23 (359)

Therefore, from (3.57), (3.58), and (3.59) we obtain

H 1! HL Tm 12 54 70 112

or
iy = -4.87 A (3.60)

and this is the same value as that of Example 3.5.
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3.10 Circuits with Non-Linear Devices

Most electronic circuits contain non-linear devices such as diodes and transistors whose i — v
(current—voltage) relationships are non-linear. However, for small signals (voltages or currents)
these circuits can be represented by linear equivalent circuit models. A detailed discussion of
these is beyond the scope of this text; however we will see how operational amplifiers can be rep-
resented by equivalent linear circuits in the next chapter.

If a circuit contains only one non-linear device, such as a diode, and all the other devices are lin-
ear, we can apply Thevenin’s theorem to reduce the circuit to a Thevenin equivalent in series
with the non-linear element. Then, we can analyze the circuit using a graphical solution. The
procedure is illustrated with the following example.

|
Example 3.13

For the circuit of Figure 3.65, the i—v characteristics of the diode D are shown in figure 3.66.
We wish to find the voltage vy across the diode and the current iy through this diode using a

graphical solution.

Rry 1 KQ
V\yF:’ Diode; conducts current
T only in the indicated direction

O o
v l

Vi ‘

Ip

Figure 3.65. Circuit for Example 3.13

14
1.2 4
1.0
0.8 1
0.6
0.4 -
0.2 -
0.0 — T T ‘ ‘

0.0 01 02 0304 0506 0708 09 1.0

i, (miliamps)

vV, (volts)

Figure 3.66. Diode i—v characteristics
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Solution:
VR+Vp =1V
or .
Rip = -vp+1
or
i = —hl-vo+% (3.61)

We observe that (3.61) is an equation of a straight line and the two points are obtained from it
by first letting vp = 0, then, iy = 0. We obtain the straight line shown in Figure 3.67 that is

plotted on the same graph as the given diode i — Vv characteristics.

Diode Voltage | Diode Current

(Volts) (milliamps)
0.00 0.000
0.02 0.000
0.04 0.000 4 I-V Relationship for Circuit of N
0.06 0.000 Example 3.13
0.08 0.000 1.4
0.10 0.000 1.2
0.12 0.000 ‘@ 10 = (URV +UR
0.14 0.000 % 0.8 o Y o~ Diode
0.16 0.000 = 0.6
0.18 0.000 % 0.4
0.20 0.000 0.2 4 ‘/
0.22 0.000 0.0 T T T T T ‘ ‘ ‘ ‘
0.24 0.000 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
0.26 0.000 \p (volts
0.28 0.000 - o ) ~

Figure 3.67. Curves for determining voltage and current in a diode

The intersection of the non—linear curve and the straight line yields the voltage and the current
of the diode where we find that v = 0.665V and iy = 0.335 mA.

Check:

Since this is a series circuit, i = 0.335 mA also. Therefore, the voltage drop vg across the resis-
toris Vg = 1 kQ x0.335 mA = 0.335 V. Then, by KVL

Vg+Vp = 0.335+0.665 = 1V
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3.11 Efficiency

We have learned that the power absorbed by a resistor can be found from pg = i ?R and this

power is transformed into heat. In a long length of a conductive material, such as copper, this lost
. 2 . .
power is known as i “R loss and thus the energy received by the load is equal to the energy trans-

mitted minus the i °R loss. Accordingly, we define efficiency n as

Output _ Output

Efficiency = n = =
y=n Input Output + Loss

The efficiency 1 is normally expressed as a percentage. Thus,

.. Output Output
0, =0 = =
% Efficiency = % n Input x 100 OUtpUL + L0sS x 100 (3.62)

Obviously, a good efficiency should be close to 100%

Example 3.14

In a two—story industrial building, the total load on the first floor draws an average of 60 amperes
during peak activity, while the total load of the second floor draws 40 amperes at the same time.
The building receives its electric power from a 480 V source. Assuming that the total resistance
of the cables (copper conductors) on the first floor is 1 Q and on the second floor is 1.6 Q, com-
pute the efficiency of transmission.

Solution:

First, we draw a circuit that represents the electrical system of this building. This is shown in Fig-

ure 3.68.

0.8Q
AN
S
Ve ‘ it |60 A it |40 A
1st FI 2nd Fl
C-—'D Sioaoor nfd.oac? o
480V 050
AN
- AN
08Q

Figure 3.68. Circuit for Example 3.14
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Power pg supplied by the source:
pg = Vg(i; +i,) = 480 x (60 +40) = 48 kilowatts (3.63)
Power loss between source and st floor load:
Prosss = 15(05 Q+05Q) = 60°x1 = 3.6 kilowatts (3.64)
Power loss between source and 2nd floor load:
Plossy = 15(08 Q+0.8 Q) = 40°x1.6 = 2.56 kilowatts (3.65)

Total power loss:
Ploss = Plossi + Plossz = 3.60 +2.56 = 6.16 kilowatts (3.66)

Total power p, received by 1st and 2nd floor loads:

PL = Ps—Ploss = 48.00-6.16 = 41.84 kilowatts (3.67)
.. Output 41.84
0 = 0 = - —_—— - 0,
% Efficiency = % n Input x 100 2800 % 100 = 87.17 % (3.68)

3.12 Regulation

The regulation is defined as the ratio of the change in load voltage when the load changes from
no load (NL) to full load (FL) divided by the full load. Thus, denoting the no-load voltage as
vy, and the full-load voltage as vg, , the regulation is defined as In other words,

, V=V
Regulation = —Nt_"FL

VEL

The regulation is also expressed as a percentage. Thus,

Vg =V
%Regulation = —N—L;——Ekxloo (3.69)
FL

|
Example 3.15

Compute the regulation for the 1st floor load of the previous example.
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Solution:

The current drawn by Ist floor load is given as 60 A and the total resistance from the source to the
load as 1 Q. Then, the total voltage drop in the conductors is 60 x 1 = 60 V. Therefore, the full-
load voltage of the load is v = (480 — 60 = 420 V) and the percent regulation is

Vy —V —
% Regulation = NLV—FLx1oo = ‘%’xloo = 143 %
FL
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3.13 Summary

When using nodal analysis, for a circuit that contains N nodes, we must write N — 1 indepen-
dent nodal equations in order to completely describe that circuit. When the presence of volt-
age sources in a circuit seem to complicate the nodal analysis because we do not know the cur-
rent through those voltage sources, we create combined nodes as illustrated in Example 3.2.

When using nodal analysis, for a circuit that contains M meshes or L loops, B branches, and
N nodes, we must write L = M = B - N+ 1 independent loop or mesh equations in order to
completely describe that circuit. When the presence of current sources in a circuit seem to

complicate the mesh or loop analysis because we do not know the voltage across those current
sources, we create combined meshes as illustrated in Example 3.6.

A practical voltage source has an internal resistance and it is represented by a voltage source
whose value is the value of the ideal voltage source in series with a resistance whose value is
the value of the internal resistance.

A practical current source has an internal conductance and it is represented by a current
source whose value is the value of the ideal current source in parallel with a conductance
whose value is the value of the internal conductance.

A practical voltage source vg in series with a resistance Rg can be replaced by a current

source ig whose value is vg/ig in parallel with a resistance Rp whose value is the same as Rg

A practical current source ig in parallel with a resistance Rp can be replaced by a voltage
source Vg whose value is equal to igx Rg in series with a resistance Rg whose value is the

same as Rp

Thevenin’s theorem states that in a two terminal network we can be replace everything
except the load, by a voltage source denoted as vy in series with a resistance denoted as

Rty - The value of vy, represents the open circuit voltage where the circuit is isolated from
the load and Ry is the equivalent resistance of that part of the isolated circuit. If a given cir-
cuit contains independent voltage and independent current sources only, the value of Ry

can be found by first shorting all independent voltage sources, opening all independent cur-
rent sources, and calculating the resistance looking into the direction which is opposite to the
disconnected load. If the circuit contains dependent sources, the value of Ry, must be com-

puted from the relation Ry = vg/igc

Norton’s theorem states that in a two terminal network we can be replace everything except
the load, by a current source denoted as iy in parallel with a resistance denoted as Ry. The

value of iy represents the short circuit current where the circuit is isolated from the load and
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Ry is the equivalent resistance of that part of the isolated circuit. If the circuit contains inde-
pendent voltage and independent current sources only, the value of Ry can be found by first

shorting all independent voltage sources, opening all independent current sources, and calcu-
lating the resistance looking into the direction which is opposite to the disconnected load. If

the circuit contains dependent sources, the value of Ry must be computed from the relation

RN = Voc/lsc

¢ The maximum power transfer theorem states that a voltage source with a series resistance Rq
or a current source with parallel resistance Rg delivers maximum power to a load R| gop When
Rioap = Rs or Rioap = Ry

e Linearity implies that there is a linear voltage—current relationship.

e A linear circuit is composed entirely of independent voltage sources, independent current

sources, linear dependent sources, and linear passive devices such as resistors, inductors, and
capacitors.

e The principle of superposition states that the response (a desired voltage or current) in any
branch of a linear circuit having more than one independent source can be obtained as the
sum of the responses caused by each independent source acting alone with all other indepen-
dent voltage sources replaced by short circuits and all other independent current sources
replaced by open circuits.

e Efficiency is defined as the ratio of output to input and thus it is never greater than unity. It is
normally expressed as a percentage.

¢ Regulation is defined as the ratio of vy - Vg, to Vg and ideally should be close to zero. It is

normally expressed as a percentage.
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3.14 Exercises

Multiple Choice

1. The voltage across the 2 Q resistor in the circuit below is
A. 6V

16V

-8V

32V

Mg 0w

none of the above

2. The current i in the circuit below is
A -2 A

5A

3A

4 A

g 0w

none of the above

10V

Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling ~ 3-49
Copyright © Orchard Publications



Chapter 3 Nodal and Mesh Equations — Circuit Theorems

3. The node voltages shown in the partial network below are relative to some reference node
which is not shown. The current i is

A. -4 A
B. 8/3 A
C. 5A
D. -6A
E. none of the above
6V m8\/
4V AN +— 8V
50 |/
Dy 320
B
6V AW ®8v 13V

4. The value of the current i for the circuit below is

A. -3 A
B. -8A
C.-9A
D.6A
E. none of the above
M M
6Q 3Q i
O zw Qg
12V 8 A

5. The value of the voltage v for the circuit below is
A. 4V
B. 6V
C. 8V
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D. 12V

E. none of the above

QD m Q)

6. For the circuit below, the value of k is dimensionless. For that circuit, no solution is possible if

the value of k is
A. 2
B. 1
C. «
D. 0

E. none of the above

7. For the network below, the Thevenin equivalent resistance Ry, to the right of terminals a

and b is
Al
B. 2
C. 5
D. 10

E. none of the above
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ao ANV MN
39% 20 20

R 403
ZQ% ZQ% 10
bo AN

8. For the network below, the Thevenin equivalent voltage V1, across terminals a and b is

A. -3V

B. -2V

C.1Vv

D.5V

E. none of the above
A a
N\
2V

§29 §zg Q 2A

b

9. For the network below, the Norton equivalent current source Iy and equivalent parallel resis-

tance Ry across terminals a and b are

A 1A 2Q
15A,25Q
4 A25Q

.0 A SQ

m o 0O %

none of the above
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b

10. In applying the superposition principle to the circuit below, the current i due to the 4 V
source acting alone is

A.8 A
B.-1A
C.4A
D.-2 A
E. none of the above
— i
b
O g20
8 A 4V

Problems

1. Use nodal analysis to compute the voltage across the 18 A current source in the circuit below.
Answer: 1.12 V

4Q° 5Q
AN AN
g Q™ . 10 Q™
O 40’2 Qua 3828 O
12A 18A1- ! 24 A
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2. Use nodal analysis to compute the voltage vg ¢ in the circuit below. Answer: 21.6 V

4\%V
12 Q 15Q
MN NN

12 A

24 A

3. Use nodal analysis to compute the current through the 6 Q resistor and the power supplied (or
absorbed) by the dependent source shown below. Answers: —=3.9 A, —-499.17 w

mlSA

15 Q

@,

12 A

102

MN

36V

W

Ix

O,

24 A

4. Use mesh analysis to compute the voltage V45, below. Answer: 86.34 V

IZOVO

©24O \Y%

4QZ

N

-/

§39

AN AN
8Q 120
3
403 1) Viga 260
36AT- |

24 A
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5. Use mesh analysis to compute the current through the ig, resistor, and the power supplied

(or absorbed) by the dependent source shown below. Answers: —3.9 A, -499.33 w

mlSA
/
12Q 15Q
MN i MN
X

O wi “Te & 0

12 A o ix 24 A
36V

6. Use mesh analysis to compute the voltage v, below. Answer: 0.5 V

/\10ix
NN
12Q 15Q
MNV ’ MN
4Q 8Q ] +
6Q§ Ix 1OQ§ Vioo
12V 24V

7. Compute the power absorbed by the 10 Q resistor in the circuit below using any method.
Answer: 1.32 w

@) §1og

24V 36V

8. Compute the power absorbed by the 20 Q resistor in the circuit below using any method.
Answer: 73.73 w
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) 12V
e U
§zg <> §3Q
6 A 8 A

9. For the circuit below:
a. To what value should the load resistor R gap should be adjusted to so that it will absorb

maximum power? Answer: 2.4 Q

b. What would then the power absorbed by R gap be? Answer: 135 w

M6V
12Q 15Q
ANV AWV
12/gD oz 18 /gD - RLOADg

10. Replace the network shown below by its Norton equivalent.
Answers: iy = 0, Ry =23.75 Q

5iy

11. Use the superposition principle to compute the voltage v, in the circuit below.

Answer: 1.12 V
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©,

12 A

4072

4 Q 5Q
NN MN
AW A~
g ot 10 Q

18 A

24 A

12. Use the superposition principle to compute voltage Vg ¢ in the circuit below.
Answer: 21.6 V

12 A

4\36\/
/
12.Q 15Q
M\ MN
+
4Q § s A(> 6Q §:’6£2

O

24 A

13. In the circuit below, vg; and vg, are adjustable voltage sources in the range -50 <V <50 V,

and Rg,; and Rg, represent their internal resistances.

R51§19

v
R52§ 1Q iLoaD
Adjustable
Vv Resistive
/ LOAD Load
Vs2

The table below shows the results of several measurements. In Measurement 3 the load resis-
tance is adjusted to the same value as Measurement 1, and in Measurement 4 the load resis-
tance is adjusted to the same value as Measurement 2. For Measurements 5 and 6 the load
resistance is adjusted to 1 Q. Make the necessary computations to fill-in the blank cells of

this table.
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Measurement | Switch S, Switch S, Ve, (V) | ve, (V) i onp (A)
1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open 0 -5
4 Open Closed 0 —42
5 Closed Closed 15 18
6 Closed Closed 24 0

Answers: =15V, -7 A, 11 A, -24 V

14. Compute the efficiency of the electrical system below. Answer: 76.6%

0.8Q
NN
80 A
MN
050 |[10A |
v gl '2
s
C) Ist Floor 2nd Floor
— Load Load
480V 050
_——W\
NN
0.8Q

Answer: 36.4%

0.8Q
MN
80 A
MN 100 A
05Q . i
(—D 1st Floor 2nd Floor
— Loa Load
480V
05Q
= MN
MN
0.8Q

15. Compute the regulation for the 2st floor load of the electrical system below.

16. Write a set of nodal equations and then use MATLAB to compute i gop and v, gap for the

circuit of Example 3.10, Page 3-29, which is repeated below for convenience.

Answers: —0.96 A, —-7.68 V
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ILoaD

8 Q

PN
Yo Yo g Yy
iy N
C—t) i \§69 §10 Q §4Q VLOAD§ Rioap
12V % s =
MN

Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling

Copyright © Orchard Publications

3-59



Chapter 3 Nodal and Mesh Equations — Circuit Theorems

3.15 Answers / Solutions to End-of-Chapter Exercises
Multiple Choice

1. E The current entering Node A is equal to the current leaving that node. Therefore, there is
no current through the 2 Q resistor and the voltage across it is zero.

2\

eV

8 A
@ 22¢ (D
8 A N 8 A

2.C From the figure below, Vo = 4 V. Also, Vag = Vgc = 2V and V,p = 10 V. Then,

i=6/2 =3A.
4Vm
O
2Q 3 29
A AN AN C
@ 320 jgzg
10V S i

3. A From the figure below we observe that the node voltage at A is 6 V relative to the refer-
ence node which is not shown. Therefore, the node voltage at Bis 6 + 12 = 18 V relative
to the same reference node. The voltage across the resistor is Vg = 18-6 = 12 V and

the direction of current through the 3 Q resistor is opposite to that shown since Node B is
at a higher potential than Node C. Thus i = -12/3 = -4 A

6V m8\/
4v '\ZNS;, —) 8V
v 320
C — B
() 13V
6V '\3’\?2’ 8V
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4. E We assign node voltages at Nodes A and B as shown below.

A B
AN AN
6Q 3Q .
|
+ 6Q
@ 3 ® 1230
12V 8 A
At Node A
V. —
A12 Va Va-Vg
6 6 3
and at Node B
V
B~ VA+\LB _ 8
3 3
These simplify to
2 1
and
1 2

Multiplication of the last equation by 2 and addition with the first yields Vg = 18 and
thus i = -18/3 = -6 A.

5. E Application of KCL at Node A of the circuit below yields

A +VX_

M
2Q
+
O ez
2A B 2vy
\_,+V—2v><:2
2 2
or
V-Vy =2
Also by KVL

V = Vy +2Vy
and by substitution
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Vg +2Vy —Vy = 2
or
Vy =1
and thus
V=Vy+2vy = 1+2x1 =3V

6. A Application of KCL at Node A of the circuit below yields

A 4 Q
MN

2AC> 49§E’ <J:>k"

or

1
4(2v -kv)=2
and this relation is meaningless if k = 2. Thus, this circuit has solutions only if k # 2.

7. B The two 2 Q resistors on the right are in series and the two 2 Q resistors on the left shown
in the figure below are in parallel.

ao AN AN
30 2Q 2Q

R 403
ZQ% 252% 50
bo AN\

Beginning on the right side and proceeding to the left we obtain 2+2 = 4, 4]14 = 2,
242 =4,41(3+2012) = 41(3+1) = 4ll4 =2 Q.

8. A Replacing the current source and its 2 Q parallel resistance with an equivalent voltage
source in series with a 2 Q resistance we obtain the network shown below.
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2V .
e T S
Y 20
220 320 (D24 — 203 '
4V
b b
By Ohm’s law,
- 4-2_
|_2+2_0.5A

and thus
Viy = Vup = 2X05+(-4) = 3V

9.D The Norton equivalent current source |y is found by placing a short across the terminals a

and b. This short shorts out the 5 Q resistor and thus the circuit reduces to the one shown

below.
a AN a NN
5Q 5Q
5Q
B0 O Q| O O,
lsc = In
b b
By KCL at Node A,

and thus Iy = 0

The Norton equivalent resistance Ry, is found by opening the current sources and looking

to the right of terminals a and b. When this is done, the circuit reduces to the one shown
below.

QO g———0

§SQ

bo——-——o

Therefore, Ry = 5 Q and the Norton equivalent circuit consists of just a 5 Q resistor.
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10. B With the 4 V source acting alone, the circuit is as shown below.

1
oAl e
}X{ +§zg @

a 4V
B

We observe that v,z = 4 V and thus the voltage drop across each of the 2 Q resistors to
the left of the 4 V source is 2 V with the indicated polarities. Therefore,

i=-2/2=-1A
Problems

1. We first replace the parallel conductances with their equivalents and the circuit simplifies to
that shown below.

+
D 40 OF TS AL O
12A 18AT- | 24 A

Applying nodal analysis at Nodes 1, 2, and 3 we obtain:

Node 1:
16v, - 12v, = 12
Node 2:
~12v, +27v, - 15v, = 18
Node 3:
-15v, +21v, = 24
Simplifying the above equations, we obtain:
4v, -3v, =3
-5V, +7vy; = 8

Addition of the first two equations above and grouping with the third yields
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8

-5V, + 7V,

For this problem we are only interested in v, = vg4 o . Therefore, we will use Cramer’s rule to

solve for v,. Thus,

D
v, = =2 D2={—3—5}=_21+40=19 A={6_5}=42—25=17
8 7 5 7

and

2. Since we cannot write an expression for the current through the 36 V source, we form a com-
bined node as shown on the circuit below.

36V
A\
o mm%\
U J 2e 2| 15\

QO 103

12 A 18 A - 24 A

—_

_|_

At Node 1 (combined node):

i, azVe Vam Vo Y3 15 94 -9
T 5 6

and at Node 2,
- _18

Vo— Vg + Vo— Vs

12 15
Also,
Vi—V; = 36

Simplifying the above equations, we obtain:

1 3 7
3V1=5pV2t3pVe = 36

1, .3, L1, __
—12v1+20v2 15v3 = -18
vy -Vv; = 36

Addition of the first two equations above and multiplication of the third by —=1/4 yields
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Zvl + év3 = 18
—ivl + %vg =-9

%VS =9
or
Vs = Vg g = 15ﬁ - 216V
Check with MATLAB:
format rat
R=[1/3 -3/20 7/30;-1/12 3/20 -1/15;1 0 -1];
1=[36 -18 36];
V=R\|;
fprintf(\n'); disp(‘'v1="); disp(V(1)); disp(‘'v2="); disp(V(2)); disp(‘'v3="); disp(V(3))
vl=
288/5
v2=
-392/5
v3=
108/5

3. We assign node voltages v, , v,, vg, v, and current i, as shown in the circuit below.

mlSA
—/
vy 12Q v, 15Q v,
AM———— WA
i l
6Q ‘ Iy
i +
O w0z = OO
12A Sy 24 A
36V
Then,
B iV2 181020
47 12
and
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V,—V V,—V V,—V
2 1+2 3+2 4

=0
12 12 6
Simplifying the last two equations above, we obtain
1 1
317 Y2 = F
and
lv +Qv —iv —1v =0
12176072 153 64
N bserve that iy = -2 i and Th > d
ext, we observe that Iy = T Vs = 5iy and v, = 36 V. lhen v, = E(Vl_vz) an
by substitution into the last equation above, we obtain
1 19 1 _5 1
“12Vit eV s X (V1 V) g0 = 0
or
—lv +3—1v =6
9179072 "

Thus, we have two equations with two unknowns, that is,

v -y, = -6
3t 12727

—1v+3—1v =6
9179072~

Multiplication of the first equation above by 1/3 and addition with the second yields

@Vz =4
or
v, = 240/19
We find v; from
3V1 éVz -6
Thus,
1, 1 240 _
37t 12719
or
v, = -282/19

Now, we find v, from
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_ S50 v = i(—282_@) - 43
Vs = 1317V2) = 139 " 19) T g
Therefore, the node voltages of interest are:
v, = -282/19 V
v, = 240/19 V
vy = -435/38 V
The current through the 6 Q resistor is
Vo-Va _ 240/19-36 _ 74 _ 5

i = = =

60 6 6 19
To compute the power supplied (or absorbed) by the dependent source, we must first find the
current iy . It is found by application of KCL at node voltage v;. Thus,

Vya—V
iy—24-18+ 315 2 -0

or
\, = 4g ~435/38-240/10
15
_ 40, 915/38 _ 1657
15 38
and

435 y 1657 _ 12379 _ _499.17 W

= Vioiy = —
P = Valy 38~ 38 145

that is, the dependent source supplies power to the circuit.

4. Since we cannot write an expression for the 36 A current source, we temporarily remove it
and we form a combined mesh for Meshes 2 and 3 as shown below.
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120\/@ ®24o\/
(o
MV MV
8Q 12Q
12A<Di1 4Q§ i, i §6'4Q CDzArA

Mesh 1:
i, = 12
Combined mesh (2 and 3):

_4i, +12i, + 18i, - 6i, — 8i; — 125 = 0
or . . . . . .

We now re—insert the 36 A current source and we write the third equation as

Mesh 4:
esh 4 i, = 24
Mesh 5: . i
_8i, + 12i = 120
or . .
-21,+3i5 = 30
Mesh 6:
e ~12i, + 1505 = —240
or

Thus, we have the following system of equations:

i) =12
—2i, +6i, + 9iy— 3i,— 4is —6ig = 0
i,—is = 36

Iy = =24

-2i, + 3ig =30

~4i, +5ig = —80

and in matrix form
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1000 0 0 't 12
2 6 9-3-4-6 12 0
0 1-1 000 i3 36
000100 i, = |-24
0-2 00 30 i 30
0 0-4 0065 i -80
- - 1'6] -
H_/
R V

We find the currents i; through ig with the following MATLAB script:

R=[100000;, -2 6 9 -3 -4 -6;...

01-1000,000100;..
0-20030,00-400 5]
V=[12 0 36 -24 30 -80];
I=R\V;
fprintf(\n");...

fprintf('il=%7.2f A\t', 1(1));...
fprintf('i2=%7.2f A \t', 1(2));...
fprintf('i3=%7.2f A\t 1(3));...
fprintf(\n’);...
fprintf('i4=%7.2f A\t 1(4));...
fprintf('i5=%7.2f A \t', [(5));...
fprintf('i6=0%7.2f A \t', 1(6));...
fprintf(\n’)

il= 12.00 A i2= 6.27 A i3= -29.73 A
id= -24.00 A i5= 14.18 A i6= -39.79 A

Now, we can find the voltage v45 o by application of KVL around Mesh 3.

120V ~ 240V
N N\
4Q§ §3Q
AN AN
8Q . 120
() 4Q J VLGA §6Q Q
12A 36 A - J 24 A

Thus,
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Vag o = Vip o+ Vg o = 12X [(=29.73) = (~39.79)] + 6 x [(~29.73) — (24.00)]

or

To verify that this value is correct, we apply KVL around Mesh 2. Thus, we must show that
Vag+VgotVisa =0
By substitution of numerical values, we find that

4x[6.27-12]+8x[6.27-14.18] + 86.34 = 0.14

5. This is the same circuit as that of Problem 3. We will show that we obtain the same answers

using mesh analysis.

We assign mesh currents as shown below.

mlSA
_/
120 150 )i,
MN—¢ AMN
Ix
g
i +
Q) (soz =y, (O
IZA . i2 I3 i
1 36V
Mesh 1:
Mesh 2: ) ) ) .
or . . . .
—-2iy + 111, - 3i;-6i; = -18
Mesh 3:

and since iy = i, - is, the above reduces to
i, + 21iy - 15ig + 5i, — 5ig = 36

or . . .
— iy +21i;—20i5 = 36

Mesh 4:
i4 = -24
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Mesh 5:
i = 18
Grouping these five independent equations we obtain:
iy =12
2, +11i,-3i;  —6i; = 18
Ci,+21i;  —20is = 36

and in matrix form, -
1000 o " 12|
—211-30 -6 I -18
0-1210-20 is | 36
0001 0 [i] |24
0000 1 i 18
L - _5_ L -
%,—/
R Y

We find the currents i, through is with the following MATLAB script:

R=s[1 0000; -211-30-6; 0 -1 21 0 -20; ...
00010;,0000 1j

V=[12 -18 36 -24 18]

I=R\V;

fprintf(\n";...
fprintf('il=%7.2f A \t', I(1));...
fprintf('i2=%7.2f A \t', 1(2));...
fprintf('i3=%7.2f A\t 1(3));...
fprintf(\n’);...
fprintf('i4=%7.2f A\t', 1(4));...
fprintf('i5=%7.2f A \t', I(5));...
fprintf(\n")

il= 12.00 A i2= 15.71 A i3= 19.61 A
id= -24.00 A i5= 18.00 A
By inspection,
igq = ip—i3 = 1571-19.61 = —-3.9 A
Next,
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Psi, = Six(i3—iy) = 5(ip—i5)(i3—1,)
5(15.71 — 18.00)(19.61 + 24.00) = —499.33 w

These are the same answers as those we found in Problem 3.

6. We assign mesh currents as shown below and we write mesh equations.

Mesh 1: ) ) )
24|1—8|2—12|4—24—12 =0
or
Mesh 2: i ) . .
Mesh 3: . .
or
Mesh 4: i ) .
I,= 101y = 10(i, —1i3)
or

Grouping these four independent equations we obtain:

6i, - 2i, ~3i, = 9
~8i, + 29i, - 6iy — 15i, = —24

~3i, +8i, =0

10i, - 10i—i, = 0

and in matrix form,
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62 0 -3 Iy 9
829 -6-15 i —24
0-3 8 0 - |is] =1 0
010 -10 -1 i, 0
— T

R | V

We find the currents i, through i, with the following MATLAB script:

R=[6 -2 0 -3; -8 29-6 -15; 0 -3 8 0; O 10 -10 -1J;
V=[9 -24 0 0]; I=R\V;

fprintf(\n’);...

fprintf('il=%7.2f A \t', 1(1));...

fprintf('i2=%7.2f A \t', 1(2));...

fprintf(i3=%7.2f A \t', 1(3));...

fprintf('i4=%7.2f A\t 1(4));...

fprintf(\n’)

il=1.94 A i2= 0.13 A i3= 0.05 A id= 0.79 A
Now, we find v;5, by Ohm’s law, that is,
Vipo = 10i; = 10x0.05 = 0.5 V
The same value is obtained by computing the voltage across the 6 Q resistor, that is,

Vgo = 6(iy—i3) = 6(0.13-0.05) = 0.48 V

7. Voltage—to—current source transformation yields the circuit below.

6A() 203 8/§> 303 69“3 602 1003

By combining all current sources and all parallel resistors except the 10 Q resistor, we obtain
the simplified circuit below.

© 19% woz

4 A
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Applying the current division expression, we obtain

e = 107 T 11

and thus
Pioo = I100(10) = (11 x10 = 121><10 =1 - 1.32

8. Current—to—voltage source transformation yields the circuit below.
2Q  20Q f1\2 Vi3g
—MAN—VW d__/ MWV

® O

12V LY

From this series circuit,
v _ a8
R 25
and thus

2
Paog = 1'(20) = (g—g) x20 = %‘xzo = 7373 w

9. We remove R, gap from the rest of the rest of the circuit and we assign node voltages v, , v,,

and v;. We also form the combined node as shown on the circuit below.

4\36V
4

g
A\ V4 ?/zvgz 2(v, 11\5/\?’2 Vs,
D>
D +e2 O eez
12 A 18 A
y
X
Node 1:
V1+V1_V2—12+V3_ 2+\-/—3=
4 12 15 6
or
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1 3 I

3V1=5gV2*3pVs = 12
Node 2:

VaoVi VomVs _ g

12 15

or

1, .3, 1, __

—12v1+20v2 15v3 = -18

Also,

V,—Vy; = 36

For this problem, we are interested only in the value of v4 which is the Thevenin voltage vy,

and we could find it by Gauss’s elimination method. However, for convenience, we will group
these three independent equations, express these in matrix form, and use MATLAB for their

solution.
1 3 7
3V1— 52t 3pVs = 12
1y v 3y 1y —_
—12v1+20v2 15v3 = -18
vy -Vv; = 36
and in matrix form,
1.3 7
3 20 30 Vi 12
103 1] |V _ |18
12 20 15| ° Vs ~ | 36
1 0 -1 —— e
\V/ |
G

We find the voltages v; through v, with the following MATLAB script:

G=[1/3 -3/20 7/30; -1/12 3/20 -1/15; 1 0 -1];

I=[12 -18 36]; V=G\;

fprintf(\n";...

fprintf('v1=%7.2f V \t', V(1)); fprintf('v2=%7.2f V \t', V(2)); fprintf('v3=%7.2f V \t', V(3));
fprintf(\n’)

vl= 0.00 V v2= -136.00 V v3= -36.00 V

Thus,
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To find Ryyy we short circuit the voltage source and we open the current sources. The circuit

then reduces to the resistive network below.

2
2

4Q§ 693> Ry

y

X

We observe that the resistors in series are shorted out and thus the Thevenin resistance is the
parallel combination of the 4 Q and 6 Q resistors, that is,

4Q16Q=24Q

and the Thevenin equivalent circuit is as shown below.

@

6V 24 Q

MN

Now, we connect the load resistor R gap at the open terminals and we obtain the simple

series circuit shown below.

G RLOAD§ 24 Q

6V 2.4 Q
MN
a. For maximum power transfer,

b. Power under maximum power transfer condition is

2
Pmax = I'RLoap = (2'43:52'4) x24=75"%x24=135w
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10. We assign a node voltage Node 1 and a mesh current for the mesh on the right as shown

below.
v L
Sy a
1 15Q
<]> 402 50 §l ix
5iy
b
At Node 1:
vy o, :
Zl +iy = Siy
Mesh on the right: _
(15+5)iyx = vy
and by substitution into the node equation above,
20i . .
TX +iy = Siy
or . .
Biy = Siy
but this can only be true if iy = 0.
Then,
_Voc _ Vap _ 5Xix _5x0 _

iv = = =
N
Thus, the Norton current source is open as shown below.

a

RN§

b

To find the value of Ry we inserta 1 A current source as shown below.
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At Node A:

But : .
Vg = (5 Q) Xxliy = 5iy

and by substitution into the above relation

Vi Va-V
Ya, YaVe _
4 15
or
lgv —l-@v =0
60 A 15 B
At Node B:
Ve~ Va VB _ 4
15 5
or
1 4

For this problem, we are interested only in the value of vg which we could find by Gauss’s

elimination method. However, for convenience, we will use MATLAB for their solution.

@v —Ev =0
60 A 15°B
1 4

and in matrix form,

19 16

60 15 |:VA:| H
1 41 |vg| = |1

15 15| —— ——
G

We find the voltages v, and v, with the following MATLAB script:
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G=[19/60 -16/15; -1/15 4/15];
I=[0 1]'; V=G\I:
fprintf(\n");...
fprintf(vA=%7.2f V \t, V(1)); fprintf(vB=9%7.2f V \t', V(2));
fprintf(\n’)
vA= 80.00 V vB= 23.75 V
Now, we can find the Norton equivalent resistance from the relation

\Y \Y
Ry= 2 =-B=-23750Q
11. This is the same circuit as that of Problem 1. Let v';g, be the voltage due to the 12 A current

source acting alone. The simplified circuit with assigned node voltages is shown below where
the parallel conductances have been replaced by their equivalents.

v, 2ot vy, 1597

a'A'A} 1 NMN—

+

1 71

D 4072 V|18A g6Q
12A |
l_
The nodal equations at the three nodes are
16v, - 12v, =12

-12v; +27v,-15v; = 0

or
4v, -3V, =3

-4v;+9v,-5v; = 0

-5V, +7vy =0

Since v, = V';ga, we only need to solve for v, . Adding the first 2 equations above and group-
ing with the third we obtain
0

-5V, +7v,

Multiplying the first by 7 and the second by 5 we obtain
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-25v,+35v; = 0

and by addition of these we obtain

' 21
Vo = Viga = 5V
Next, we let v";g5 be the voltage due to the 18 A current source acting alone. The simpli-

fied circuit with assigned node voltages is shown below where the parallel conductances
have been replaced by their equivalents.

Va 12Q7 vy 15Q7 v
A AA—

4 Q_1§ Q V":IlBA § 6 Q"

The nodal equations at the three nodes are

16v, —12vg =0
—12v, +27vg - 15V, = 18
-15vg +21ve = 0
or
4v, —3vg =0
—4vp +9vg -5V = -6
—SVvg+7ve =0

Since vg = V"jgn, we only need to solve for vg. Adding the first 2 equations above and

grouping with the third we obtain
6vg —5ve = -6
-5Vg+7ve =0
Multiplying the first by 7 and the second by 5 we obtain
42vg - 35V, = —42
-25vg+35ve = 0

and by addition of these we obtain
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N -42
Vg = Vijga = 17 \

Finally, we let v ;g5 be the voltage due to the 24 A current source acting alone. The simpli-

fied circuit with assigned node voltages is shown below where the parallel conductances have
been replaced by their equivalents.

vy 122070 v, 1597 v,

A——MA
wiE w2 Q)
‘ 24 A
1_
The nodal equations at the three nodes are
16vy - 12vy =0

_15vg +21v, = 24

or

Since vy = V"gp, we only need to solve for vy . Adding the first 2 equations above and
grouping with the third we obtain

0

0

6vy -5V,

—5Vy + 7V,

Multiplying the first by 7 and the second by 5 we obtain

42vy ~35v, = 0
_25vy +35v, = 40
and by addition of these we obtain
m 40

Vy = V'iga = 17V

and thus

1 11} 1 21 _42 40 19
Viga = VigatViggatViga = ﬁ"‘?"‘ﬁ =17 " 112V
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This is the same answer as in Problem 1.

12. This is the same circuit as that of Problem 2. Let v'g o be the voltage due to the 12 A cur-

rent source acting alone. The simplified circuit is shown below.

*-—

The 12 Q and 15 Q resistors are shorted out and the circuit is further simplified to the one
shown below.

_|_

O 4ez 6% Vso

12A
l

The voltage Vg o, is computed easily by application of the current division expression and

multiplication by the 6 Q resistor. Thus,

Vg = (ﬁle)xG - %v

Next, we let v"5 o be the voltage due to the 18 A current source acting alone. The simpli-

fied circuit is shown below. The letters A, B, and C are shown to visualize the circuit simpli-
fication process.

15Q
AN
Al 12Q B 15Q |A A A
MW MW — . wWE18 . 12%9 b
+ >
4Q§ () 6Q§V"69 §V"6£2 349 Q) §V"6£2 §4Q Q)
C C ¢
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The voltage V"5 , is computed easily by application of the current division expression and

multiplication by the 6 Q resistor. Thus,

" 4 -216
Vg o = [mX(—lS)JXG = TV

Now, we let v o, be the voltage due to the 24 A current source acting alone. The simplified

circuit is shown below.

+

4Q3 62zvise ()

a 24 A

*—

The 12 Q and 15 Q resistors are shorted out and voltage V"4 (, is computed by application

of the current division expression and multiplication by the 6 Q resistor. Thus,

V' o = (Z—i—gxm)xa - 2_§§V

Finally, we let v'6 o be the voltage due to the 36 V voltage source acting alone. The simpli-
fied circuit is shown below.

O\ 36V A
) N\
Al 12Q 15Q |B
VW YW 4Q§ §1zg

L ¥
4Q§ 6Q§_v'veg 6Q§4\_/iv6g §15Q C>36\/
C

By application of the voltage division expression we find that

iv 6 3 _ 108
Veq = 4_+6X( 36) = 5

Therefore,
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Voo = Vg gt Vi gtV q+ Ve = 222216, 288 108 _ 108 _ 5 4

5 5 5 5 5

This is the same answer as that of Problem 2.

13. The circuit for Measurement 1 is shown below.

RSl
MV I
1Q ,'E%Dl
i1
+ !
@ 3
48V Vgq :
RLOADl
v 48
R = — S1 = — = 3 Q
U ioap1 16

For Measurement 3 the load resistance is the same as for Measurement 1 and the load cur-
rent is given as -5 A. Therefore, for Measurement 3 we find that

Vg1 = Requ(-5) = 3x(-5) = ~15 V
and we enter this value in the table below.

The circuit for Measurement 2 is shown below.

Rsz
[Q lLoap2
o
36 V| Vs2 ;
RioaD2
v
Rg = —2— =%=6£2
LOAD?2

For Measurement 4 the load resistance is the same as for Measurement 2 and vg, is given as

-42 V. Therefore, for Measurement 4 we find that
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. Vg, 42
lLoap2 = o = ——< =-TA
LOAD2 Reqz 6

and we enter this value in the table below.

The circuit for Measurement 5 is shown below.

_.l_
R31§ 1Q Re2S1Q T :ILOAD

Vioap § ‘RLoaD

m l 1Q
Vsi[15V VsaTi8 v

Replacing the voltage sources with their series resistances to their equivalent current sources
with their parallel resistances and simplifying, we obtain the circuit below.

HLoAD
CD 0.5 Q§ RioaD § 1 Q
33 A
Application of the current division expression yields
. 0.5
lLoaD = mx33 =11 A
and we enter this value in the table below.
The circuit for Measurement 6 is shown below.
A
Va J
R51§1 Q Rs,S1Q IiLOAD
RLoap § 1 Q
(j— |
Vs1 VsaT 24V
We observe that i| gap Will be zero if v4 = 0 and this will occur when vg; = —-24. This can

be shown to be true by writing a nodal equation at Node A. Thus,
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Va—(—24) +vA—24+

0=0
1 1
orvy =0
M . .
easurement | Switch S; Switch S, Ve, V) | v, W) | 0L (A)
1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open -15 0
4 Open Closed 0 -42
5 Closed Closed 15 18 11
6 Closed Closed -24 24 0
14.
0.8Q
MWV
80 A
MW
100 A
05Q : .
Vg Iy j 12
(—D 1st Floor 2nd Floor
— Load Load
480V 050
= MWV
MWV
0.8Q

The power supplied by the voltage source is

ps = Vg(iy +i,) = 480(100 +80) = 86,400 w = 86.4 Kw
The power loss on the 1st floor is

PLoss: = i2(0.5+0.5) = 100°x 1 = 10,000 w = 10 Kw
The power loss on the 2nd floor is

80°x 1.6 = 10, 240 w = 10.24 Kw

)
and thus the total loss is

Total loss = 10+ 10.24 = 20.24 Kw

Then,
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Output power = Input power —power losses = 86.4 —-20.24 = 66.16 Kw

and
% Efficiency = 1 = %%uTt x 100 = %%lf x 100 = 76.6%
This is indeed a low efficiency.
15.
0.8Q
MV
80 A
MV
100 A
" 05Q i, i,
CD 1st Floor 2nd Floor
— Load Load
480V 050
_—+—AW
MV
0.8Q

The voltage drop on the second floor conductor is

v Rri, = 1.6x80 = 128 V

cond =

and thus the full-load voltage is

Ve = 480-128 = 352 V
Then,
Vi~ 480 352

\V
FL 100 = 35

VEL

% Regulation

x 100 = 36.4%

This is a very poor regulation.

16. We assign node voltages and we write nodal equations as shown below.

combined node

v v,
NN NN F - NN
30 30 N 7Q .
201 + " LoaD
+ 6Q 10Q 4Q V R 0aD
O  Jzee  zoa 0 2ee v
12V 50 8Q
= NN Ve
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VooVi Vo Voo Vs

=0

3 6 3

3 10 4 7+8

where iy = v,/6 and thus

=+ +
10 4 7+8

Collecting like terms and rearranging we obtain

_—1v +§v +_—1v =0
31727373 -
:lv +l§v +Qv —Qv =0
3273037604 60 °
—%)vz +Vy -V, =0
_Ly —1—9v +32v =0
103 604 60 °
and in matrix form
1 0 0 0 0
1 5 -1 r ] .
3 63 00 Vi 12
o =L 13 18 19/ |V 0
3 30 60 60 va| 0
010 1 1 o Vs 0
3 V5 _O_
0o o_i 1937 —— T
i 10 60 60 v I

We use MATLARB to solve the above.
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G=[1 0 0 O O;...
-1/3 5/6 -1/3 0 0;...

0 -1/3 13/30 19/60 —19/60;...

0 -10/3 1 -1 0O;...

0 0 -1/10 -19/60 37/60];
I=[12 0 0 O O]; V=G\|;
fprintf(\n’);...
fprintf('vl = %7.2f V \n',V(1));...
fprintf('v2 = %7.2f V \n',\V(2));...
fprintf('v3 = %7.2f V \n',V(3));...
fprintf('v4 = %7.2f V \n',V(4));...
fprintf('vb = %7.2f V \n',V(5));...
fprintf(\n’); fprintf(\n’)

vl = 12.00 Vv
v2 = 13.04 V
v3 = 20.60 Vv
vd = -22.87 V
v = -8.40 V
Now,
. Vy—V —22.87 -(-8.40
ILoaD = §+75 = 15( ) = 096 A
and

Vioap = 8iLoap = 8% (-0.96) = ~7.68 V
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Chapter 4

Introduction to Operational Amplifiers

his chapter is an introduction to amplifiers. It discusses amplifier gain in terms of decibels

(dB) and provides an overview of operational amplifiers, their characteristics and applica-

tions. Numerous formulas for the computation of the gain are derived and several practical
examples are provided.

4.1 Signals

A signal is any waveform that serves as a means of communication. It represents a fluctuating
electric quantity, such as voltage, current, electric or magnetic field strength, sound, image, or
any message transmitted or received in telegraphy, telephony, radio, television, or radar. A typical
signal which varies with time is shown in figure 4.1 where f(t) can be any physical quantity such
as voltage, current, temperature, pressure, and so on.

<
‘\/f—j\\ t

Figure 4.1. A signal that changes with time

4.2 Amplifiers

An amplifier is an electronic circuit which increases the magnitude of the input signal. The sym-
bol of a typical amplifier is a triangle as shown in Figure 4.2.

Electronic Am_plifier
Figure 4.2. Symbol for electronic amplifier

An electronic (or electric) circuit which produces an output that is smaller than the input is
called an attenuator. A resistive voltage divider is a typical attenuator.
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An amplifier can be classified as a voltage amplifier, current amplifier, or power amplifier.
The gain of an amplifier is the ratio of the output to the input. Thus for a voltage amplifier,

Output Voltage

Voltage Gain =
Input Voltage

or

out
= Uit 4.1
G » 4.1)

The current gain G; and power gain G, are defined similarly.

Note 1: Throughout this text, the common (base 10) logarithm of a number x will be denoted
as log(x) while its natural (base ¢) logarithm will be denoted as In(x).

4.3 Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels (dB). For instance, we say that an amplifier has 10 dB power gain or a transmission
line has a power loss of 7 dB (or gain —7 dB). If the gain (or loss) is 0 dB, the output is equal to
the input.

We must remember that a negative voltage or current gain G,, or G; indicates that there is a

180° phase difference between the input and the output waveforms. For instance, if an amplifier
has a gain of =100 (dimensionless number), it means that the output is 180 degrees out—of-phase
with the input. Therefore, to avoid misinterpretation of gain or loss, we use absolute values of
power, voltage and current when these are expressed in dB.

By definition,

Pout

pin

dB = 10log 4.2)

Therefore,
10 dB represents a power ratio of 10

10n dB represents a power ratio of 10"
It is useful to remember that

20 dB represents a power ratio of 100
30 dB represents a power ratio of 1000

60 dB represents a power ratio of 1000000
Also,
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1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2
7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance, 4 dB = 3 dB + 1 dB which is equiva-
lent to a power ratio of approximately 2 x 1.25 = 2.5. Likewise, 27 dB = 20 dB + 7 dB and this

is equivalent to a power ratio of approximately 100 x5 = 500.

Since y = Iogx2 = 2logx and p = V2/R = i’R, if we let R = 1, the dB values for voltage and

current ratios become:

Vol 2 v
dB, = 10log|-24 = 20log|-out (4.3)
Vin Vin
and
L :
dB; = 10log|'eut|” = 20l0g | out (4.4)
lin lin
|
Example 4.1
Compute the gain in dB,, for the amplifier shown in Figure 4.3.
o >
1w I/lO w
Figure 4.3. Amplifier for Example 4.1
Solution:
dB,, = 10log"2ut = 10j0g20 - = =
w = og— = 10IogT = 10log10 = 10x1 = 10 dBw
in
|
Example 4.2
Compute the gain in dB,, for the amplifier shown in Figure 4.4, given that log2 = 0.3.
V. l\ Vv
in T |/2 o~ Vout
Figure 4.4. Amplifier for Example 4.2
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Solution:

dB,, = 20l VOUt—20| 2 _ 20l0g0.3 = 20%0.3 = 6 dB
v = 20log—= = ogi_ 090.3 = 20x0.3 = \%

In

4.4 Bandwidth and Frequency Response

Like electric filters, amplifiers exhibit a band of frequencies over which the output remains nearly
constant. Consider, for example, the magnitude of the output voltage |v | of an electric or elec-

tronic circuit as a function of radian frequency ® as shown in Figure 4.5.

1T |Vout|

0.707} - - -

|
Bandwidth ———
|
|

Figure 4.5. Typical bandwidth of an amplifier

As shown above, the bandwidth is BW = 0, -, where o, and o, are the lower and upper cutoff

frequencies respectively. At these frequencies, vy, = J2/2 = 0.707 and these two points are
known as the 3—dB down or half-power points. They derive their name from the fact that power
p=v2R=i%R,andfor R =1 and v = ,/2/2 = 0.707 or i = ./2/2 = 0.707, the power is
1/2, that is, the power is “halved”. Alternately, we can define the bandwidth as the frequency

band between half-power points.

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 4.6.

I O
% Gain Amplifier |O% @_ Gain Amplifier s
T +
Feedback Circuit ,

Partial Output Feedback Entire Output Feedback
Figure 4.6. Gain amplifiers used with feedback

Feedback Path

4-4 Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling
Copyright © Orchard Publications



The Operational Amplifier

In Figure 4.6, the symbol 2 (Greek capital letter sigma) inside the circle denotes the summing
point where the output signal, or portion of it, is combined with the input signal. This summing
point may be also indicated with a large plus (+) symbol inside the circle. The positive (+) sign
below the summing point implies positive feedback which means that the output, or portion of it,
is added to the input. On the other hand, the negative (-) sign implies negative feedback which
means that the output, or portion of it, is subtracted from the input. Practically, all amplifiers use
used with negative feedback since positive feedback causes circuit instability.

4.5 The Operational Amplifier

The operational amplifier or simply op amp is the most versatile electronic amplifier. It derives it
name from the fact that it is capable of performing many mathematical operations such as addi-
tion, multiplication, differentiation, integration, analog—to—digital conversion or vice versa. It
can also be used as a comparator and electronic filter. It is also the basic block in analog com-
puter design. Its symbol is shown in Figure 4.7.

1 o—>

P
Figure 4.7. Symbol for operational amplifier

As shown above the op amp has two inputs but only one output. For this reason it is referred to
as differential input, single ended output amplifier. Figure 4.8 shows the internal construction of a

typical op amp. This figure also shows terminals V. and Vgg. These are the voltage sources
required to power up the op amp. Typically, V¢ is +15 volts and Vgg is —15 volts. These termi-

nals are not shown in op amp circuits since they just provide power, and do not reveal any other
useful information for the op amp’s circuit analysis.

4.6 An Overview of the Op Amp

The op amp has the following important characteristics:

1. Very high input impedance (resistance)
2. Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4. Frequency response from DC to frequencies in the MHz range
5. Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selec-
tion of passive devices such as resistors, capacitors, diodes, and so on.
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!

Vee
1 NON-INVERTING INPUT
2 INVERTING INPUT
3 OUTPUT
Oo—4
Q
L

ﬁ - g
1 2 l
S

Figure 4.8. Internal Devices of a Typical Op Amp

-

FAAAA

An op amp is said to be connected in the inverting mode when an input signal is connected to the
inverting () input through an external resistor R;, whose value along with the feedback resistor

R; determine the op amp’s gain. The non—-inverting (+) input is grounded through an external

resistor R as shown in Figure 4.9.

For the circuit of Figure 4.9, the voltage gain G, is

G, = M= (4.5)
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Figure 4.9. Circuit of Inverting op amp

Note 2: The resistor R connected between the non-inverting (+) input and ground serves only
as a current limiting device, and thus it does not influence the op amp’s gain. It will be
omitted in our subsequent discussion.

Note 3: The input voltage v, and the output voltage v, as indicated in the circuit of Figure

4.9, should not be interpreted as open circuits; these designations imply that an input
voltage of any waveform may be applied at the input terminals and the corresponding
output voltage appears at the output terminals.

As shown in the formula of (4.5), the gain for this op amp configuration is the ratio —-R¢/R;,
where R; is the feedback resistor which allows portion of the output to be fed back to the input.

The minus (-) sign in the gain ratio -R;/R;,, implies that the output signal has opposite polarity

from that of the input signal; hence the name inverting amplifier. Therefore, when the input sig-
nal is positive (+) the output will be negative () and vice versa. For example, if the input is +1
volt DC and the op amp gain is 100, the output will be =100 volts DC. For AC (sinusoidal) sig-
nals, the output will be 180 degrees out—of-phase with the input. Thus, if the input is 1 volt AC
and the op amp gain is 5, the output will be -5 volts AC or 5 volts AC with 180 degrees out—of—
phase with the input.

|
Example 4.3

Compute the voltage gain G,, and then the output voltage v, for the inverting op amp circuit

out
shown in Figure 4.10, given that v;, = 1 mV. Plot v;, and v, as mV versus time on the same

set of axes.

Solution:
This is an inverting amplifier and thus the voltage gain G,, is

_ Rt _ 120ke
VTR, 20 KQ

In
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I+
IH»O O
<

Figure 4.10. Circuit for Example 4.3

or
G, = -6
and since
Vout
GV = V_
n
the output voltage is
Vout = GV, = -6Xx1
or
v -6 mV

out =

The voltages v;, and v, are plotted as shown in Figure 4.11.

v (mv) Vi, = 1mv

1 /

T Vout = —6 mv

I /

Figure 4.11. Input and output waveforms for the circuit of Example 4.3

Example 4.4

Compute the voltage gain G,, and then the output voltage v, for the inverting op amp circuit

out
shown in Figure 4.12, given that v, = sint mV. Plot v, and v, as mV versus time on the

same set of axes.
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-0
== L
Figure 4.12. Circuit for Example 4.4
Solution:

This is the same circuit as that of the previous example except that the input is a sine wave with
unity amplitude and the voltage gain G, is the same as before, that is,

R
G - Rt _ _120KQ _

VTR, 20KQ

and the output voltage is
Vour = GV, = -6 xsint = —6sint mV

The voltages v;, and v, are plotted as shown in Figure 4.13.

. v (mv)

Vout = —6sint

Figure 4.13. Input and output waveforms for the circuit of Example 4.4

An op amp is said to be connected in the non—inverting mode when an input signal is connected
to the non—inverting (+) input through an external resistor R which serves as a current limiter,

and the inverting (-) input is grounded through an external resistor R;,, as shown in Figure 4.14.

In our subsequent discussion, the resistor R will represent the internal resistance of the applied
voltage v;,.

Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling 4-9
Copyright © Orchard Publications



Chapter 4 Introduction to Operational Amplifiers

+
M ~ Vout
Vin

IFo

Figure 4.14. Circuit of non—inverting op amp
For the circuit of Figure 4.14, the voltage gain G, is

\
G, = -2 =141 (4.6)

v
Vin in

As indicated by the relation of (4.6), the gain for this op amp configuration is 1 + R;/R;, and

therefore, in the non—inverting mode the op amp output signal has the same polarity as the input
signal; hence, the name non—inverting amplifier. Thus, when the input signal is positive (+) the
output will be also positive and if the input is negative, the output will be also negative. For
example, if the input is +1 mV DC and the op amp gain is 75, the output will be +75 mV DC. For
AC signals the output will be in—phase with the input. For example, if the input is 0.5 V AC and
the op amp gainis G,= 1+ 19 KQ/1 KQ = 20, the output will be 10 V AC and in—phase with

the input.
|

Example 4.5

Compute the voltage gain G,, and then the output voltage v, for the non-inverting op amp

out
circuit shown in Figure 4.15, given that v;, = 1 mV. Plot v;, and v, as mV versus time on

the same set of axes.

K 1
l— p—
Figure 4.15. Circuit for Example 4.5
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Solution:
The voltage gain G, is

\ R
G _0_Ut=1+_f:1+M=1
R. 20 KQ

n

+6 =7

and thus
Vout = GyVjp, = 7x1mV =7 mV

The voltages v;, and v, are plotted as shown in Figure 4.16.

v (mv) Vout = 7 mv

| /

Vip = 1 mv

0 t

Figure 4.16. Input and output waveforms for the circuit of Example 4.5

|
Example 4.6

Compute the voltage gain G,, and then the output voltage v, for the non-inverting op amp

out
circuit shown in Figure 4.17, given that v;, = sint mV. Plot v, and v, as mV versus time on

the same set of axes.

Vin R —j)_
—i—_ —

Figure 4.17. Circuit for Example 4.6

Solution:

This is the same circuit as in the previous example except that the input is a sinusoid. Therefore,
the voltage gain G, is the same as before, that is,
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\% R
G, = out_ g Tt _ 4, 10KQ 4 g g
R, 20 KQ

n

and the output voltage is
Vout = GV, = 7Xsint = 7sint mV

The voltages v;, and v, are plotted as shown in Figure 4.18.

..V (mv) Vout = 7sint

Vi, = sint /

[
| v v
4
s
L L L L L L
2 4 6 8 10 12

8

>

IS

~

0

Figure 4.18. Input and output waveforms for the circuit of Example 4.6

Quite often an op amp is connected as shown in Figure 4.19.

+
Vout

— 0
-

Figure 4.19. Circuit of unity gain op amp

For the circuit of Figure 4.19, the voltage gain G, is

and thus

4.7)

(4.8)
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For this reason, the op amp circuit of Figure 4.19 it is called unity gain amplifier. For example, if
the input voltage is 5 mV DC the output will also be 5 mV DC, and if the input voltage is
2 mV AC, the output will also be 2 mV AC. The unity gain op amp is used to provide a very

high resistance between a voltage source and the load connected to it. An example will be given
in Section 4.8.

4.7 Active Filters

An active filter is an electronic circuit consisting of an amplifier and other devices such as resis-
tors and capacitors. In contrast, a passive filter is a circuit which consists of passive devices such
as resistors, capacitors and inductors. Operational amplifiers are used extensively as active filters.

A low—pass filter transmits (passes) all frequencies below a critical (cutoff ) frequency denoted as
o, and attenuates (blocks) all frequencies above this cutoff frequency. An op amp low—pass fil-

ter is shown in Figure 4.20 and its frequency response in Figure 4.21.

Figure 4.20. A low—pass active filter

Low Pass Filter Frequency Respone

1

& |deal
08 -

Half-Pow er Point
06 -

04 | Realizable

Vour / Vinl

0.2 A

0

C

Radian Frequency (log scale)
Figure 4.21. Frequency response for amplitude of a low—pass filter

In Figure 4.21, the straight vertical and horizontal lines represent the ideal (unrealizable) and
the smooth curve represents the practical (realizable) low—pass filter characteristics. The vertical
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scale represents the magnitude of the ratio of output—to-input voltage v, /V;,, that is, the gain

in’

G, - The cutoff frequency w, is the frequency at which the maximum value of v /v, which is

unity, falls to 0.707 x G, and as mentioned before, this is the half power or the -3 dB point.

A high—pass filter transmits (passes) all frequencies above a critical (cutoff) frequency o, and

attenuates (blocks) all frequencies below the cutoff frequency. An op amp high—pass filter is
shown in Figure 4.22 and its frequency response in Figure 4.23.

1. %
OT—I
C, R C,

Vin

|

1

Figure 4.22. A high—pass active filter

High-pass Filter Frequency Response

10 +

09 ldeal =—
0.8 -

0.7 == < Half-Pow er Point

06
o5 | Realizable——>

Vour / Vil

0.3 A
0.2 -
0.1+

0.0 O]
Wc

Radian Frequency (log scale)

Figure 4.23. Frequency response for amplitude of a high—pass filter

In Figure 4.23, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) high—pass filter characteristics. The vertical

scale represents the magnitude of the ratio of output-to-input voltage v, ./ V;,, that is, the gain

G, - The cutoff frequency w, is the frequency at which the maximum value of v /v, which is

unity, falls to 0.707 x G, i.e., the half power or the -3 dB point.

A band—pass filter transmits (passes) the band (range) of frequencies between the critical (cutoff)
frequencies denoted as ®, and ®,, where the maximum value of G,, which is unity, falls to
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0.707 x G, while it attenuates (blocks) all frequencies outside this band. An op amp band—pass

filter is shown in Figure 4.24 and its frequency response in Figure 4.25.

C1J_ C R
R, R

2

1

Vin 2 + !

Figure 4.24. An active band—pass filter

Band Pass Filter Frequency Response

1- —
0.9 - ldeal=—> \
08 | i
0.7 4— Half-Pow er Pointg
0.6 -
0.5 -
04 -
0.3 -

0.2
0.1+

Vour / Vil

Realizable =—»

w1 w2
Radian Frequency (log scale)

Figure 4.25. Frequency response for amplitude of a band—pass filter

A band—elimination or band—stop or band-rejection filter attenuates (rejects) the band (range) of
frequencies between the critical (cutoff) frequencies denoted as m; and ®,, where the maxi-

mum value of G,, which is unity, falls to 0.707 x G, while it transmits (passes) all frequencies

outside this band. An op amp band-stop filter is shown in Figure 4.26 and its frequency response
in Figure 4.27.
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NN\
Cy G
| | |/
‘ | \ s
\
Vin R, R, out
\ T~C3

Figure 4.26. An active band—elimination filter

Band-Elimination Filter Frequency Response

1 - —_—

0.9 - ldeal=—>
08 -
0.7 = <— Half-Pow er {Points

0.6 -
0.5 A
0.4 -
0.3 -
0.2 -
0.1+

0

Realizable =——»

Vour / Vil

w1 2
Radian Frequency (log scale)

Figure 4.27. Frequency response for amplitude of a band—elimination filter

4.8 Analysis of Op Amp Circuits

The procedure for analyzing an op amp circuit (finding voltages, currents and power) is the same
as for the other circuits which we have studied thus far. That is, we can apply Ohm’s law, KCL

and KVL, superposition, Thevenin’s and Norton’s theorems. When analyzing an op amp circuit,
we must remember that in any op amp:

a. The currents into both input terminals are zero
b. The voltage difference between the input terminals of an op amp is zero

c. For circuits containing op amps, we will assume that the reference (ground) is the common
terminal of the two power supplies. For simplicity, the power supplies will not be shown.
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We will provide several examples to illustrate the analysis of op amp circuits without being con-
cerned about its internal operation; this is discussed in electronic circuit analysis books.

Example 4.7

The op amp circuit shown in Figure 4.28 is called inverting op amp. Prove that the voltage gain
G, is as given in (4.9) below, and draw its equivalent circuit showing the output as a dependent

source.

G, =-ut_- __1T (4.9)

Proof:
No current flows through the (=) input terminal of the op amp; therefore the current i which
flows through resistor R;,, flows also through resistor R¢. Also, since the (+) input terminal is

grounded and there is no voltage drop between the () and (+) terminals, the (-) input is said to
be at virtual ground. From the circuit of Figure 4.28,

Vout = —Ryl
where
i = Vin
Rin
and thus
Ry
V = —V.
out in
Rin
or
G = Yout R¢
v = - _
Vin Rln
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The input and output parts of the circuit are shown in Figure 4.29 with the virtual ground being
the same as the circuit ground.

Figure 4.29. Input and output parts of the inverting op amp

These two circuits are normally drawn with the output as a dependent source as shown in Figure
4.30. This is the equivalent circuit of the inverting op amp and, as mentioned in Chapter 1, the
dependent source is a Voltage Controlled Voltage Source (VCVS).

in

Figure 4.30. Equivalent circuit of the inverting op amp

Example 4.8

The op amp circuit shown in Figure 4.31 is called non-inverting op amp. Prove that the voltage
gain G, is as given in (4.10) below, and draw its equivalent circuit showing the output as a

dependent source.

Figure 4.31. Circuit of non—inverting op amp

\'

G, = M =1+-—" (4.10)
Vin in
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Proof:

Let the voltages at the (-) and (+) terminals be denoted as v; and v, respectively as shown in
Figure 4.32.

Figure 4.32. Non—inverting op amp circuit for derivation of (4.10)

By application of KCL at v,

or
\Vj V,—-V
1,1 ot _ 4.11)
Rin Ry

There is no potential difference between the (=) and (+) terminals; therefore, v, —v, = 0 or

vy =V, = V;,. Relation (4.11) then can be written as

m_'_vin_vout -0
Rin Ry
or v
(ko
in f
Rearranging, we obtain
Vout Rf
GV = - =1+ R_
In In

and its equivalent circuit is as shown in Figure 4.33. The dependent source of this equivalent cir-
cuit is also a VCVS.
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R
+ (1+——f—)v- \(/)+
— Rin n Oout
Vin -
.

Figure 4.33. Equivalent circuit of the non—inverting op amp

Example 4.9

If, in the non-inverting op amp circuit of the previous example, we replace R;, with an open cir-

cuit (R;, — =) and R; with a short circuit (R; — 0), prove that the voltage gain G,, is
G, = -1 (4.12)

and thus

(4.13)

Proof:

With R;, open and R shorted, the non—inverting amplifier of the previous example reduces to

the circuit of Figure 4.34.

ty

(0]
Vir-\i_ {1
:_ -

Figure 4.34. Circuit of Figure 4.32 with R;, open and R¢ shorted

ut

The voltage difference between the (+) and (-) terminals is zero; then v, = v;,,.

We will obtain the same result if we consider the non—inverting op amp gain G, = 1+ R¢/R;,.
Then, letting R¢ — 0, the gain reduces to G,, = 1 and for this reason this circuit is called unity

gain amplifier or voltage follower. It is also called buffer amplifier because it can be used to “buffer”
(isolate) one circuit from another when one “loads” the other as we will see on the next example.
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Example 4.10

For the circuit of Figure4.35
a.With the load R 5p disconnected, compute the open circuit voltage v,

b.With the load connected, compute the voltage v| gap across the load R| gap

c.Insert a buffer amplifier between a and b and compute the new voltage v, gop across the same

load R, gap
12V
<> 5 KQ% RLOAD§ 5 KQ
Vin
=
Figure 4.35. Circuit for Example 4.10
Solution:

a. With the load R gap disconnected the circuit is as shown in Figure 4.36.

Figure 4.36. Circuit for Example 4.10 with the load disconnected

The voltage across terminals a and b is

5 KQ

Vap = oot x12 = 5V
7KQ+5KQ

b. With the load R gap reconnected the circuit is as shown in Figure 4.37. Then,

y ___5KQJ|5KQ
LOAD ™ 7 KQ +5 KQ || 5 KQ

x12 = 316 V

Here, we observe that the load R gap “loads down” the load voltage from 5V to 3.16 V
and this voltage may not be sufficient for proper operation of the load.
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Vin

12V
() 5 KQ % RLOAD§ 5 KQ
-+

Figure 4.37. Circuit for Example 4.10 with the load reconnected

c. With the insertion of the buffer amplifier between points a@ and b and the load, the circuit now
is as shown in Figure 4.38.

V

NN X
7KQ Ta

12V R oap

() skegdV 5 KQ

T 1

b

Figure 4.38. Circuit for Example 4.10 with the insertion of a buffer op amp

Vioap = Vap =5V

WA

From the circuit of Figure 4.38, we observe that the voltage across the load is 5 V as desired.

|
Example 4.11

The op amp circuit shown in Figure 4.39 is called summing circuit or summer because the output is
the summation of the weighted inputs.

Rinl Rin2 /

Figure 4.39. Two—input summing op amp circuit
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Prove that for this circuit,
V. V.
Vout = _Rf( R LZJ (4.14)
in2
Proof:

We recall that the voltage across the () and (+) terminals is zero. We also observe that the (+)
input is grounded, and thus the voltage at the (=) terminal is at “virtual ground”. Then, by appli-
cation of KCL at the (-) terminal, we obtain

and solving for v, ; we obtain (4.14). Alternately, we can apply the principle of superposition to

derive this relation.
|
Example 4.12

Compute the output voltage v, . for the amplifier circuit shown in Figure 4.40.

out

Ri "1 mMQ
Rin1
M\ \
10 KQ
° ;b////,
Vini Rin3
©) Rinng20 k@ $30KQ o
— out
1 mV Ving Vins ok
4 mV 10 mV
' s
Figure 4.40. Circuit for Example 4.12
Solution:
Letv,,; be the output due to v;,, acting alone, v, be the output due to v, , acting alone,

and v, ;3 be the output due to v;, acting alone. Then by superposition,

+Vourp TV

out outs

Vout = Vouts

First, with v;,,; acting alone and v;,, and v;,, shorted, the circuit becomes as shown in Figure

4.41.
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\'

1 mV

inl

R
Rinl f 1MQ
AV \
10 KQ
L
in2 in3 VO(ljt-]'?
20 KQ §3o KQ utL

Figure 4.41. Circuit for Example 4.12 with v;,; acting alone

We recognize this as an inverting amplifier whose voltage gain G, is

and thus

Vout1

G, = 1 MQ/10 KQ = 100

= (100)(-1 mV) = —100 mV (4.15)

Next, with v;,, acting alone and v,,, and v;,, shorted, the circuit becomes as shown in Figure

4.42.

=AW
R. £ 1 MQ
Inl
AN >
10 KQ
2
RinaS 20 KQ §3o KQ ST
out2
Vin2 '
4 mV

Figure 4.42. Circuit for Example 4.12 with v;,, acting alone

The circuit of Figure 4.42 as a non-inverting op amp whose voltage gain G,, is

G, =1+1MQ/10 KQ = 101

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Fig-

ure 4.43.
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Tov
+ +)
Rin3
Ring §2o KQ §30 KQ
Vin2
®

4 mV _

4

Figure 4.43. Voltage divider circuit for the computation of V(4 with Vi, acting alone

Then,
R.
in3 30 KQ
V,, = ——— XV, , = ———X4mV = 24 mV
*) Rino + Rins In2 = 50 KQ
and thus

V. . = 101x24 mV = 242.4 mV (4.16)
out2

Finally, with v;., acting alone and v;,, and v;, shorted, the circuit becomes as shown in Fig-

ure 4.44.

= NN
- f 1 MQ
Inl
AN \
10 KQ
s
Rins
Rin2§20 KQ 30 KQ S+
Vouts
Vins ¢
10 mV

=
Figure 4.44. Circuit for Example 4.12 with ;5 acting alone
The circuit of Figure 4.44 is also a non-inverting op amp whose voltage gain G,, is
G, =1+1MQ/10 KQ = 101

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Fig-

ure 4.45.
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Tov
+ (+)
Rin3
R|n2§ 20 KQ 30 KQ
Vin3
10 mV
=

Figure 4.45. Voltage divider circuit for the computation of Vs with V; 5 acting alone

Then,

Rino 20 KQ
R __+R.. Vin2 = 50KQ
In2 In3

Vigy = x10 mV = 4 mV

and thus
Vouts = 101 x4 mV = 404 mV 4.17)

Therefore, from (4.15), (4.16) and (4.17),

Vout = Vouts + Vouts + Vouts = — 100 + 242.4 + 404 = 546.4 mV

out outl out3

|
Example 4.13
For the circuit shown in Figure 4.46, derive an expression for the voltage gain G,, in terms of the

external resistors Ry, R,, Ry, and R;.

A /
® R2 :r, Vou

Q —

Figure 4.46. Circuit for Example 4.13
Solution:

We apply KCL at nodes v; and v, as shown in Figure 4.47.
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\Y

@,

MW\
R Ry
1 Vq
AW \
AN—p—2 /
RZ

o+
out

_ $r,
n

Figure 4.47. Application of KCL for the circuit of Example 4.13

Atnode v, :
V1_Vin+vl Vout _ 0
R, R,
or
(L s )vl _ Vin_ Yout
R, R; R, R
or
Ry + Rf _ Rf Vin * R1Vout
RRf )t R,R¢
or
Revi, + Ryv
v, = t¥in* RaVou (4.18)
Ry +R¢
Atnode v,:
VaoVin V2 _ g
R, Rs
or
R,v,
v, = —8¥in (4.19)
R, + Ry
and since v, = v;, we rewrite (4.19) as
Rjv,
v, = —1L (4.20)
R, + Ry
Equating the right sides of (4.18) and (4.20) we obtain
Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling ~ 4-27

Copyright © Orchard Publications



Chapter 4 Introduction to Operational Amplifiers

Rf Vip + R1Vout - R3Vin
Ry +R¢ R, + Ry

or

Rev: + R,V =M(R +Ry)
fVin 1Yout R2+R3 1 f

Dividing both sides of the above relation by R,v;, and rearranging, we obtain

Vour  Re(Ri+Rp) Ry
Vi, Ry(R,+R3) Ry
and after simplification
6, = You _ RiRs=RaRy
Vin Ri(Ry, +Rj3)

4.9 Input and Output Resistance

The input and output resistances are very important parameters in amplifier circuits.

(4.21)

The input resistance R;, of a circuit is defined as the ratio of the applied voltage vg to the current

is drawn by the circuit, that is,

V
_ Vs
Rin_i
S

(4.22)

Therefore, in an op amp circuit the input resistance provides a measure of the current ig which

the amplifier draws from the voltage source vg. Of course, we want ig to be as small as possible;

accordingly, we must make the input resistance R;, as high as possible.

Example 4.14

Compute the input resistance R;, of the inverting op amp amplifier shown in Figure 4.48 in

terms of R; and Ry.
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MN
R, Ry
+ AN =
< +
- L volur

;_
Figure 4.48. Circuit for Example 4.14
Solution:

By definition,
Vs
s
and since no current flows into the minus (-) terminal of the op amp and this terminal is at vir-
tual ground, it follows that

ig = é—sl (4.24)
From (4.23) and (4.24) we observe that
R, = R, (4.25)

It is therefore, desirable to make R; as high as possible. However, if we make R, very high such
as 10 MQ, for a large gain, say 100, the value of the feedback resistor R¢ should be 1 GQ. Obvi-
ously, this is an impractical value. Fortunately, a large gain can be achieved with the circuit of
Problem 8 at the end of this chapter.

|

Example 4.15

Compute the input resistance R.

in of the op amp shown in Figure 4.49.

= VW
f 100 KQ

in —0 +
+ Vout

L B s

Figure 4.49. Circuit for Example 4.15

+
\%
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Solution:

In the circuit of Figure 4.49, v, is the voltage at the minus (=) terminal; not the source voltage
vg. Therefore, there is no current ig drawn by the op amp. In this case, we apply a test (hypo-

thetical) current iy as shown in Figure 4.49, and we treat v, as the source voltage.

R NN
V: f 100 KQ

e ) +
+ Vout

Naun 9"

Figure 4.50. Circuit for Example 4.15 with a test current source

We observe that v;, is zero (virtual ground). Therefore,

By definition, the output resistance R, is the ratio of the open circuit voltage to the short circuit cur-

rent, that is,

R. . = Joc (4.26)

The output resistance R, is not the same as the load resistance. The output resistance provides

a measure of the change in output voltage when a load which is connected at the output termi-
nals draws current from the circuit. It is desirable to have an op amp with very low output resis-
tance as illustrated by the following example.

|
Example 4.16

The output voltage of an op amp decreases by 10% when a 5 KQ load is connected at the out-
put terminals. Compute the output resistance R ;.

Solution:

Consider the output portion of the op amp shown in Figure 4.51.
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out
+

_______ Vout

9-

Figure 4.51. Partial circuit for Example 4.16
With no load connected at the output terminals,

Vout = Voc = GyVin (4.27)

With a load R gap connected at the output terminals, the load voltage v, gap is

VioaDp = #RAIZAD XVout (4.28)
and from (4.27) and (4.28)
Vioap = ﬁ X Gy Vi, (4.29)
Therefore,
Yioab _ gg - _SKQ
Voo Ry +5 KQ
and solving for R, we obtain
Ry, = 555 Q

We observe from (4.29) that as R, — 0, relation (4.29) reduces to v, gap = G,V;, and by

comparison with (4.27), we see that V| gap = Voc
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4.10 Summary

e A signal is any waveform representing a fluctuating electric quantity, such as voltage, current,
electric or magnetic field strength, sound, image, or any message transmitted or received in
telegraphy, telephony, radio, television, or radar. al that changes with time.

e An amplifier is an electronic circuit which increases the magnitude of the input signal.
e The gain of an amplifier is the ratio of the output to the input. It is normally expressed in deci-

bel (dB) units where by definition dB = 10log IPout’ Pin|

¢ Frequency response is the band of frequencies over which the output remains fairly constant.

e The lower and upper cutoff frequencies are those where the output is 0.707 of its maximum
value. They are also known as half—power points.

e Most amplifiers are used with feedback where the output, or portion of it, is fed back to the
input.

e The operational amplifier (op amp) is the most versatile amplifier and its main features are:
1. Very high input impedance (resistance)
2. Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of exter-
nal resistors of appropriate values
4. Frequency response from DC to frequencies in the MHz range

5. Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper
selection of passive devices such as resistors, capacitors, diodes, and so on.

e The gain of an inverting op amp is the ratio —R¢/R;, where R; is the feedback resistor which
allows portion of the output to be fed back to the minus (=) input. The minus (-) sign implies
that the output signal has opposite polarity from that of the input signal.

e The gain of an non-inverting op amp is 1+ R¢/R;, where R¢ is the feedback resistor which

allows portion of the output to be fed back to the minus (=) input which is grounded through
the R;, resistor. The output signal has the same polarity from that of the input signal.

e In a unity gain op amp the output is the same as the input. A unity gain op amp is used to pro-
vide a very high resistance between a voltage source and the load connected to it.

e Op amps are also used as active filters.
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e A low—pass filter transmits (passes) all frequencies below a critical (cutoff) frequency denoted
as o and attenuates (blocks) all frequencies above this cutoff frequency.

o A high—pass filter transmits (passes) all frequencies above a critical (cutoff) frequency o, and
attenuates (blocks) all frequencies below the cutoff frequency.

e A band—pass filter transmits (passes) the band (range) of frequencies between the critical (cut-
off) frequencies denoted as ®, and w,, where the maximum value of G,, which is unity, falls

to 0.707 x G,,, while it attenuates (blocks) all frequencies outside this band.

e A band-elimination or band-stop or band-rejection filter attenuates (rejects) the band
(range) of frequencies between the critical (cutoff) frequencies denoted as w; and ®,, where

the maximum value of G,, which is unity, falls to 0.707 x G,,, while it transmits (passes) all fre-

quencies outside this band.
e A summing op amp is a circuit with two or more inputs.

e The input resistance is the ratio of the applied voltage vg to the current ig drawn by the cir-

cuit, that is, R;,, = vg/ig

e The output resistance (not to be confused with the load resistance) is the ratio of the open cir-
cuit voltage when the load is removed from the circuit, to the short circuit current which is
the current that flows through a short circuit connected at the output terminals, that is,
R, = Voc/lsc
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4.11 Exercises

Multiple Choice

1. In the op amp circuit below v;, = 2V, R;, = 1 KQ, and it is desired to have v, = 8 V.
This will be obtained if the feedback resistor R¢ has a value of

A. 1 KQ
B. 2 KQ
C. 3KQ
D. 4 KQ

E. none of the above

+
¥ ~ Vout
Vin

2. In the circuit below v;, = 6 V, R;, = 2 KQ, and Ry = 3 KQ. Then v, will be
A. 9V

9V

-4V

4V

Mg 0w

none of the above
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3. In the circuit below i = 2 mA and R; = 5 KQ. Then v, will be

A.
B.

C
D.
E

o V
oV

.10V

-10V

. none of the above

Is

—o0
+

4. In the circuit below ig = 4 mA and R = 3 KQ. Then v, will be

A.

SIECRNS

oo V

ov
indeterminate
-12V

none of the above
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5. In the circuit below v;, = 4V, R;, = 12 KQ, R; = 18 KQ, and R, gap = 6 KQ. Then i
will be

A.

m g 0O W

-1 mA

1 mA
-4/3 mA
4/3 mA

none of the above

NN
Rin R¢
+ —AM—e— i
Vin — -
-0 +
L Rioap S Vout

6. In the circuit below v;, = 1 V and all resistors have the same value. Then v, will be

A.

m g 0w

2V
2V
4V
4V

none of the above
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=4V, and R;, = Ry = 1 KQ. Then v, will be

7. In the circuit below v;, =2V, v;,
1 2

A. -2V
2V
-8V

8V

SENCINONN-C

none of the above

_i+v.
;2 ==

8. In the circuit below v;, = 30 mV. Then v, will be

A. -5 mV
B. =10 mV
C. =15 mV
D. -90 mV
E. none of the above
10 KQ
NN
20 KQ

—o0 +

_: 10 KQ § £ 41C;_U_t
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9. For the circuit below the input resistance R;,, is

A.

B.
C.

D.

1 KQ
2 KQ
4 KQ
8 KQ

none of the above

4 KQ

MN
+o——AW >
Vin —Rj,
_ + 2 KQ[+
€

—A—
2 KQ —
1 Kgi
10. For the circuit below the current i is
A. 40 A
B. 40 A
C. -400 A
D. 400 A
E. none of the above
el
(D 5 QS Vx 10 Q§
2A - 40V,
= i
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Problems

1. For the circuit below compute v Answer: -0.9 V

out2*

90 KQ
27 KQ

+
Vout2
2. For the circuit below compute gy . Answer: 4uA
>
MAN—¢ —it .
Iska
(D skeZ ke sKeZ
60 mV

- L

3. For the circuit below R, ., R;,, and R; . represent the internal resistances of the input volt-

ages Vi1, Vi, and v; . respectively. Derive an expression for v, in terms of the input

voltage sources and their internal resistances, and the feedback resistance R;.

MN
R. Ry

inl

e
.~

) Rinz Ring ot
— Vout
Vlnl o —
Vin2 Vin3
' L

Ving _ Vin2 Vinl)

Rin3 Rin2 R;

Answer: vV, = Rf(
inl
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4. For the circuit below compute v, .. Answer: —40 mV

out*

40 mV '

AM— N
+ (@]
C—) % 40 KQ Vout
=

5. The op amp circuit (a) below can be represented by its equivalent circuit (b). For the circuit
(c), compute the value of R, so that it will receive maximum power. Answer: 3.75 KQ

6. For the circuit below compute V¢, o using Thevenin’s theorem. Answer: 20 mV
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7. For the circuit below compute the gain G,, = v, /V;,. Answer: —(2/37)

out

8. For the circuit below, show that the gain is given by

\Y R
G, = -2t - —i[R4+R2(—4+1ﬂ
Vin Ry Rs
W
R,
Rl —
+ NN ® _
Vin —0+
- + Vout

il i

9. Create a Simulink / SimPowerSystems model for the equivalent circuit of the inverting op
amp shown below.
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Vi:@ o

Vi, = 1V peak f=02Hz Phase = 0 deg

R, = LKQ R; =10 KQ
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4.12 Answers / Solutions to End-of-Chapter Exercises
Multiple Choice

1. CFor v;, = 2 and v, = 8, the gain mustbe G, = 4 or 1 +R¢/R;, = 4 and R; = 3 KQ

out =

3. D All current flows through R; and the voltage drop across it is —(2 mA x5 KQ) = -10 V

4. E All current flows through R and the voltage drop across itis 4 mMAx 3 KQ = 12 V. Since

this circuit is a unity gain amplifier, it follows that v, = 12 V also.

5.C Vg, = —(18/12) x4 = —6 V. Therefore, i, gap = Vou/RLoap = —6 V/6 KQ = 1 mA.
Applying KCL at the plus (+) terminal of v, ,; we obtain
_ 6V, _-6V-4V _ , 1_ 4 _,
6 KQ 18 KQ + 12 KQ 3 3
6. D The gain of each of the non—inverting op amps is 2. Thus, the output of the first op amp is

2 V and the output of the second is 4 V.

N ]

. E By superposition, v, due to vj, acting aloneis -2 V and v

-2+8=6V

out;

is 8 V. Therefore, v

out,

out =

due to v;, acting alone
2

8. B We assign node voltage v, as shown below and we replace the encircled part by its equiv-

alent.
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Application of KCL at Node A yields

VA—30+\/_A+VA—(—2VA) _
10 5 10

and thus
Va = 30/6 = 5mV

Therefore,

v -2V, = =10 mV

out —

0

NOTE: For this circuit, the magnitude of the voltage is less than the magnitude of the
input voltage. Therefore, this circuit is an attenuator, not an amplifier. Op amps
are not configured for attenuation. This circuit is presented just for instructional
purposes. A better and simpler attenuator is a voltage divider circuit.

9. C The voltage gain for this circuit is 4 KQ/4 KQ = 1 and thus v,,; = -v;,. The voltage v
at the minus (-) input of the op amp is zero as proved below.
4 KQ
AWV
4 KQ
+ A~
Vin : R.
— in__ |4+ 2 KQ+
— Vout
— W\ — -
2 KQ —
1 Kgi
V-V, V—=(-Vi) _ 0
4 4
or
v=20
Then,
i = _Vin_
4 KQ
and
Vin
R, = —I' — = 4KQ
Vin/4 KQ
10. A For this circuit, vy = -10 V and thus 40vy = -400 V. Then, i = -400/10 = —40 A
Problems
1.

Vour = —(27/3)x10 = -90 mV
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and thus
Vinzg = Voun = 90 mV
Then,
%m2=(1+%g)x090)=_a9v

2. We assignR| gap, Vq,and V| gap as shown below.

4 KQ \

MN +

+ iSKSi +
VoAl
(® ke skagv, SKe3!

60 mV

Re

3KQI6 KQ =2 KQ
and by the voltage division expression

2 KQ

Vi = TKa+2KQ

x60 mV = 20 mV

and since this is a unity gain amplifier, we obtain

Then, 5
_Vioap _ 20mV _ 20x 10"

- —6
Rioap 5 KQ 5% 10°

3. By superposition

Vout = Voutr + Vout2 + Vouts
where
Ry
v = ——v,
outl inl
Ving = 0 Rin1

Ving = 0

We observe that the minus (=) is a virtual ground and thus there is no current flow in R;,;
and R;,, . Also,

and
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Vout3

f
v =0 Ring(—Vins)
Then,

Ving = 0

Rin3 Rin2 R
4. We assign voltages v_ and v, as shown below.

V: V: V:
_ in3 in2 inl
Vout - Rf( - )

inl

A
50 KQ

10 KQ Y,

AN \

20KQ v, /

MWV
&
40 KQ out
40 mV
=

At the minus (-) terminal

v_-40mV v_-vy,
10 KQ
or

+ =0
50 KQ

6 1
v

-6
— \Y; = 4x10
50x10° ~ 50x10%

At the plus (+) terminal

v+—40mV+ v, _ 0
20 KQ 40 KQ
or 3
v, = 2x10°
3
40 x 10
or

_ 80x107°
Vo= T

Since v, = V_ we equate the nodal equations and we obtain

-3
6 3(80><10 )_ 1 SVOM=4X10_6
50 x 10 3 50 x 10

Multiplication by 50 x 10® yields
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-3 3
2x80x10 x0xI0 _y | = 4x10°x50x 10°
50 x 10

or
% -40 mV

out =

Check using MATLAB:

R1=10000; R2=20000; R3=40000; Rf=50000; Vin=40*10"(-3);
Vout=(R1*R3-R2*R)*Vin/(R1*(R2+R3))

Vout =
-0.0400

5. We attach the 5 KQ, 15 KQ, and R 5ap resistors to the equivalent circuit as shown below.

a
MN—¢
5KQ
(f) 2 KQ§ 15 KQ 3/
Vin 10v;,
b
+ .
By Thevenin’s theorem
15 KQ
VTH = Voo = Vab = 5o 1 15 k'O Vin)

or

Because the circuit contains a dependent source, we must compute the Thevenin resistance
using the relation Ry = vyy/igc where igc is found from the circuit below.

a
MN—2¢
5 KQ
- I
<'_> 15 KQ sc
10vin X

We observe that the short circuit shorts out the 15 KQ and thus

-10v;,

. -3
lcr = = -2x10 “v;
SC 5 KQ In

Then,
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Ryy = ——i— = 3.75 KQ
and the Thevenin equivalent circuit is shown below.

3.75 KQ

£ Riono

Therefore, for maximum power transfer we must have R gpop = Ryy = 3.75 KQ

6. This is a non—inverting op amp whose equivalent circuit is shown below.

R
O (oo v
— R. In- Yout
Vin in 0
=

For this circuit v;, = Vg and the value of the VCVS is

R

f 100

(1+R__JV5KQ = (1"’ 20 )VSKQ = 6Vsio
In

Attaching the external resistors to the equivalent circuit above we obtain the circuit below.

84 KQ

12 KQ 4KQ 4

5 KQ VSKQ <>
6Vsio
72 mV b

To find the Thevenin equivalent at points a and b we disconnect the 5 KQ resistor. When

this is done there is no current in the 4 KQ and the circuit simplifies to the one shown below.
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12 KQ , 84 KQ

6Vska

By KVL .
(12 KQ + 84 KQ)i +6Ve, = 72 mV
or
L _ _72mV -6y
T (12 KQ + 84 KQ)
Also,

72 mV - 6V5KQ)

72mV-9mV+ %Vsm

or

3
Vska = zVske = 63 MV

and thus
The Thevenin resistance is found from Rty = vgc/igc where igc is computed with the ter-
minals a and b shorted making vz, = 0 and the circuit is as shown on the left below. We

also perform voltage—source to current—source transformation and we obtain the circuit on
the right below.

12 KQ
MA— * *
4 KQ
4 KQ 84 KQ§ e Q) §
. Ja . Ya
72 my Iscl_b 6 nA _ ischb
Now,

12 KQ 84 KQ = 10.5 KQ
and by the current division expression

o 105 KQ 126
'sc =l = o5 ka+4 KRG <O HA T g HA

Therefore,
_ Yoc _ _252

Ry = = = 58 KQ
™7 ige T 126/29
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and the Thevenin equivalent circuit with the 5 KQ resistor is shown below.

Finally,

Veko = ggi—gxzsz = 20 mV

7. We assign node voltages v, and v, as shown below and we write node equations observing

that v, = 0 (virtual ground).

Node 1:
Vl_vin+V1_V0ut v,i-0 S T
200 KQ 40 KQ 50 KQ 50 KQ

or

\'F Vv
( 1 N 1 N 1 + 1 )Vl _ in____Vout
200 KQ 40 KQ 50 KQ 50 KQ 200 KQ 40 KQ

1
Vy = E(Vin+5vout)
Node 2:
0-v, +0—vout _
50 KQ 40 KQ
or 5
Vy = _Zvout

Equating the right sides we obtain
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1 5
1_4(Vin +9Voy) = _Zvout

or
37 1

2_8V0ut = _1_4Vin
Simplifying and dividing both sides by v;, we obtain

= Yout _ _2
Voo 37

8. We assign node voltages v, and v, as shown below and we write node equations observing

that v; = 0 (virtual ground).

\Z
Wy
Ry *
R,
Rl —
t/in W vy B —o +
- + Vout
Node 1:
0-v;;, 0-v, _ 0
R, R, -
or R
2
Vp = _R_lvm
Node 2:
VZ_O 2 VZ_Vout=0
R, Rs R,
or
\Y)
(Lo1,2)y, = Vou
R, R; R, R,
or

V2 = R,/Ry+R,/Ry+ 1 out

Equating the right sides we obtain
1 R,

R,/R, +R,/Ry+1 o4t = TR, 'in

Simplifying and dividing both sides by v;, we obtain
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Y R
G, = -2t - —i[R4+R2(—4+1ﬂ
Vv R

Ry

Vi;@ o

Vi, = 1V peak f=02Hz Phase = 0deg R;, = 1KQ R;=10KQ

VM = Voltage Measurement Vin

>
Vin = 1 volt peak, frequency 0.2 Hz
P ! y Vout |:|
l I v Scope
CVS F v Bus _
_ Creator Continuous
I VM 2
1 -
— powergui
-+ -

CVS=Controlled Voltage Source

L |-RfiRin — X

. VM 1
Vin Rin Product
]
L

Constant Rin=1 K, Rf=10 K, entered at the MATLAB command prompt

ruScope - l@ﬂf
EEPRL ABE BES -

Time offzet: 0O
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Chapter 5

Inductance and Capacitance

tionships, power absorbed, and energy stored in inductors and capacitors. Procedures for

T his chapter is an introduction to inductance and capacitance, their voltage—current rela-
analyzing circuits with inductors and capacitors are presented along with several examples.

5.1 Energy Storage Devices

In the first four chapters we considered resistive circuits only, that is, circuits with resistors and
constant voltage and current sources. However, resistance is not the only property that an elec-
tric circuit possesses; in every circuit there are two other properties present and these are the
inductance and the capacitance. We will see through some examples that will be presented later
in this chapter, that inductance and capacitance have an effect on an electric circuit as long as
there are changes in the voltages and currents in the circuit.

The effects of the inductance and capacitance properties can best be stated in simple differential
equations since they involve the changes in voltage or current with time. We will study induc-
tance first.

5.2 Inductance

Inductance is associated with the magnetic field which is always present when there is an electric
current. Thus, when current flows in an electric circuit the conductors (wires) connecting the
devices in the circuit are surrounded by a magnetic field. Figure 5.1 shows a simple loop of wire
and its magnetic field represented by the small loops.

Figure 5.1. Magnetic field around a loop of wire

The direction of the magnetic field (not shown) can be determined by the left—hand rule if con-
ventional current flow is assumed, or by the right-hand rule if electron current flow is assumed.
The magnetic field loops are circular in form and are referred to as lines of magnetic flux. The unit
of magnetic flux is the weber (Wb).
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In a loosely wound coil of wire such as the one shown in Figure 5.2, the current through the
wound coil produces a denser magnetic field and many of the magnetic lines link the coil several
times.

Figure 5.2. Magnetic field around several loops of wire

The magnetic flux is denoted as ¢ and, if there are N turns and we assume that the flux ¢ passes
through each turn, the total flux, denoted as A, is called flux linkage. Then,

A = No (5.1)

Now, we define a linear inductor one in which the flux linkage is proportional to the current
through it, that is,

L = Li (5.2)
where the constant of proportionality L is called inductance in webers per ampere.

We also recall Faraday’s law of electromagnetic induction which states that

dx
= =£ 53
v it (5.3)
and from (5.2) and (5.3),
di
V = Ldt 5.4)

Alternately, the inductance L is defined as the constant which relates the voltage across and the
current through a device called inductor by the relation of (5.4).

The symbol and the voltage—current* designations for the inductor are shown in Figure 5.3.

2500

VL
1, L

Figure 5.3. Symbol for inductor

* In the first four chapters we have used the subscript LOAD to denote a voltage across a load, a current through a load,

and the resistance of a such load as R gap to avoid confusion with the subscript L which henceforth will denote induc-
tance. We will continue using the subscript LOAD for any load connected to a circuit.

5-2 Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling
Copyright © Orchard Publications



Inductance

For an inductor, the voltage—current relationship is

di,
Vo =Ly (5.5)

where V| and i, have the indicated polarity and direction. Obviously, v, has a non-zero value

only when i, changes with time.

The unit of inductance is the Henry abbreviated as H. Since

L = VL _ _volts (5.6)
di, ~ amperes

It seconds

we can say that one henry is the inductance in a circuit in which a voltage of one volt is induced
by a current changing at the rate of one ampere per second.

By separation of the variables we rewrite (5.5) as

1
dip = Tv.dt (5.7)

and integrating both sides we obtain:

or ¢
. . 1
0

or

t

1
i(t) = [J v dt+i (ty) (5.8)
t

where i, (t;), more often denoted as i, (0), is the current flowing through the inductor at some

reference time usually taken as t = 0, and it is referred to as the initial condition.

We can also express (5.8) as
i L'y at = 27 v dts 2 v o 5.9

where the first integral on the right side represents the initial condition.
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Example 5.1

The current i, (t) passing through a 50 mH inductor is shown in Figure 5.4.

a. Compute the flux linkage A att = 2,5,9,and 11 ms

b. Compute and sketch the voltage v, (t) for the time interval — <t <14 ms

i (t)

25

(mA)

20T

f t (ms)

Figure 5.4. Waveform for Example 5.1
Solution:

a. The flux linkage A is directly proportional to the current; then from (5.1) and (5.2)
A = N¢ = Li

Therefore, we need to compute the current i at t=2ms, t=5ms, t = 9ms, and
t =11 ms

For time interval 0<t<3 ms, i = mt+b where m is the slope of the straight line segment,
and b is the i —axis intercept which, by inspection, is 25 mA . The slope m is
-20-25
m==220-2_ 5
3-0
and thus

ils" = ~15t+25 (5.10)

Att = 2 ms, (5.10) yields i = -5 mA. Then, the flux linkage is

A= Li=50x10°x(-5)x10"°

d
an | — _250 uWh (5.11)

t=2ms
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For the time interval 3<t<6 ms, i = mt+b where
o _15-(=20) _ 35
3-0 3
and thus 35
i = gt +b
To find b we use the fact thatatt = 3 ms, i = —20 mA as seen in Figure 5.4. Then,
-20 = 33—5 x3+b

from which b = -55.

Thus, the straight line equation for the time interval 3<t<6 ms is

. 6 ms 35
P75 e = 255 (5.12)
and therefore at t = 5 ms, i = 10/3 mA, and the flux linkage is
A=Li= 50><10*3><13—0><10*3
" A _ 200 wh 5.13
|t:5 ms — 3 u ( : )
Using the same procedure we find that
..8 ms
P = -125t+90 (5.14)
Also,
.10 ms
i[1" = 7.5t-70 (5.15)
and with (5.15), )
My_ g me = Li = —125 pWb (5.16)
Likewise, zms oo o S 17
I|t=10ms__' + (.17)
and with (5.17), .
My_ g me = Li = 125 uWh (5.18)
b. Since di
I
vV = LE

to compute and sketch the voltage v, (t) for the time interval —~ <t <14 ms, we only need

to differentiate, that is, compute the slope of the straight line segments for this interval.

These were found in part (a) as (5.10), (5.12), (5.14), (5.15), and (5.17). Then,
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Chapter 5 Inductance and Capacitance

slope|_ =0

o <t<0

Vi | = Lxslope =0

—o<t<0

slope|y_,_3 s = ~15 MA/ms = 15 A/s

3V
Vi g icams = L xslope = 50 x 10 A/S><(—15 A/s) = =750 mV
slopel; _, ¢ ms = 359/3 MA/ms = 35/3 A/s
v = Lxslope = 50 x 10~ x(35/3) = 583.3 mV
3<t<6 ms
slopef, _,_gms = ~125 MA/ms = -12.5 A/s
v = Lxslope = 50 x 107 x (~12.5) = —625 mV
6<t<8 ms

slope|8<t<10 ms = (D MA/ms = 75 A/s

= Lxslope = 50x10™° x7.5 = 375 mV

v
L’8<t<10 ms

slope|;y_y.1oms = 25 MA/mMs = -25 A/s

v, = Lxslope = 50 x107° x (=2.5) = —125 mV
10<t<12 ms

5|0pe|12<t<14 ms = 0

Vi = Lxslope =0
12<t<14 ms

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

We now have all values given by (5.19) through (5.25) to sketch v, as a function of time. We

can do this easily with a spreadsheet such as Excel as shown in Figure 5.5.
|

Example 5.2

The voltage across a 50 mH inductor is as shown on the waveform of Figure 5.6, and it is given
that the initial condition is i (ty) = i, (0) = 25 mA. Compute and sketch the current which

flows through this inductor in the interval -5 <t<5 ms
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v (D)

0.625
0.500+
0.3757
0.250+
0.1257

V)

1.75/3

—0.1251
—0.2507
—0.3757
—0.5001
—0.625]

4
— : : : —+——> t (ms)

—0.750

v (D)

0.625
0.500+
0.3757
0.250+
0.1257

Figure 5.5. Voltage waveform for Example 5.1

V)
i 1_/

1.75/3

—0.1251
—0.2504
—0.3757
—0.5001
—0.625]

—0.750

Solution:

— : : | —+——> { (ms)

Figure 5.6. Waveform for Example 5.2

The current i (t) in an inductor is related to the voltage v, (t) by (5.8) which is repeated here

for convenience.

: 10t :
i (1) = ﬂt v dt+i (ty)
0

where i (t;) = i (0) = 25 mA is the initial condition, that is,

i | = 25 mA

—co<t<
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Chapter 5 Inductance and Capacitance

From the given waveform,
v = 075V
o<t<3 ms

Then,
1 3m

s

. -3
= —— —0.75)dt + 25 x 10

II“0<t<3 ms 50><10_3'[O ( Jdt+25x

3
20(_0.75t|§ <10 ) +25%107° = 20(-2.25x 10™%) + 20 x 0 + 25 x 10°°

—45%x 1034+ 25x10° = -20x 1072 = —20 mA

that is, the current has dropped linearly from 25 mA att = 0 to —20 mA at t = 3 ms as shown
in Figure 5.7.
iL(t) 1 mA)
25

207
151

11—+ f t (ms)

Figure 5.7. Inductor current for 0 <t <3 ms, Example 5.2

The same result can be obtained by graphical integration. Thus,

: 1 3ms, ... .
IL"[ Cams s I_(Area|t _ 0) + initial condition
= 20(-0.750 x 3x 10 ) + 25 x 10> = 20 mA
and the value of i,_‘t o, = ~20 MA now becomes our initial condition for the time interval

3<t<b ms.
Continuing with graphical integration, we obtain

1 6ms, . ... .
E(Area|t=3)+ initial condition

iL‘t:Gms

20(%5 X 3% 10‘3) —20%x 107 = 15 mA
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and now the current has increased linearly from —20 mA att = 3 ms to 15 mA att = 6 ms as
shown in Figure 5.8.

i (t)
25

(mA)

201
151

F——+—+—+—+—+——> t (ms)

Figure 5.8. Inductor current for 0 <t <6 ms, Example 5.2

For the time interval 6 <t<8 ms, we obtain

. 1 8ms. . ... .
i =(Area +initial condition
I‘|t=8 ms L( |t=5)

20(-0.625x 2x 107°) + 15x 10 = 10 mA

Therefore, the current has decreased linearly from 15 mA att = 6 ms to -10 mA att = 8 ms
as shown in Figure 5.9.

25

201

Figure 5.9. Inductor current for 0 <t <8 ms, Example 5.2

For the time interval 8 ms <t < 10 ms we obtain

Circuit Analysis I with MATLAB® Computing and Simulink / SimPowerSystems® Modeling 59
Copyright © Orchard Publications



Chapter 5 Inductance and Capacitance

%(Areahﬂirgs) + initial condition

20(0.375x 2x 10 )-10 x 10> = 5 mA

that is, the current has increased linearly from —10 mA att = 8 ms to 5 mA att = 10 ms as
shown in Figure 5.10.

iL(t) (mA)
25

201
151

t (ms)

Figure 5.10. Inductor current for 0 <t< 10 ms, Example 5.2

Finally, for the time interval 10 ms <t< 12 ms we obtain

. 1 12 ms e .. .
i =(Area + initial condition
I“t=12 ms L( |t=10)

20(-0.125x2x10°) +5x 10 ° =0

that is, the current has decreased linearly from 5 mA att = 10 ms to 0 mA att = 12 ms and
remains at zero for t > 12 ms as shown in Figure 5.11.

Example 5.2 confirms the well known fact that the current through an inductor cannot change
imstantaneously. This can be observed from the voltage and current waveforms for this and the
previous example. We observe that the voltage across the inductor can change instantaneously as
shown by the discontinuities at t = 0, 3, 6, 8, 10, and 12 ms. However, the current through the
inductor never changes instantaneously, that is, it displays no discontinuities since its value is
explicitly defined at all instances of time.
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i, (1) 5 (mA)

Figure 5.11. Inductor current for 0 <t <12 ms, Example 5.2
5.3 Power and Energy in an Inductor

Power in an inductor with inductance L is found from

(o di
p = iy = (Lt )ie = Lip 3 (5.26)

and the energy in an inductor, designated as W, is the integral of the power, that is,

dl,_ ity
I p dt = le(t) dt = LIi(tO)ILdIL
" 1 (®) 1 7.2 2
L‘ = —L|L :EL[lL(t)—iL(to)]
ty i(to)
or

W, ()~ W, (t) = SLIIE O (t)]

and letting i, = 0 att = 0, we obtain the energy stored in an inductor as

W (1) = LI L(D) (5.27)

Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring.

Electric circuits which contain inductors can be simplified if the applied voltage and current
sources are constant as shown by the following example.
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Chapter 5 Inductance and Capacitance

Example 5.3

For the circuit shown in Figure 5.12, compute v,, V,, and vj, after steady-state conditions have

been reached. Then, compute the power absorbed and the energy consumed by the 5 mH induc-
tor.

— A — T —
4Q 25mH 6Q 40mH
ANA— T A\ —
5Q 3Q
0 NS [ zeo
+ \
@ OB
24V 35 mH 15 A l 5 mH
+V1_ _
— T $ UK
0 % 20'mi
11D ANN—TT
60 mH 10 Q 15 mH

Figure 5.12. Circuit for Example 5.3

Solution:

Since both the voltage and the current sources are constant, the voltages and the currents in all
branches of the circuit will be constant after steady—state conditions have been reached.

Since
di,

R _
i Lm(constant) =0

vp =L

then, all voltages across the inductors will be zero and therefore we can replace all inductors by
short circuits. The given circuit then reduces to the one shown in Figure 5.13 where the 3 Q and
6 Q parallel resistors have been combined into a single 2 Q resistor.

Vo 5Q 20 v

AWV AMW—AN———

4Q T v, 7
GEREE: Vs 280
24V Vg — 15A. \£

Figure 5.13. Circuit for Example 5.3 after steady—state conditions have been reached

* By steady state conditions we mean the condition (state) where the voltages and currents, after some transient disturbances,
have subsided. Transients will be in Chapter 10.
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Now, in Figure 5.13, by inspection, v, = 0 since the 12 Q resistor was shorted out by the

60 mH inductor. To find v, and v,, let us first find v, and vg using nodal analysis.

At Node v,,
Va=24 Va Va~Ve _
4 9 5+2
or .
1.1 1
(+ledva-tvp =6 (5.28)
At Node vg
oA 154B 2
5+2 8
or
_%VA+(% . %)VB - 15 (5.29)
We will use the MATLAB script below to find the solution of (5.28) and (5.29).
formatrat % Express answers in rational form
G=[L/4+1/9+1/7 —1/7; -1/7 1/7+1/8]; 1=[6 15]; V=G\I;
disp('vA="); disp(V(1)); disp('vB="); disp(V(2))
VA=
360711
vB=
808711
Therefore,
Va = 360/11 V
vg = 808/11 V
Vg = v, = 808/11 V
and . .
PsmH = Vs mu X 15 my = 0Xlgppy = 0
that is,
Ps my = 0 watts
Also, , ,
12 1 Va2 3 (808/11
Wy iy = ZLi2 iy = ZL(S) = 05x5x107x( . )
or
W, oy = 0.211 )
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5.4 Combinations of Inductors in Series and in Parallel

Consider the circuits of figures 5.14 (a) and 5.14 (b) where the source voltage vg is the same for

both circuits. We wish to find an expression for the equivalent inductance which we denote as
Lseq in terms of Ly, Ly, ..., Ly in Figure 5.14 (a) so that the current i will be the same for both

circuits.

(b)

Figure 5.14. Circuits for derivation of equivalent inductance for inductors in series

From the circuit of Figure 5.14 (a),
di di di di
L1dt+L2dt+...+LN_1dt+Lth

or .

From the circuit of Figure 5.14 (b),

di

I-Seq a?_ = Vs

Equating the left sides of (5.30) and (5.31) we obtain:

Thus, inductors in series combine as resistors in series do.

:VS

(5.30)

(5.31)

(5.32)

Next, we will consider the circuits of Figures 5.15 (a) and 5.15 (b) where the source current ig is

the same for both circuits. We wish to find an expression for the equivalent inductance which we
denote as Lpgq in terms of Ly, Ly, ..., Ly in Figure 5.15 (a) so that the voltage v will be the same

for both circuits.

le— <>+

(a)

(b)

Figure 5.15. Circuits for derivation of equivalent inductance for inductors in parallel
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From the circuit of Figure 5.15 (a)

or
t t t t
1 1 1 1 .
I_1J‘_mvdt + Lz-[_det +..+ LN—l'[_det + LN‘[_oont = g
or ¢
(i+i+...+ 1 +i).[ vdt = ig (5.33)

From the circuit of Figure 5.15 (b)
1 ¢! :
vdt = i (5.34)
Lo va=is

Equating the left sides of (5.33) and (5.34) we obtain:

=—+—+...+L— (535)

and for the special case of two parallel inductors

L,L
152
Loy = ——— (5.36)
P4 L+ L,
Thus, inductors in parallel combine as resistors in parallel do.

Example 5.4

For the network of Figure 5.16, replace all inductors by a single equivalent inductor.

35mH 40 mH
o LHT0 SO0
—> Leg 125mH 60mHg 120 mH é
45 mH 30 mH
o —— TUU ™ B0
| 90 mH 15 mH
SO0

Figure 5.16. Network for Example 5.4
Solution:

Starting at the right end of the network and moving towards the left end, we find that
60 mH || 120 mH = 40 mH, 30 mH || 15 mH = 10 mH, 40 mH +35 mH = 75 mH, and also
45 mH || 90 mH = 30 mH. The network then reduces to that shown in Figure 5.17.
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75 mH
o o— TU0
—L 125 mH 40 mH

€q

— T
30 mH 10 mH
Figure 5.17. First step in combination of inductances

Finally, with reference to Figure 5.17, (40 mH + 35 mH + 10 mH) || 125 mH = 62.5 mH, and
Leq = 30 mH +62.5 mH = 92.5 mH as shown in Figure 5.18.

—> Lgg 92.5 mH

Figure 5.18. Network showing the equivalent inductance of Figure 5.16

5.5 Capacitance

In Section 5.2 we learned that inductance is associated with a magnetic field which is created
whenever there is current flow. Similarly, capacitance is associated with an electric field. In a sim-
ple circuit we can represent the entire capacitance with a device called capacitor, just as we con-
sidered the entire inductance to be concentrated in a single inductor. A capacitor consists of two

parallel metal plates separated by an air space or by a sheet of some type of insulating material
called the dielectric.

Now, let us consider the simple series circuit of Figure 5.19 where the device denoted as C, is the
standard symbol for a capacitor.

s S

C_f) | Cx

Vs

/1

Figure 5.19. Simple circuit to illustrate a charged capacitor

When the switch S closes in the circuit of Figure 5.19, the voltage source will force electrons
from its negative terminal through the conductor to the lower plate of the capacitor and it will
accumulate negative charge. At the same time, electrons which were present in the upper plate of
the capacitor will move towards the positive terminal of the voltage source. This action leaves the
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upper plate of the capacitor deficient in electrons and thus it becomes positively charged. There-
fore, an electric field has been established between the plates of the capacitor.

The distribution of the electric field set up in a capacitor is usually represented by lines of force
similar to the lines of force in a magnetic field. However, in an electric field the lines of force
start at the positive plate and terminate at the negative plate, whereas magnetic lines of force are
always complete loops.

Figure 5.20 shows the distribution of the electric field between the two plates of a capacitor.

Figure 5.20. Electric field between the plates of a capacitor

We observe that the electric field has an almost uniform density in the area directly between the
plates, but it decreases in density beyond the edges of the plates.

The charge q on the plates is directly proportional to the voltage between the plates and the
capacitance C is the constant of proportionality. Thus,

q=Cv (5.37)

and recalling that the current i is the rate of change of the charge g, we have the relation

dg _ d
= =Z2(C
at - a YV
or

e = Ce (5.38)

where ic and v in (5.38) obey the passive sign convention.

The unit of capacitance is the Farad abbreviated as F and since

c - Jc _ amperes (5.39)
v volts '
at seconds
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we can say that one farad is the capacitance in a circuit in which a current of one ampere flows
when the voltage is changing at the rate of a one volt per second.

By separation of the variables we rewrite (5.38) as

dv, = (—1: it (5.40)

and integrating both sides we obtain:
ve(t)

et
or

10t
0

or

10t
ve(t) = Ejt icdt+ve(ty) (5.41)

where v (t,) is the initial condition, that is, the voltage across a capacitor at some reference time

usually taken as t = 0, and denoted as v(0).

We can also write (5.41) as
1pt. 100, ¢t
Ve(t) = Z| igdt = =|  icdt+=| icdt
¢ CL ¢ cj_w ¢ CJ-O c

where the initial condition is represented by the first integral on the right side.
|
Example 5.5

The waveform shown in Figure 5.21 represents the current flowing through a 1 uF capacitor.
Compute and sketch the voltage across this capacitor for the time interval 0 <t <4 ms given that
the initial condition is v(0) = 0.

Solution:
The initial condition v(0) = 0, establishes the first point at the coordinates (0, 0) on the v(t)
versus time plot of Figure 5.22.

Next, ,
1x10 0
1J‘ i dt + ve(0)

Vc|t=1ms_CO )
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ic(t) (mA)
1.00 —
0.75
0.50 1
0.25 1
0 t (ms)
—0.25 +
—0.50 1
—0.75 T
-1.00 +-----

Ve (v)

1.00 4+ ------ :
0.75 1
0.50 +
0.25 +

i ' I : t (ms)
-0.25 + 1 2 3 4

-0.50 1
—0.75 A
-1.00 +

Figure 5.22. Straight line segment for 0 <t <1 ms of the voltage waveform for Example 5.5

or

1( 1x107
% = =| Area
C‘t:lms C |t:0

) - -(1x10°x1x107°) = 1 volt

1x10
and this value establishes the second point of the straight line segment passing through the origin
as shown in Figure 5.22.

This value of 1 volt at t = 1 ms becomes our initial condition for the time interval 1 <t<?2.
Continuing, we obtain

_1 1><10‘3)
vc‘tZZmS = C(Area|t:0 +1

= — L 1x10%%x(2-1)x10%)+1=0 volts

1x107°

Thus, the capacitor voltage then decreases linearly from 1 volt at t = 1 ms to 0 volts at
t = 2 ms as shown in Figure 5.23.
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V(1)

100 -
0.75 +
0.50 +
0.25 +

0 t t T t (ms)
—0.25 1 1 2 3 4

-0.50 T
-0.75 T
-1.00 +

Figure 5.23. Voltage waveform for 0 <t <2 ms of Example 5.5

There is no need to calculate the values of the capacitor voltage v, att = 3 ms andat t = 4 ms
because the waveform of the current i, starts repeating itself at t = 2 ms, and the initial condi-

tions and the areas are the same as before. Accordingly, the capacitor voltage v, waveform of fig-

ure (b) starts repeating itself also as shown in Figure 5.24.
ve(t)

100 [------ ,
0.75 +
0.50 +
0.25 +

; l ¥ t (ms)
—0.25 + 1 2 3 4

—0.50 +
—0.75
—1.00 -

Figure 5.24. Voltage waveform for 0 <t <4 ms of Example 5.5

)

Example 5.5 has illustrated the well known fact that the voltage across a capacitor cannot change
instantaneously. Referring to the current and voltage waveforms for this example, we observe
that the current through the capacitor can change instantaneously as shown by the discontinui-
ties at t = 1,2, 3,and 4 ms in Figure 5.21. However, the voltage across the capacitor never
changes instantaneously, that is, it displays no discontinuities since its value is explicitly defined
at all instances of time as shown in Figure 5.24.
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5.6 Power and Energy in a Capacitor

Power in a capacitor with capacitance C is found from

. (CdvC )
= Vgic = Vo | C—
Pc cle c\ Mgt
and the energy in a capacitor, denoted as W¢. is the integral of the power, that is,

I Lot cj O ey, cj e
ty vty dt V(ty) ¢

t
Wc|t0

12" 1
= ECvg = EC[vi(t)—vi(tO)]

i(to)
or
1 2 2
W (1) -We(ty) = EC[vc(t)—Vc(to)]

and letting v = 0 at t = 0, we obtain the energy stored in a capacitor as

W(t) = %CVé(t) (5.42)

Like an inductor, a capacitor is a physical device capable of storing energy.

It was stated earlier that the current through an inductor and the voltage across a capacitor can-
not change instantaneously. These facts can also be seen from the expressions of the energy in an
inductor and in a capacitor, equations (5.27) and (5.42) where we observe that if the current in
an inductor or the voltage across a capacitor could change instantaneously, then the energies
W, and W, would also change instantaneously but this is, of course, a physical impossibility.

|
Example 5.6

In the circuit of figure 5.25, the voltage and current sources are constant.

a. Compute i, ; and v,

b. Compute the power and energy in the 2 uF capacitor.
Solution:

a. The voltage and current sources are constant; thus, after steady—state conditions have been
reached, the voltages across the inductors will be zero and the currents through the capacitors
will be zero. Therefore, we can replace the inductors by short circuits and the capacitors by
open circuits and the given circuit reduces to that shown in Figure 5.26.
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A W
4 Q 2Q J_
Ci=<1uF L, 230 mH Cy/< 3 uF
Ry i Ry
—
AN I M
70 L, 40 mH 50 () R, SQR8§SQ
. 15A
C
6 +|~2
603 Vezr2 uF L5 § 25 mH
L, R L,
dLLA
60mH 100 20 mH
Figure 5.25. Circuit for Example 5.6
R4 R,
MN MN
4Q I 2 Q
R, i R,
W=} o
| 1I5A
n +
T ReZ6Q Ve
Rg l -
MV
10 Q

We can simplify the circuit of figure 5.26 by first exchanging the 15 A current source and
resistor Ry for a voltage source of 15x8 = 120 V in series with Rg as shown in Figure 5.27.

We also combine the series—parallel resistors R; through R,. Thus,
Reg = (4+2)[|(7+5) = 4 Q. But now we observe that the branch in which the current i, ,

flows has disappeared; however, this presents no problem since we can apply the current divi-
sion expression once i, shown in Figure 5.27, is found. The simplified circuit then is as shown
in Figure 5.27.

We can apply superposition here. Instead, we will write two mesh equations and we will solve

Figure 5.26. First simplification of the circuit of Example 5.6

using MATLAB. These in matrix form are

= -
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Reg
i —AW
N 49g +8g
D@é@
24V1iRs 6 Q 120 V
M\
10 Q

Figure 5.27. Final simplification of the circuit of Example 5.6

Solution using MATLAB:
format rat; R=[20 -6; -6 14]; V=[24 -120]; I=R\V; disp(‘i1="); disp(I(1)); disp(‘i2=");
disp(1(2))
1l=

-96/61
12=
-564/61

Therefore, with reference to the circuit of Figure 5.28 below, we obtain

MN MN
R 40 | R; 2Q |
R, l i R4
—
MN MN
70 50 (T) Rz Ry g 80
() | 15A
+ +
= R \"
24V o 636 Ve
5
MN l
10 Q
Figure 5.28. Circuit for computation of i ; and V¢, for Example 5.6
. (4 +2) (96)_ 32 _
I = (4+2)+(7+5)x =6 0.525 A
and
Ve, = 6(- 2 564) - 2808 _ 4603V
61 61 61
b. )
Pour = VaupXlppp = Ve x0 =0
and

2
20V 4 = 05x2x10°x ([ Z8) = o m)

Waur =3 61
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5.7 Combinations of Capacitors in Series and in Parallel

Consider the circuits of figures 5.29 (a) and 5.29 (b) in which the source voltage vg is the same

for both circuits. We want to find an expression for the equivalent capacitance which we denote
as Cggq in terms of Cy, Cy, ..., Cy_4, Cy in Figure 5.29 (a) so that the current i will be the same in

both circuits.

Ver Ve, Ven-i
il P +y/- i

I\ AN I\
C, C, Cno1 "
+ C Sk + &
_ . NTVen — . T ~Seq
Vg 1 Vg 1
(b)

(a)

Figure 5.29. Circuits for dervation of equivalent capacitance for capacitors in series

From the circuit of Figure 5.29 (a),

or
1¢t. 1t 1 ¢t 1t
Clj-_mldt+ sz_mldt+ ot CN_1-[_ooldt+ CNI_wldt = Vg
or
1 1 1 1 ) v
=+ =+ .. — idt = v 543
(C1+C2+ +CN—1+CN le s (5.43)

From the circuit of Figure 5.29 (b)

1 ¢t
idt = v (5.44)

Equating the left sides of (5.43) and (5.44) we obtain:

1 1 1 1 1
= =+=+..+ + = (5.45)
CSeq Cl C2 CN—l CN

and for the special case of two capacitors in series

C _ C1(:2
a7 C,+C,

(5.46)

Thus capacitors in series combine as resistors in parallel do.
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Combinations of Capacitors in Series and in Parallel

Next, we will consider the circuits of figures 5.30 (a) and 5.30 (b) where the source current ig is

the same for both circuits. We wish to find an expression for the equivalent capacitance which
we denote as Cpq in terms of Cy, Cy, ..., Cy in Figure 5.30 (a) so that the voltage v will be the

same in both circuits.

T L Thns
\k /I.\Cl /l\CZ TCN—l
(a)

Figure 5.30. Circuits for dervation of equivalent capacitance for capacitors in parallel

pd

~ Cpeg

2

From the circuit of Figure 5.30 (a),
or
dv dv dv dv .
Cldt+C2dt+"'+CN*1dt+Cth = g
or

From the circuit of Figure 5.30 (b),

dv .
CPeq a = lg

Equating the left sides of (5.47) and (5.48) we obtain:

Cpeq = C1+C2+ oo +CN—1+CN

Thus, capacitors in parallel combine as resistors in series do.
|
Example 5.7

For the network of Figure 5.31, replace all capacitors by a single equivalent capacitor.

Solution:

Beginning at the right of the network and moving towards the left, we find that
SuF||1uF =4uF

2 uWF || 4 uF = 6 uF

(5.47)

(5.48)

(5.49)
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—¢
560 /| 15uF 30uF

= “R1uF 7K 3uF

12 uF 4 uF
Y4
AN AN

Figure 5.31. Network for Example 5.7
15 uF in series with 30uF = 10uF
8 WF || 12 uF = 20 uF
The network then reduces to that shown in Figure 5.32.

- ¥4

J_ 10 NF
560 o

Ceqﬁ 31 HFrI\ ~4 uF
20 ukF 6 uF
12

u
| L
AN - AN

Figure 5.32. First step in combination of capacitances

Next, the series combination of 10,4, and 6uF capacitors yields 60/31 uF and
60/31 uF || 560/31 uF = 20 uF. Finally, the series combination of 20 uF and 20 uF yields
Ceq = 10 pF as shown in Figure 5.33.

C.i—> -~ 20uF

Figure 5.33. Network showing the equivalent inductance of Figure 5.16

5.8 Nodal and Mesh Equations in General Terms

In Examples 5.3 and 5.6 the voltage and current sources were constant and therefore, the steady—
state circuit analysis could be performed by nodal, mesh or any other method of analysis as we
learned in Chapter 3. However, if the voltage and current sources are time—varying quantities we
must apply KCL or KVL in general terms as illustrated by the following example.
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Nodal and Mesh Equations in General Terms

Example 5.8

Write nodal and mesh equations for the circuit shown in Figure 5.34.

wLE

® 2R,
Vs1
Vso

Figure 5.34. Circuit for Example 5.8
Solution:
a. Nodal Analysis:

We assign nodes as shown in Figure 5.35. Thus, we need N-1 = 5-1 = 4 nodal equations.

Y Vv
W3
R |
C
© " 2R
Vs1
Vs2
Vo=

Figure 5.35. Nodal analysis for the circuit of Example 5.8

At Node 1: y y

1= Vs1
At Node 2: .

Va—V1, o4 1 _ _
R +C(Vp=Vy) + LL(VZ vy)dt = 0
At Node 3:
j (vy— v2)dt+— =0

At Node 4: vy

4 = Vs

b. Mesh Analysis:

Weneed M = B-1 =6-5+1 = 2 mesh equations. Thus, we assign currents i, and i, as

shown in Figure 5.36.
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Vsy 1,

Figure 5.36. Mesh analysis for the circuit of Example 5.8
For Mesh 1:
I
For Mesh 2:
d. . 1p0t . .

In both the nodal and mesh equations, the initial conditions are included in the limits of integra-
tion. Alternately, we can add the initial condition terms and in the integrodifferential equations
above, replace the lower limit of integration —e with zero.
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5.9 Summary

Inductance is associated with a magnetic field which is created whenever there is current flow.

The magnetic field loops are circular in form and are called lines of magnetic flux. The unit of
magnetic flux is the weber (Wb).

The magnetic flux is denoted as ¢ and, if there are N turns and we assume that the flux ¢

passes through each turn, the total flux, denoted as A, is called flux linkage. Then, A = Ne¢
For an inductor, the voltage—current relationship is v, = L(di,_/dt)

The unit of inductance is the Henry abbreviated as H.

Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a phys-
ical device capable of storing energy in analogy to the potential energy of a stretched spring.

. . . 2
The energy stored in an inductor is W (t) = (1/2)Li; (t)
The current through an inductor cannot change instantaneously.

In circuits where the applied voltage source or current source are constants, after steady—state
conditions have been reached, an inductor behaves like a short circuit.

Inductors in series combine as resistors in series do.
Inductors in parallel combine as resistors in parallel do.
Capacitance is associated with an electric field.

A capacitor consists of two parallel metal plates separated by an air space or by a sheet of some
type of insulating material called the dielectric.

The charge q on the plates of a capacitor is directly proportional to the voltage between the
plates and the capacitance C is the constant of proportionality. Thus, g = Cv

In a capacitor, the voltage—current relationship is i = C(dv/dt)

The unit of capacitance is the Farad abbreviated as F.

Like an inductor, a capacitor is a physical device capable of storing energy.
The energy stored in a capacitor is W(t) = (1/2)Cv(2:(t)

The voltage across a capacitor cannot change instantaneously.

In circuits where the applied voltage source or current source are constants, after steady—state
conditions have been reached, a capacitor behaves like an open circuit.

Capacitors in series combine as resistors in parallel do.
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e Capacitors in parallel combine as resistors in series do.

e In a circuit that contains inductors and/or capacitors, if the applied voltage and current sources
are time—varying quantities, the nodal and mesh equations are, in general, integrodifferential
equations.
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5.10 Exercises
Multiple Choice

1. The unit of inductance is the

A.

B.
C.
D
E

Farad
Ohm
mH

. Weber
. None of the above

2. The unit of capacitance is the

cRoRol- IS

. uF

Ohm

Farad

Coulomb

None of the above

3. Faraday’s law of electromagnetic induction states that

SECRoN- IS

A = No

A = Li

v = L(di/dt)
v = dA/dt

None of the above

4. In an electric field of a capacitor, the lines of force

>

.

B.
C.
D.
E.

are complete loops

start at the positive plate and end at the negative plate
start at the negative plate and end at the positive plate
are unpredictable

None of the above

5. The energy in an inductor is

Mo 0w

(1/2)(Li%)
(1/2)(Lv?)

v i
dissipated in the form of heat
None of the above
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6.

The energy in a capacitor is

A.

B.

C.
D.

E.

MO0 >

B.

D.

E.

(1/2)(Ci%)

(1/2)(Cv?)

Vel

dissipated in the form of heat
None of the above

. In an inductor

the voltage cannot change instantaneously

the current cannot change instantaneously

neither the voltage nor the current can change instantaneously
both the voltage and the current can change instantaneously
None of the above

. In a capacitor

the voltage cannot change instantaneously

the current cannot change instantaneously

neither the voltage nor the current can change instantaneously
both the voltage and the current can change instantaneously
None of the above

. In the circuit below, after steady—state conditions have been established, the current i

through the inductor will be

SECHON- IS

.

D 552 Fom
Is 5 A

0A

o A

25 A

5A

None of the above

10.In the circuit below, after steady-state conditions have been established, the voltage v

across the capacitor will be
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C uF
+ 5Q
o
10V
A. 0V
B. oV
C. -10V
D. 10V
E. None of the above
Problems

1. The current i flowing through a 10 mH inductor is shown by the waveform below.

LA (mA)
10 |- - -- .

t (ms)

40 o/

-10

a. Compute and sketch the voltage v, across this inductor for t>0

b. Compute the first time after t = 0 when the power p, absorbed by this inductor is
p. = 50 uw Answer: t = 5 ms

c. Compute the first time after t = 0 when the power p, absorbed by this inductor is
p_ = -50 uw Answer: t = 25 ms

2. The current i flowing through a 1 pF capacitor is given as iz (t) = c0s100t mA, and it is
known that v (0) = 0

a. Compute and sketch the voltage v across this capacitor for t>0

b. Compute the first time after t = 0 when the power p. absorbed by this capacitor is
Pc = 5 mw. Answer: 7.85 ms

0 when the power p. absorbed by this capacitor is

c. Compute the first time after t

Pc = -5 mw. Answer: 23.56 ms
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3. For the network below, compute the total energy stored in the series combination of the resis-
tor, capacitor, and inductor at t = 10 ms if:

-100t -10 V. Answer:3.4 mJ

a. i(t) = 0.1e mA and it is known that v (0)

b. i(t) = 0.5cos5t mA and it is known that v (0) = 0. Answer:50 pJ

5Q  04mH Yﬁ?
—\MWA\— T 1§
- R L C
I(t) 100 uF

Rest of the Network

4. For the circuit below, compute the energy stored in the 5 mH inductor at t = 1 s given that
i(0) = 0. Answer: 1 mJ
T
——"TH0 -
5 mH 3 mH
10 mH 7 mH
VsV 10e™ mv

5. For the circuit below, replace all capacitors with an equivalent capacitance Ceq and then com-
pute the energy stored in Ceq att = 1 ms given that v (0) = 0 in all capacitors.

Answer: 10 pJ

4 |¢
AN AN
10 uF 3 uF
O) = N
8 UF 6 uF

is(H |10 ua
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6. Write nodal equations for the circuit below.

ve(t)
i ~C 2R
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5.11 Answers / Solutions to End-of-Chapter Exercises
Multiple Choice
. E Henry

1
2
3
4.
5.
6
7
8
9

m>wws>wg0

. -5A
10.
Problems

1.
a. In an inductor the voltage and current are related by v = L(di_/dt) = L xslope. Thus,

we need to compute the slope of each segment of the given waveform and multiply it by L.

Ai -3
v [ ™ = Lxslope = L= = 10x10°3x 19X10 A _ 15y
0 At 10x107° s
Likewise,
vL‘igms = Lxslope = Lx0 = 0 mV

-3
v, ‘2‘3 S _ | xslope = 10x 10735 [F20=(01x10 A _ 44y

(40-20)x 10 s

50 ms

v,_‘40 = Lxslope = Lx0 =0mV

[0—(~10)]x 107> A
(60 -50)x 1073 s

10 ms

v = 10 mV

= Lxslope = 10x10 %%

The current, voltage, and power waveforms are shown below.
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10 mH

I (1)

v (1)

4|0 ISO / t (ms)
VL mv) .
10 f————
: ' ' t
0 10 20! 30 140 150 60 ms)
S o S
PL
100
/ t (ms)

-100

60

b. From the power waveform above, we observe that p, = v i, = 50 pw occurs for the first

time at point A where t = 5 ms

c. From the power waveform above, we observe that p, = v i, = =50 pw occurs for the

first time at point A where t = 25 ms

a. For this problem C = 1 puF = 10°F and the current ic is a sinusoid given as

ic(t) = c0s100t mA as shown below. The voltage v (t) across this capacitor is found

from
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ve(t)

t t
1] i dt+ve(0) = 106j (10~*)cos100tdt + 0
C 0 0

3 t

t
3 10 .
10 IO cos100tdt = 7 -sin100t

= 10sin 100t
0

ic(t)
(mA) c0s 100t

S

and the waveform of v(t) is shown below.

Ve(t)
(V)
10F---

10sin100t
/

Now, oT =2n or o = 2n/T. Then, 1OSin-2—T—Et = 10sin100t or 2m/T = 100 and

T
T =2n/100 or T = ©/50.

b. Since v¢(t) is a sine function and i.(t) a cosine function, the first time after zero that their

product will be positive is in the interval 0 <t <m/200 where we want p; = Vcic = 5 mw
or
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be = (10sin100t)(10 °cos100t) = 5x107° w
or
Pc = (10sin100t)(cos100t) = 5w
Recalling that
sin2x = 2sinXcosx
it follows that
Pc = 5sin200t = 5w
or
sin200t = 1
or

!
sin 1 _7m/2_ T _ (007855 = 7.85 ms

t = = =
200 200 400

c. The time where p; = -5 mw will occur for the first time is 7.85 ms after t = n/200 s or
after t = 1000m/200 ms = 51 ms. Therefore, p. = -5 mw will occur for the first time at
t =785+5w = 7.85+15.71 = 23.56 ms

a. There is no energy stored in the resistor; it is dissipated in the form of heat. Thus, the total
energy is stored in the capacitor and the inductor, that is,

Wy = W, +W, = %Lif+%Cvé
where
i, =i(t) = 01e"™
and
t t
ve(t) = éjo i dT+vg(0) = 10“jo 0.16 %% — 10
10*x 0.1 100 t 1007|° 100t
= =27 _10 = 10e |, = 10-10e " - 10
~100 . t
or
ve(t) = —10e "
Then,
1 -3 -100t,2 1 -4 -100t, 2
Tt=10rns_2><0.4><10 x (0.1e ) +2><10 x (-10e )

25x107[(0.1e"1) + (106 )] = 3.4 mJ
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We've used MATLAB as a calculator to obtain the answer, that is,

WT=2.5*10"(-4)*((0.1*exp(-1))*2+((-10)*exp(-1))"2);
fprintf(' \n"); fprintf(WT=%7.4f J', WT); fprintf(' \n")

WT= 0.0034 J

b. For this part,
i, = i(t) = 0.5cos5t mA
and

t t
Ve(t) = éj ic dt+v(0) = 10°x10[ 5cos5tde+0 = sinSef) = sinst
0 0

Then,

[E=Y

Wy = W, +W, = Zx0.4x10™*x (0.5c0s5t)° + % x 107 x (sin5t)°

N

00525t + sin25t

0.5 x 10‘4{ } =0.05 mJ = 50 pJ

1

We observe that the total power is independent of time.

4.
Beginning with the right side and proceeding to the left, the series—parallel combination of

7+3 =10, 101110 = 5, and 5+5 = 10 mH reduces the given circuit to the one shown
below.

= 10 mH
vs(D[10e™ mv

The current i (t) is

1

. 1t .
() = [IO vg dt+1i, (0) = 10

- x 10 10‘3jt e "dt = —e_T]:) - e"’\f =1-¢"
0

Then,

[EEN

W = 2x5x10°%(1-e Y|, =25x10°x(1-e N’ =1m
5mH‘t:ls 2 t=1s :

5.

Beginning with the right side and proceeding to the left, the series—parallel combination
reduces the given circuit to the one shown below.
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=< SuF

The current v(t) is

1pt, 1 6" t
Ve(t) = =| i dTt+Vve(0) = x 10 x 10 dt = 27|, = 2t
¢ CJ‘o ° ¢ 5x10°° '[0 o
Then,
1 -6 2 -6 -6
Wyl | = 5x5x10°@07| = 25x10°x4x10° = 10 pJ
6.
We assign node voltages v, , V,, and v; as shown below.
1
Cl RZ
O
vg(t) G,
R, é L
Then,

d d v
1

V3=V,
R,

d 1!

We assign mesh currents iy, i,, and i; as shown below.
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vg(t) i

Then,

1t oo 1t
] ] diz d . ]
Ru(lz—1p) + Ly +Lag;(12=13) = 0

1¢t . . d,. . .
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Chapter 6

Sinusoidal Circuit Analysis

his chapter is an introduction to circuits in which the applied voltage or current are sinu-

soidal. The time and frequency domains are defined and phasor relationships are developed

for resistive, inductive and capacitive circuits. Reactance, susceptance, impedance and
admittance are also defined. It is assumed that the reader is familiar with sinusoids and complex
numbers. If not, it is strongly recommended that Appendix B is reviewed thoroughly before read-
ing this chapter.

6.1 Excitation Functions

The applied voltages and currents in electric circuits are generally referred to as excitations or driv-
ing functions, that is, we say that a circuit is “excited” or “driven” by a constant, or a sinusoidal, or
an exponential function of time. Another term used in circuit analysis is the word response; this
may be the voltage or current in the “load” part of the circuit or any other part of it. Thus the
response may be anything we define it as a response. Generally, the response is the voltage or cur-
rent at the output of a circuit, but we need to specify what the output of a circuit is.

In Chapters 1 through 4 we considered circuits that consisted of excitations (active sources) and
resistors only as the passive devices. We used various methods such as nodal and mesh analyses,
superposition, Thevenin’s and Norton’s theorems to find the desired response such as the voltage
and/or current in any particular branch. The circuit analysis procedure for these circuits is the
same for DC and AC circuits. Thus, if the excitation is a constant voltage or current, the
response will also be some constant value; if the excitation is a sinusoidal voltage or current, the
response will also be sinusoidal with the same frequency but different amplitude and phase.

In Chapter 5 we learned that when the excitation is a constant and steady-state conditions are
reached, an inductor behaves like a short circuit and a capacitor behaves like an open circuit.
However, when the excitation is a time—varying function such as a sinusoid, inductors and capac-
itors behave entirely different as we will see in our subsequent discussion.

6.2 Circuit Response to Sinusoidal Inputs

We can apply the circuit analysis methods which we have learned in previous chapters to circuits
where the voltage or current sources are sinusoidal. To find out how easy (or how difficult) the
procedure becomes, we will consider the simple series circuit of Example 6.1.

Example 6.1

For the circuit shown in Figure 6.1, derive an expression for v (t) in terms of Vp, R, C, and o
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where the subscript p is used to denote the peak or maximum value of a time varying function,
and the sine symbol inside the circle denotes that the excitation is a sinusoidal function.

R

;__Vc(t)

O\I

V@ i(t)

Vg = Vpcosot

Figure 6.1. Circuit for Example 6.1

Solution:
By KVL,
VR +Ve = Vg (6.1)
where .
Vg = RI = Ri¢
and
¢ dt
Then,
dve
Vg = RCFt-

and by substitution into (6.1) we obtain

dve
RCW +Ve =Vg = V cosot (6.2)

As we know, differentiation (and integration) of a sinusoid of radian frequency o results in
another sinusoid of the same frequency . Accordingly, the solution of (6.2) must have the form

Ve(t) = Acos(wt+0) (6.3)

where the amplitude A and phase angle 6 are constants to be determined from the circuit
parameters of Vp, R, C, and w. Substitution of (6.3) into (6.2) yields

~AmRCsin(ot +0) + Acos(wt+0) = Vpcosmt (6.4)

and recalling that ) . .
SIN(X+Y) = SINXCOSY + COSXSiny

and N
COS(X +Y) = COSXCOSYy — sinxsiny

we rewrite (6.4) as

— AoRCsinwtcosd — AwRCcosmwtsind + Acosmtcosd — Asinotsind = Vpcosmt
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Collecting sine and cosine terms, equating like terms and, after some more tedious work, solving
for amplitude A and phase angle 6 we obtain:

vV
Ve(t) = ——L2——cos(ot-tan }(wRC)) (6.5)

J1+ (oRC)?

Obviously, analyzing circuits with sinusoidal excitations when they contain capacitors and/or
inductors, using the above procedure is impractical. We will see on the next section that the
complex excitation function greatly simplifies the procedure of analyzing such circuits. Complex
numbers are discussed in Appendix B.

The complex excitation function does not imply complexity of a circuit; it just entails the use of
complex numbers. We should remember also that when we say that the imaginary part of a com-
plex number is some value, there is nothing “imaginary” about this value. In other words, the
imaginary part is just as “real” as the real part of the complex number but it is defined on a differ-
ent axis. Thus we display the real part of a complex function on the axis of the reals (usually the
x—axis), and the imaginary part on the imaginary axis or the y—axis.

6.3 The Complex Excitation Function

We recall that the derivatives and integrals of sinusoids always produce sinusoids of the same fre-
quency but different amplitude and phase since the cosine and sine functions are 90 degrees out—

of-phase. Thus, if
V(t) = Acos(ot+0)

then
av _ -0Asin(ot + 0)
dt
d if i
anel (1) = Bsin(ot+o
then

% = oBcos(ot+ ¢)

Let us consider the network of Figure 6.2 which consists of resistors, inductors and capacitors,
and it is driven (excited) by a sinusoidal voltage source vg(t).

ILoap(D)
Excitation Linear Network m
Consisting of 2 t
Resistors, 8 VLOAD( )
Ve (t Inductors and
S( ) Capacitors —

Figure 6.2. General presentation of a network showing excitation and load
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. &
Let us also define the voltage across the load as V| gap(t) ~ as the response. As we know from
Chapter 5, the nodal and mesh equations for such circuits are integrodifferential equations, and it

is shown in differential equations textbooks' that the forced response or particular solution of these
circuits have the form

Vi p(t) = Acos(ot) + Bsin(ot)

We also know from Euler’s identity that

Acosot + jAsinet = Ae!™" 6.6)

and therefore, the real component is the response due to cosSwt and the imaginary component is

the response to sinwt We will use Example 6.2 to illustrate the ease by which we can obtain the
response of a circuit, which is excited by a sinusoidal source, using the complex function

jot . , , . T :
Ae’ approach. In this text, we will represent all sinusoidal variations in terms of the cosine
function.

Example 6.2

Repeat Example 6.1, that is, find the capacitor voltage Vi (t) for the circuit of Figure 6.3 using
the complex excitation method.
R

V@ i(t) C;{VC(t)

Vg = Vpcosmt

Figure 6.3. Circuit for Example 6.2
Solution:

Since ot
cosot = Re{e!®}
we let the excitation be

Vs(t) = Vel

* Some textbooks denote the voltage across and the current through the load as v| and i respectively. As we stated previ-
ously, in this text, we use the V| yap and i gap notations to avoid confusion with the voltage V| across and the current

i, through an inductor.

T This topic is also discussed in Circuit Analysis Il with MATLAB Computing and Simulink / SimPowerSystems Mod-
eling, ISBN 978—-1-934404—-19-5.
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and thus the response will have the form

c(t) _ VCej(mt+(p
As in Example 6.1, dv _
'CE-FVC = Vpej(l (6.7)

or
(VCe J((Dt"'(P))_l_V e](wt"'(P) V e

or
(joRC +1)Ve ) = v el

The last expression above shows that radian frequency  is the same for the response as it is for
the excitation; therefore we only need to be concerned with the magnitude and the phase angle
of the response. Accordingly, we can eliminate the radian frequency @ by dividing both sides of

. jort . o .
that expression by € 190 and thus the input—output (excitation—response) relation reduces to

(joRC+1)Vee!® = v,

from which

jo _ Vp _ Vp Vp —j[tan_l(mRC)]

Vee'" = - =
JoRC +1 /1+u)2R Czej[tan (ch)] /1 2RZCZ

This expression above shows the response as a function of the maximum value of the excitation,

its radian frequency and the circuit constants R and C.

jot
If we wish to express the response in complete form, we simply multiply both sides by € 190 and
we obtain

Ve J((Dt+<P) VQ j[wt—tan (wRC)]
C

/\/l+m R%c?

Finally, since the excitation is the real part of the complex excitation, we use Euler’s identity on
both sides and equating reals parts, we obtain

V
ve(t) = VeCos(ot+0) = —p—cos[mt—tan (oRC)]

/\/1+(L)RC

The first part of the above procedure where the excitation-response relation is simplified to
amplitude and phase relationship is known as time—domain to frequency—domain transformation;
the second part where the excitation—response is put back to its sinusoidal form is known as fre-
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Chapter 6 Sinusoidal Circuit Analysis

quency—domain to time—domain transformation. For brevity, we will denote the time domain as the
t—domain, and the frequency domain as the joo —domain.

If a sinusoid is given in terms of the sine function, we must first convert it to a cosine function.

Thus,

m(t) = Asin(ot+6) = Acos(ot+0-90°) (6.3)

and in the jo —domain it is expressed as

j(6-90)

M = Ae = AZ(6—90°) (6.9)

where M represents a phasor (rotating vector) voltage V or current | .

In summary, the t—domain, to jo —domain transformation procedure is as follows:

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity
3. Extract the magnitude and phase angle from it.

Example 6.3

Transform the sinusoid v(t) = 10sin(100t — 60°) to its equivalent jo —domain expression.
Solution:

For this example, we have

v(t) = 10sin(100t— 60°) = 10cos(100t — 60° — 90°)

or

v(t)= 10cos(100t - 150°) = Re{loej(loot—lso)}

Since the jo — domain contains only the amplitude and phase, we extract these from the brack-
eted term on the right side of the above expression, and we obtain the phasor V as

—j150°

V = 10e = 10£-150°

The jo —domain to t—domain transformation procedure is as follows:
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1. Convert the given phasor from polar to exponential form
2. Add the radian frequency @ multiplied by t to the exponential form

3. Extract the real part from it.

Example 6.4
Transform the phasor | = 120/-90° to its equivalent time—domain expression.
Solution:

First, we express the given phasor in exponential form, that is,

| = 120,-90° = 120e7%°

Next, adding the radian frequency ® multiplied by t to the exponent of the above expression we
obtain

i(t)= 120!@~%0)

and finally we extract the real part from it. Then,

i(t) = Re{lZOej(wt'go)} = 120c0s(wt —90°) = 120sinot

We can add, subtract, multiply and divide sinusoids of the same frequency using phasors as illus-
trated by the following example.

Example 6.5
It is given that i,(t) = 10c0s(120xt + 45°) and i,(t) = 5sin(120nt—45°). Compute the sum
(1) = iy () +iy(t).
Solution:
As a first step, we express i,(t) as a cosine function, that is,
i,(t) = 5sin(120nt-45°) = 5c0s(120nt—45°—90°) = 5co0s(120nt-135°)

Next, we perform the t—domain to jo —domain transformation and we obtain the phasors
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Chapter 6 Sinusoidal Circuit Analysis

I, = 10£45° and I, = 5£-135°
and by addition,

| = 1,+1, = 10.£45° +5/-135° = 10(? +j§)+5(—£‘jﬁ)

2 2
(ﬁ+j{) = 5./45°

and finally transforming the phasor I into the t —domain, we obtain

I(t) = 5c0s(120xt + 45°)

or

Also, for brevity, in our subsequent discussion we will designate resistive, inductive and capaci-
tive circuits as R, L, and C respectively.

6.4 Phasors in R, L, and C Circuits

The circuit analysis of circuits containing R, L, and C devices, and which are excited by sinusoi-
dal sources, is considerably simplified with the use of phasor voltages and phasor currents which
we will represent by the boldface capital letters V and | respectively. We will now derive V and
I phasor relationships in the jo —domain. We must always remember that phasor quantities
exist only in the jo —domain.

1. V and | phasor relationship in R branches

Consider circuit 6.4 (a) below where the load is purely resistive.

Vs (1) MW~ + Vs MW~ +
. ROSVRD o, IR)S Ve
T |5 T 2%

VR(t) = Rig(t) = Vcos (ot +0) Vi = Rl
(a) t—domain network (b) jo-—domain (phasor) networ

Figure 6.4. Voltage across a resistive load in t —domain and jo —domain

We know from Ohm'’s law that Vx(t) = Rig(t) where the resistance R is a constant. We will

show that this relationship also holds for the phasors V5 and Iz shown in circuit 6.4 (b), that

is, we will prove that
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Phasors in R, L, and C Circuits

Vg = Rlg

Proof:

In circuit 6.4 (a) we let Vg (t) be a complex voltage, that is,

V l(@t+0)

b = Vpcos(wt+¢)+jvpsin(wt+¢) (6.10)

and since R is a constant, it will produce a current of the same frequency o and the same

phase ¢~ whose form will be

|pej(‘”t+¢) = 1,cos(ot +¢) +jl,sin(ot +9)

and by Ohm’s law,

vpej(“’t+¢’ - Rlpej(mt+¢) 6.11)

Transforming (6.11) to the joo —domain, we obtain the phasor relationship

jo _ io _
Vpe = Rlpe or VpAb = RIpAp

Since the phasor current | is in—phase with the voltage V (both | and V have the same phase
0), we let

V,£0=Vg and 120 =g
and it follows that

Therefore, the phasor V and | relationship in resistors, obeys Ohm’s law also, and the current
through a resistor is always in—phase with the voltage across that resistor.

Example 6.6
For the network in Figure 6.5, find ig (t) when vg(t) = 40sin(377t-75°).

Solution:

We first perform the t —domain to jo —domain i.e., vg(t) & Vg transformation as follows:

VR(t) = 40sin(377t — 75°) = 40¢os (377t — 165°) > Vp, = 40.£-165°

* The phase will be the same since neither differentiation nor integration is performed here.
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Vg (1) | MWW +
_mmg_ iR(t)%VR(t)

R=5Q
Vg (t) = 40sin(377t—75°)

Figure 6.5. Voltage across the resistive load of Example 6.6

Then,
I = SR _ 40£165° _ g 1650 o
R 5
Therefore,
Ig = 8£-165° A ig(t) = 8cos(377t—165°) = 8sin(377t-75°) A
(=4
jo —domain t—domain

Alternately, since the resistance R is a constant, we can compute ig(t) directly from the

t—domain expression for Vg (t), that is,

VR(t) _ 40sin(377t-75°) _
R 5

in(t) = 8sin(377t - 75°) A

2. V and | phasor relationship in L branches

Consider circuit 6.6 (a) below where the load is purely inductive.

Vs (1) - AWV + Vg M- +
TO000L. i@ vL<(t_)> —O000L. ‘:D vV,
= e

di V, = joLlI
= L5 L= ot
(a) t—domain network (b) jo —domain (phasor) networ

Figure 6.6. Voltage across an inductive load in t —domain and jo —domain

We will prove that the relationship between the phasors V| and I, shown in circuit 6.6 (b) is

V| = joLl, (6.12)
Proof:

In circuit 6.6 (a) we let v (t) be a complex voltage, that is,
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Phasors in R, L, and C Circuits

Vpej(qu)) = Vpcos(mt+¢)+jvpsin(wt+¢) (6.13)

and recalling that if x(t) = sin(ot+ ¢) then dx/dt = wcos(wt + ¢), that is, differentiation (or

integration) does not change the radian frequency o or the phase angle ¢, the current
through the inductor will have the form

Ipej(qu’) = Ipcos(mt+¢)+jlpsin(mt+¢) (6.14)
and since )
dip
V(1) = LE
then, j(wt+9) d  _iot+o) j(wt+9)
j(ot+¢) _ , d j(ot + . j(ot+
Vpe = Ldt(lpe ) = ijIpe (6.15)

Next, transforming (6.16) to the jo —domain, we obtain the phasor relationship

jo _. io i
Vpe _JmLIpe or Vp4¢ = JmLIpAp

and letting

we obtain

V, = joLl, (6.16)

The presence of the j operator in (6.17) indicates that the voltage across an inductor leads the
current through it by 90°.

Example 6.7
For the network in Figure 6.7, find i (t) when v (t) = 40sin(2t-75°).

Solution:

We first perform the t —domain to jo —domain ie., v (t) &V transformation as follows:

Vs (1) | MWW\ +
_amg_ i@ v (1)

L=5mH
v (1) = 40sin(2t - 75°)

Figure 6.7. Voltage across the inductive load in Example 6.7
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v, (t) = 40sin(2t — 75°) = 40cos (2t — 165°) & V| = 40£-165° mV

and
V - o -3 - o
J= L (A0-165°)x 107 MOLNGS” ) ese - 41050 A
Therefore,
|, =4,105° A i (t) = 4cos(2t + 105°) = 4sin(2t - 165°) A
=
jo —domain t—domain

3. V and | phasor relationship in C branches

Consider circuit 6.8 (a) below where the load is purely capacitive.

Vs (t) MWW T Yt Vg - MWW +
T ,09;<c OO '97<Vc
e R YT
dv l~ = joCV
ic(t) = C—E ¢ = JEVe
(a) t-domain network (b) jo—domain (phasor) networ

Figure 6.8. Voltage across a capacitive load in t —domain and jo —domain

We will prove that the relationship between the phasors V. and I shown in the network in
Figure 6.8 (b) is

Proof:

In circuit 6.8 (a) we let v(t) be a complex voltage, that is,

Vpej(wt+ o) _ Vpcos(ot+0) +JVpsin(ot +¢)

then the current through the capacitor will have the form

| l@t+0) _

b Ipcos(mt+¢)+jlpsin(mt+¢)
and since
io(t) = e
T dt
It follows that
jlot+¢) _ ~d (ot+0), _ . j(ot+9)
Ipe = Cdt(vpe ) = JmCVpe (6.18)
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Phasors in R, L, and C Circuits

Next, transforming (6.18) to the jo —domain, we obtain the phasor relationship
o _ . i _
Ipe = JwCVpe or Ip4q> = JwCVqu)
and letting

we obtain

le = joCV¢ (6.19)

The presence of the j operator in (6.19) indicates that the current through a capacitor leads

the voltage across it by 90°.

Example 6.8
For the circuit shown below, find i (t) when v(t) = 170cos(60nt — 45°).

Vs (1) - MW
() i097
+

C=106 nF
Ve(t) = 170cos(60nt —45°)

c(®)

i

Figure 6.9. Voltage across the capacitive load of Example 6.8

Solution:

We first perform the t—domain to jo —domain i.e., v (t) & V. transformation as follows:

Vc(t) = 170c0s (60mt — 45°) < V. = 170./-45°

Then,
Ic = JoCV, = jx60mx 106 x 102 x 170 /-45° = 1./90° x 3.4 x 10 > x 1./—45°
= 3.4 x 102 £45° = 3.4.45° mA
Therefore, lo = 3.4245° MA  ig(t) = 3.4c08(607 + 45°) mMA
jo —domain - t—domain
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6.5 Impedance

Consider the t—domain circuit in Figure 6.10 (a) and its equivalent phasor circuit shown in

6.10 (b).

R L R L
AM—E = * A—E
Vs (1) VR(t) V(D) Vs Vi Vi .

1(t) <«—> I

(a) t—domain network (b) jo—domain (phasor) networ

VR(t) = Rig(t) > Vg = IR
v (1) = Lg.; > VvV, =joLl
t Ve = LI
ve(t) = é idt «—> ¢~ joC
VR() +V () + V() = vg(t) — €—> VR +VL+ Ve = Vg
. i 1t
R|(t)+Lg—;+Ej idt = vg (1) R|+jw|_|+%| VA
oo jo
Integrodifferential Equation Algebraic Equation
(Very difficult to work with) (Much easier to work with)

Figure 6.10. The t—domain and joo —domain relationships in a series RLC circuit

The last equation on the right side of the phasor circuit may be written as
(R+joL+ L)1 = v (6.20)
jo S

and dividing both sides of (6.20) by I we obtain the impedance which, by definition, is

\
Impedance = Z = Phasor Voltage _ S _ R+ij+_—L (6.21)
Phasor Current | joC

Expression (6.21) is referred to as Ohm’s law for AC Circuits.

Like resistance, the unit of impedance is the Ohm (Q).

We can express the impedance Z as the sum of a real and an imaginary component as follows:
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Since
l = ll = J— = —J
[ I
it follows that
I
joC -~ ‘oC
and thus
Z = R+j(mL_i (6.22)
o
We can also express (6.22) in polar form as
Z = R2+(wL—i Zztan_l(wL_i)/R (6.23)
) oC

We must remember that the impedance is not a phasor; it is a complex quantity whose real part is
the resistance R and the imaginary part is oL — 1/oC, that is,

Re{Z}=R and Im{Z} = ol - = (6.24)
oC

The imaginary part of the impedance Z is called reactance and it is denoted with the letter X.
The two components of reactance are the inductive reactance X and the capacitive reactance X,

ie.,
X=X +X;=0L-1/0C (6.25)
X, = oL (6.26)
Xe = 1/0C (6.27)

The unit of the inductive and capacitive reactances is also the Ohm ().

In terms of reactances, the impedance can be expressed as

Z = R+jX = R+j(X_ - X¢) = ij+(xL—xC)Zztan’l[(xL—xc)/R] (6.28)

By a procedure similar to that of Chapter 2, we can show that impedances combine as resistances

do.

Example 6.9
For the circuit in Figure 6.11, find the current i(t) given that vg(t) = 100cos(100t —30°).
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R _ L _
CAN—
Vg (1) 50 100 mH cl,
Q =
i(t
I 100 uF

Vg(t) = 100c0s(100t - 30°)
Figure 6.11. Circuit for Example 6.9
Solution:

If we attempt to solve this problem in the time—domain directly, we will need to solve an inte-
grodifferential equation. But as we now know, a much easier solution is with the transformation

of the given circuit to a phasor circuit. Here, ® = 100 rad/s and thus

joL = jX, =j100x 0.1 = j10 Q

and

.1 . . 1 .
—_— = —J— = —JXC = —J = —JlOO

oC 102%x 102%x 107°

Also,
Vg = 100£-30°

and the phasor circuit is as shown in Figure 6.12.

T AN—E =
Vg 50 j10 Q
;

Figure 6.12. Phasor circuit for Example 6.9

171+

From the phasor circuit in Figure 6.12,

Z = 5+j10-j100 = 5-j90 = /5% +90°/tan " (-90/5) = 90.14./-86.82°

and v
| = =5 = _100£-30° 4 41 [ 30°_(_86.82°)]
Z ~ 90.14/-86.82°

Therefore,

| =1.11./56.82° < i(t) = 1.11cos(100t + 56.82)
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6.6 Admittance

Consider the t—domain circuit in Figure 6.13 (a) and its equivalent phasor circuit shown in

Figure 6.13 (b).

0 % Tk I C 0 JTr T L C
OMCESIIE- I ORI
SO | r® [iL® [ic® s Vg L |le

(a) t- domain network

(b) jo —domain (phasor) networ

iG(t) = Gv(t) <« > Ig = GV
. dv I = joCV
Ic(t) = Ca‘{ - c =]
1
. 1.t I = .—-—IV
i(t) = [J'_oovdt «— jo
i(t) +i, (D) +ic(t) = ig(t) > g+ 1 +1c = Is
dv 1.t . . 1
Gv(t) + Ca + L _det =ig(t) GV +chv+jw_LV =g
<«

Integrodifferential Equation
(Very difficult to work with)

Algebraic Equation
(Much easier to work with)

Figure 6.13. The t—domain and joo —domain relationships in a parallel RLC circuit

The last equation of the phasor circuit may be written as

1. _
(G +j-c-0T_+ch)v = Ig (6.29)
Dividing both sides of (6.29) by V, we obtain the admittance, that is, by definition
|
Admittance = Y = Phasor Current _ S _ G+_——1—+ij =1 (6.30)
Phasor Voltage V JoL Z

Here we observe that the admittance Y is the reciprocal of the impedance Z as conductance G

is the reciprocal of the resistance R.

. . . . . -1
Like conductance, the unit of admittance is the Siemens or mho (Q 7).

As with the impedance Z, we can express the admittance Y as the sum of a real component and

an imaginary component as follows:
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G 1
Y = G+J(wc_wL) 6.31)
and in polar form
1
B 2 1?2 1
Y = /\/G + ((DC - UI) Ztan |:((,0C - UI)/G:| (632)

Like the impedance Z, the admittance Y it is not a phasor; it is a complex quantity whose real part
is the conductance G and the imaginary part is oC — il_ , that is,
®

Re{Y}=G and Im{Y}=wC- -t (6.33)
oL

The imaginary part of the admittance Y is called susceptance and it is denoted with the letter B.

The two components of susceptance are the capacitive susceptance B and the inductive suscep-

tance B, that is,

B=B.+B, = oC—1/0L (6.34)
Be. = oC (6.35)
B, = 1/0L (6.36)

The unit of the susceptances B and B, is also the Siemens (Q_l) .

In terms of susceptances, the admittance Y can be expressed as

Y =G+jB =G+j(B.-B) = JGZ+(BC—BL)ZAtan’l[(BC—BL)/G] (6.37)

By a procedure similar to that of Chapter 2, we can show that admittances combine as conduc-
tances do.

Duality is a term meaning that there is a similarity in which some quantities are related to others.
The dual quantities we have encountered thus far are listed in Table 6.1.
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TABLE 6.1 Dual quantities

Series Parallel
Voltage Current
Resistance Conductance
Thevenin Norton
Inductance Capacitance
Reactance Susceptance
Impedance Admittance

Example 6.10

Consider the series and parallel networks shown in Figure 6.14. How should their real and imag-
inary terms be related so that they will be equivalent?

R L
o AMN 1IN ° * *
C
7 —> P Y—> G L -~ C
[o [ & &

Figure 6.14. Networks for Example 6.10
Solution:

For these circuits to be equivalent, their impedances Z or admittances Y must be equal. There-
fore,

1 1 . 1 R-jX R—jX R . X
Y = == - =G+ ] B = el . = = -J

Z R+jX R+jX R-jX R2 4 X2 R2+ %2 RZ4+ X2

and equating reals and imaginaries we obtain
G=—"— and B=—2— (6.38)
R™+X R™+X

Relation (6.38) is worth memorizing.
|
Example 6.11
Compute Z and Y for the network in Figure 6.15.
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L C
Z,Y — G ~
-1

4Q7 [Lp2a'lj5Q

-1

[+,

Figure 6.15. Network for Example 6.11

Solution:

Since this is a parallel network, it is easier to compute the admittance Y first. Thus,
Y=G+—+joC =4—-j2+)5 =4+]3 = 5/£36.9°
joL J Jet) J

Since the impedance is the reciprocal of admittance, it follows that

_1 1

Y T 5.36.9°

= 0.2£-36.9° = 0.16 —j0.12

Example 6.12
Compute Z and Y for the circuit shown below. Verify your answers with MATLAB.

Ll Cl
—m—j——t
_]139 —jSQ

10 Q 20 Q
Rl 122§

L,gi5Q =K -jl6Q
G,

Z,Y—

[, L g

Figure 6.16. Network for Example 6.12
Solution:

Let the given network be represented as shown in Figure 6.17 where Z, = j13-j8 = j5,

Then,
7= z,0 2% 5, (0+[5)(20-16) _ 5, (1118/266°)(25.61/-38.7°)
Z,+2, 10+ 5+ 20— j16 31.95./-20.1°
= j5+8.96.8° = j5+8.87 +]1.25 = 8.87 + j6.25 = 10.85./35.2°
and
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2,Y=> Z, Zs

Figure 6.17. Simplified network for Example 6.12

vy=L1___1 __0092,352° = 0.0754—j0.531

Z = 10.85.35.2°
Check with MATLAB:
z1=j*5; z2=10+j*5; z3=20—-j*16; z=z1+(z2*23/(z2+23)), y=1/z % Impedance z, Admittance y
z =
8.8737 + 6.25371

y =
0.0753 -0.05311

As we found out in Example 6.1, analyzing circuits with sinusoidal excitations when they contain
capacitors and/or inductors, using the procedure in that example is impractical. However, we
can use a Simulink / SimPowerSystems model to display sinusoidal voltages and currents in
branches of a circuit as illustrated in the Example 6.13 below.

Example 6.13

Create a Simulink / SimPowerSystems model to display the potential difference v, — v}, in the
circuit of Figure 6.18.

Vp

T 2Q 1mH
4Q 80O 10 A peak AC

5 A peak AC® 1uF 2 uF @
il T

Figure 6.18. Circuit to be analyzed with a Stimulink / SimPowerSystems model

Solution:

The model is shown in Figure 6.19, and the waveforms in Figure 6.20 where
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v, = 5sinwt, v, = -15sinwt, v,, = 20sinwt, o = 2nf = 0.4n

Vs = AC Voltage Source, Is = AC Current Source, f=0.2 Hz

L] |
VS@ ‘% —[] 8% — v s
i 1 i
L =+

I 1 VM 1 2 VM 2
1 e
= —p [ = —> [ Continuous
= Scope 2 -
Scopel
Resistances in unms V,FA)\ VB powergui

Capacitors in microfarads
Inductor in millihenries
VM = Voltage Mezasurement

> » Scope 3

>+ VA, VB

Subtract BUS VA-VB
Creator

Figure 6.19. Simulink / SimPowerSystems model for the circuit in Example 6.13

B Scope 3 VA, VB VA-VB P=ES)
SELAL ARE BAF -~

Time offset. 0

Figure 6.20. Waveforms for V, Vp, and v, — v,
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6.7 Summary
e Excitations or driving functions refer to the applied voltages and currents in electric circuits.

e A response is anything we define it as a response. Typically response is the voltage or current
in the “load” part of the circuit or any other part of it.

e If the excitation is a constant voltage or current, the response will also be some constant
value.

e If the excitation is a sinusoidal voltage or current, in general, the response will also be sinusoi-
dal with the same frequency but with different amplitude and phase.

e If the excitation is a time—varying function such as a sinusoid, inductors and capacitors do not
behave like short circuits and open circuits respectively as they do when the excitation is a
constant and steady—state conditions are reached. They behave entirely different.

e Circuit analysis in circuits where the excitation is a time—varying quantity such as a sinusoid is
difficult and time consuming and thus impractical in the t—domain.

e The complex excitation function greatly simplifies the procedure of analyzing such circuits
when excitation is a time—varying quantity such as a sinusoid.

e The procedure where the excitation—response relation is simplified to amplitude and phase
relationship is known as time—domain to frequency—domain transformation.

e The procedure where the excitation-response is put back to its sinusoidal form is known as
frequency—domain to time—domain transformation.

e For brevity, we denote the time domain as the t—domain, and the frequency domain as the
jo—domain.

e If a sinusoid is given in terms of the sine function, it is convenient to convert it to a cosine
function using the identity M(t) = Asin(ot+6) = AcoS(ot+ 6 —90°) before con-
verting it to the jo —domain.

e The t—domain to jo —domain transformation procedure is as follows:
1. Express the given sinusoid as a cosine function
2. Express the cosine function as the real part of the complex excitation using Euler’s identity
3. Extract the magnitude and phase angle from it.
e The jo —domain to t—domain transformation procedure is as follows:
1. Convert the given phasor from polar to exponential form

2. Add the radian frequency @ multiplied by t to the exponential form
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Chapter 6 Sinusoidal Circuit Analysis

3. Extract the real part from it.

e The circuit analysis of circuits containing R, L, and C devices, and which are excited by
sinusoidal sources, is considerably simplified with the use of phasor voltages and phasor cur-
rents which we represent by the boldface capital letters V and | respectively.

e Phasor quantities exist only in the jo —domain

e In the jw —domain the current through a resistor is always in—phase with the voltage across
that resistor

e In the jo —domain the current through an inductor lags the voltage across that inductor by
90°

e Inthe jo —domain the current through a capacitor leads the voltage across that capacitor by
90°

e In the jo —domain the impedance Z is defined as

\Y
Impedance = Z = Phasor Voltage _ Ys _ R+ij+_L
Phasor Current | joC
e Like resistance, the unit of impedance is the Ohm (Q).

e Impedance is a complex quantity whose real part is the resistance R, and the imaginary part is
oL -1/wC, that is,

Re{Z} =R and Im{Z} = oL - =
oC

e In polar form the impedance is expressed as

2 -1
Z:JR2+(wL—i ~tan (mL—i /R
w ()]

e The imaginary part of the impedance Z is called reactance and it is denoted with the letter X.
The two components of reactance are the inductive reactance X, and the capacitive reac-

tance X¢, i.e.,

X = X — X = wL—i

e The unit of the inductive and capacitive reactances is also the Ohm ().

e Inthe jo —domain the admittance Y is defined as
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|
Admittance = Y = £hasor Current _ s 1

Phasor Voltage Vv Z
e The admittance Y is the reciprocal of the impedance Z as conductance G is the reciprocal of

= G+_L+jcoC =
joL

the resistance R.

. . . . -1
e The unit of admittance is the siemens or mho (Q 7).

e The admittance Y is a complex quantity whose real part is the conductance G and the imag-
inary part is oC — 1 , that is,
ol

Re{Y}=G and Im{Y}=anC--~
oL

e The imaginary part of the admittance Y is called susceptance and it is denoted with the letter

B . The two components of susceptance are the capacitive susceptance Bc and the inductive

susceptance B, , that is,

1
B = Bo-B = uC-—

e In polar form the admittance is expressed as
2 1y, 1
Y = |G +((1)C—-——) Ztan (mC—-——)/G
oL oL

. . . -1
e The unit of the susceptances B and B, is also the siemens (Q 7).

e Admittances combine as conductances do.

e In phasor circuit analysis, conductance is not necessarily the reciprocal of resistance, and sus-
ceptance is not the negative reciprocal of reactance. Whenever we deal with resistance and
reactance we must think of devices in series, and when we deal with conductance and suscep-
tance we must think of devices in parallel. However, the admittance is always the reciprocal of
the impedance

e The ratio V/1 of the phasor voltage to the phasor current exists only in the jo — domain and
it is not the ratio v(t)/i(t) in the t—domain. Although the ratio v(t)/i(t) could yield some
value, this value is not impedance. Similarly, the ratio i(t)/v(t) is not admittance.

e Duality is a term meaning that there is a similarity in which some quantities are related to oth-
ers.
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6.8 Exercises

Multiple Choice

1. Phasor voltages and phasor currents can be used in the t —domain if a circuit contains
A. independent and dependent sources with resistors only

independent and dependent sources with resistors and inductors only

independent and dependent sources with resistors and capacitors only

o0 W

. independent and dependent sources with resistors, inductors, and capacitors
E. none of the above

2. If the excitation in a circuit is a single sinusoidal source with amplitude A, radian frequency
o, and phase angle 6, and the circuit contains resistors, inductors, and capacitors, all voltages
and all currents in that circuit will be of the same

A. amplitude A but different radian frequency ® and different phase angle 6
B. radian frequency o but different amplitude A and different phase angle 0
C. phase angle 6 but different amplitude A and different radian frequency ®

D. amplitude A same radian frequency ® and same phase angle 0
E. none of the above

3. The sinusoid v(t) = 120sin(ot+ 90°) in the jo —domain is expressed as

A. V = 120e/@+99
B. V = 120e/
C. V = 120!
D. V = 120¢!”

E. none of the above

4. A series RLC circuit contains two voltage sources with values /;(t) = 100cos(10t + 45°) and
Vo(t) = 200sin(5t-60°). We can transform this circuit to a phasor equivalent to find the cur-

rent by first replacing these with a single voltage source v(t) = v,(t) + v,(t) whose value is

A. v(t) = 300cos(15t-15°)
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v(t) = 100cos(5t + 105°)
(t) = 150cos(7.5t-15°
v(t) = 150cos(7.5t + 15°)

Mg O W

none of the above

5.The equivalent impedance Zeq of the network below is

A 1+]1
B. 1-j1
C. -1
D. 2+j0
E. none of the above
20 j05Q
Zog— 2@ /1~ 2Q

Figure 6.21. Network for Questions 5 and 6

6. The equivalent admittance Y, of the network in Figure 6.18 is
A. 4-j15

. 6
+Jﬁ

16

B. =
73

12 .2
S ARET

D. 2-j2
E. none of the above

7. The resistance of a coil is R = 1.5 Q and the inductance of that coil is L = 5.3 mH. If a
current of i(t) = 4coswt A flows through that coil and operates at the frequency of
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f = 60Hz, the phasor voltage V across that coil is
A. 10£53.1° V

B. 6£0°V

C. 5.3x107°.,90° V
D. 6.8£45° V
E. none of the above

8. A resistor with value R = 5 Q is in series with a capacitor whose capacitive reactance at

some particular frequency ® is —jX- = =5 Q. A phasor current with value I = 8£0° A is

flowing through this series combination. The t —domain voltage across this series combina-
tion is

A. 80cosmt
B. 80sinmt
C. 56.6c0s(mt — 45°)
D. 56.6cos(wt + 45°)
E

. none of the above

. -1. . . . ...
9. A conductance with value G = 0.3 Q ~ is in parallel with a capacitor whose capacitive sus-

ceptance at some particular frequency ® is jB; = j0.3 ot A phasor voltage with value

V = 10£0° is applied across this parallel combination. The t—domain total current
through this parallel combination is

A. 3cosot + j3sinmt
3cosmt-j3sinmt
5sin(wt + 53.2°)
5cos(mt +53.2°)

Mg 0w

none of the above

10. If the phasor | = jej(n/2), then in the t—domain i(t) is

A. cos(ot+m/2)
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B. sin(wt+mn/2)
C. —cosmt

D. —sinot

E. none of the above

Problems

1. Express the sinusoidal voltage waveform shown below as v(t) = Acos(wt+ 8), that is, find
A, o, and 6. Answer: v(t) = 2co0s(1000t + 36.1°)

v(y) 162V
o

0.94 ms

/ 0 t (ms)

2. The current i(t) through a device decays exponentially as shown by the waveform below, and

two values are known as indicated. Compute i(1), that is, the currentat { = 1 ms.

Answers: i(t) = 50e "' mA, 23.62 mA

-2.2ms

i (MA)

i =15.00 mA at 1.605 ms

/ | = 5.27 mA at 3.000 ms

t (ms)

3. At what frequency f is the network shown below operating if it is known that
Vg = 120coswt V and i = 12cos(ot—36.9°) A? Answer: f = 5533 KHz
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R
MV LI

~
1 uF

4. In the circuit below, vg = Vc0s(2000t + 6) V and the symbols V and A inside the circles

sk . . e
denote an AC voltmeter and ammeter respectively. Assume that the ammeter has negligible
internal resistance. The variable capacitor C is adjusted until the voltmeter reads 25 V and the

ammeter reads 5 A. Find the value of the capacitor. Answer: C = 89.6 uF

(A
&,
R2 2Q
Vs Other Part L 205 mH
@ of the \J ~>m
Network
C

5. In the circuit shown below, is it possible to adjust the variable resistor Ry and the variable
capacitor C so that Z, and Y,y have the same numerical value regardless of the operating

frequency? If so, what are these values? Answer: Yes,if C = 1 F and R} = 1 Q

* Voltmeters and Ammeters are discussed in Chapter 8. For this exercise, it will suffice to say that these instru-
ments indicate the magnitude (absolute) values of voltage and current.
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R; R,S1Q
Vs Other Part ZiN —- 2§
@ of the
Network YlN e

6. Consider the parallel RLC circuit below. As we know, the are the capacitive susceptance B
and the inductive susceptance B, are functions of frequency, that is, Bc‘ = 2nfC, and

B,| = 1/(2nfL)

o . .
L C
Y— —
1Q [1mH |1pF
[, L g L g

Find the frequency at which the capacitive susceptance cancels the inductive susceptance,
that is, the frequency at which the admittance Y, generally computed from the relation

Y| = JGZ+(BC—BL)2 isreducedto Y = «/672 = G. Answer: T=5 KHz

* This frequency is known as the resonance frequency. It is discussed in detail in Circuit Analysis I with MAT-
LAB Computing and Simulink / SimPowerSystems Modeling, ISBN 978 —1-934404-19-5.
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6.9 Solutions to End-of-Chapter Exercises
Multiple Choice

1. E Phasors exist in the jo —domain only
2.B
3.D

4. E The voltage sources v, (t) and v, (t) operate at different frequencies. Therefore, to find the

current we must apply superposition.

5.E 3-j0.5 This value is obtained with the MATLAB script z1=2+0.5j; z2=2*(-2j)/(2-2j);
z=z1+z2

z = 3.0000-0.50001
6.C
7.A o =2nf=2nx60 = 377 r/s,jXL=j(1)L=j><377><5.3><10_3=j2£2

Z =15+)2 = 25£53.13°,V = ZI = 25/53.13° x4/0° = 10£53.13°
8. C
9. D
10.C

Problems

1. The t—axis crossings define half of the period T. Thus, T/2 = 2.2 +0.94 = 3.14 ms, and
one period is T = 6.28 ms. The frequency is f = 1/T = 10°/6.28 = 10°/2n. Then,
® = 2xf or 0= 271 x 10°/21 = 1000 r/s

Next, we find the phase angle 6 from the figure above observing that /2 +6 = 2.2 ms

/ 1.62V

\ N\

0 t (ms)
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or

27 rad « 180 T

0 =22ms—= = 22x107° sx - _m
2 6.28x10°s mrad 2
_ 2.2x2x180°

_ T _126.1°-90° = 36.1°
6.28 2

Finally, we find the amplitude A by observing thatatt = 0, v = 1.62 V, that s,
v(0) = 1.62 = Acos(0 + 36.1°)

or

- 162 _ 5y
c0s36.1°

Therefore,
erefore v(t) = 2cos(1000t + 36.1°)

2. The decaying exponential has the form i(t) = Ae ™ mA where the time is in ms and thus

for this problem we need to compute the values of A and o using the given values. Then,

-3
. _ _ —(1.605 x 10%) o
||t=1-605 ms = 15 mA = Ae

and

: B A —(3000%107%)a
3000 ms = 227 MA = Ae

Division of the first equation by the second yields

o~(1.605 % 10730

A _ 15 mA
Ae—(3.000><10‘3)a 5.27 mA
or
o (1605 % 10730, + (3.000 x 10y ar _ 15
5.27
or
o1395x107%a _ 15
5.27
or 15
-3
In(5.27) = 1.395x 10 a
or 3
o = In(5/5.27)x10° _
1.395
and thus
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i(t) = Ae_750t mA

To find the value of A we make use of the fact that i| f—3ms = 5.27 mA. Then,
597 = pg T80X3x 107
or 2
 527x10
A = e-2.25
or
A = 0.050 A = 50mA
Therefore, 750t
i(t) = 50e ' mA
and

_3
i = 50e 2 = 2362 mA

t=1ms ~

3. The equivalent phasor circuit is shown below.

R
AM——T-
Vg 8Q Jo C )
d N
1 uF
In the jo-domain Vg =120£0°V, | =12/-369°A, joL =j10°w, and

_j/oC= -j10%/0

Then,
7o Ys _ _120£0°V_ _ 14 369

|~ 12./-369° A

and
12 = 10 = JR?+ (0L - 1/0C)>?

or

R?+ (oL -1/0C)? = 100
or

8%+ (wL-1/wC)* = 100
or

(oL -1/wC)* = 36
or
oL-1/0C = 6
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or

ot 2 3 9
0 -6x100w-10" =0

Solving for w and ignoring the negative value, we obtain

3 6 9
. - 6x10 +J36;<10 +4x10° _ 44 7oc e

and

0 _ 34,765 r/s
27 27

f = = 5,533 Hz = 5.533 KHz

Check: joL = j34.765, —j/wC = —j28.765

Z = R+j(oL—1/(0C)) = 8+(34.765 - 28.765) = 8 +j6 = 10./36.9°

and
120 £0°

= ——— = 12/-36.9°
10£36.9°

4. Since the instruments read absolute values, we are only need to be concerned the magnitudes
of the phasor voltage, phasor current, and impedance. Thus,

V| = (ZI[I| = 25 = JR%+ (0L - 1/0C)? X5

or
4

\Y

42
252 = [R%+ (0L —1/0C)%]x 25 = [4+(1—5Xéo ) szs

250 x 107 , 625% 1078

= 100 + 25— >
C

=625

and after simplification we obtain

500C° + 250 x 10 'C - 625x 10™° = 0
Using MATLAB, we obtain
p=[500 250*10%(-4) —625*107(-8)]; r=roots(p)
and this yields C = 89.6 uF
The second root of this polynomial is negative and thus it is discarded.

5. We group the series devices as shown below.
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— N - ~N

/ /
Zn— 1R \I | R 1Q\I
YIN— : Lain : 4!
. )\
- /Zl -+

Thus Z; = Ry +jw, Z, = 1-j/(»wC), and

. Z2,°Z,  (Ry+jw)(1-j/eC
NTZ7,42, 7 R +jo+1-j/0oC

and at any frequency ®
/ _ 1 Ri+jo+1-j/wC
N7z Ri+jo)(1-j/oC

Therefore, if the condition Y,y = Z;y is to hold for all frequencies, the right sides of Zy

and Y\ must be equal, that is,

(Ri+jo)(1-j/0C) Ri+jo+1-j/wC
Ri+jo+1-j/0oC (R, +jo)(1-j/0C)

[(R,+j0)(1-j/0C)]* = [Ry +jo+1-j/0C]°

(Ri+jo)(1-j/wC) = Ry +jo+1-j/0C

R —j&+j(o+l=R +1+j((x)—i)
1 oC c ! wC

(Rl+ l) +j(m—ﬁ) +jo = (R +1) +j(w—i)
C oC oC
Equating reals and imaginaries we obtain

1

1
R,+=
e

Ry
=R;+1 - =0-—
oC

oC
From the first equation above we obtain C = 1 F and by substitution of this value into the
second equation we obtain R; = 1 Q.
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[,
R L C

Z,Y% ™~
1Q [1mH |1uF

[, & &

The admittance |Y| = «/GZ"'(BC_BL)Z isreducedto Y = «/672 = G when B.-B, =0,
or B = B ,or 2nfC = 1/(2nfL), from which f = 1/(2n./LC), and with the given val-

ues,

f= 1 ~ 5000 Hz

21 10 x 107

and since the resistive branch is unity, at this frequency Z = Y = 1 and the phase is zero

degrees.
The magnitude and phase at other frequencies can be plotted with a spreadsheet or MAT-
LAB, but it is easier with the Simulink / SimPowerSystems model shown in Figure 6.22.

z
RLC Branch Continuous
IM -
T powergui

IM = Impedance Measurement

Figure 6.22. SimPowerSystems model for impedance measurement
After the simulation command is executed, we must click the Powergui block, and on the pop
up window we must select the Impedance vs Frequency Measurement option to display the
magnitude and phase of the impedance function shown in Figure 6.23.
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Figure 6.23. Magnitude and Phase plots for the SimPowerSystems model in Figure 6.22

We observe that the maximum value of the impedance, i.e.,
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Chapter 7

Phasor Circuit Analysis

his chapter begins with the application of nodal analysis, mesh analysis, superposition, and
T Thevenin’s and Norton’s theorems in phasor circuits. Then, phasor diagrams are intro-

duced, and the input—output relationships for an RC low—pass filter and an RC high—pass
filter are developed.

7.1 Nodal Analysis

The procedure of analyzing a phasor- circuit is the same as in Chapter 3, except that in this chap-
ter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.1

Use nodal analysis to compute the phasor voltage Vg = V-V for the circuit of Figure 7.1.

5.0°A]  —j6 Q 3 Q l
T T 10.20° A

Figure 7.1. Circuit for Example 7.1

Solution:

As in Chapter 3, we choose a reference node as shown in Figure 7.2, and we write nodal equa-
tions at the other two nodes A and B. Also, for convenience, we designate the devices in series
as Z,,Z,,and Z5 as shown, and then we write the nodal equations in terms of these impedances.

Z, =4-j6 = 7.211/-56.3°
Z, = 2+j3 = 3.606.£56.3°

Zy = 8-]3 = 8544.,-206°

* A phasor is a rotating vector
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5.0° A —169 , —13 Q - l
T T s 1020° A

Figure 7.2. Nodal analysis for the circuit for Example 7.1

By application of KCL at V,,
Va, Va-Ve

= 5.0°
Zl ZZ
1 1) 1
V,—=Vg = 5.0°
(zl z,) Az, B
or
(Zl+zz)v =V, = 5.0°
2,2,/ Az,

and by substitution for Z, and Z, we obtain

4-j6+2+j3 v 1
(7.211.£-56.3)(3.606.£56.3°) " A 3.606.£56. 3V

= 5/£0°

22—&%@ —(0.277£-56.3°)Vg = 5.0°

6.708£-26.6°

e oo Va~ (0.2774-56.3°)Vg = 520

(0.258£-26.6°)V 5 — (0.277£-56.3°)Vg = 520°

Next, at Vg:
Vg —Va 4 Vg
Z, Z3

= -10£0°

1 (1 1 )
=V = Vg = -10£0°
ZZ AT ZZ ’ Z3 ®

In matrix form (7.1) and (7.3) are written as follows:

(7.1)

(7.2)

(7.3)
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(zlJrzi) _zl Vv 5
) ZJ{A}zL} (7.4)

We will follow a step—by—step procedure to solve these equations using Cramer’s rule, and we
will use MATLAB® ~ to verify the results.

We rewrite (7.3) as

Z,+Z
-2V (ZE) v, = 1021807

Z, Z,Z4
1 2+j3+8-j3 _ .
3606563 ' A (3.606.56.3°)(8.544 7 206°) 8 = 104180

o 10 _ °
—(0.277£-56.3 )VA+3—————0_810435.70VB = 104180

—(0.277£-56.3°)V 5 + (0.325./-35.7°)Vg = 10./180° (7.5)
and thus with (7.2) and (7.5) the system of equations is

(0.258.£-26.6°)V , — (0.277.£-56.3°)Vg = 5.£0°

—(0.277£-56.3°)V +(0.325£-35.7°)Vz = 10£180° (7.6)
We find V, and Vg from
Va = % (7.7)
and o,
Ve = % (7.8)

The determinant A is

A = | (0.258£-26.6°) —(0.277£-56.3°)
~(0.277£-56.3°) (0.325./-35.7°)
= (0.258.£-26.6°) - (0.325./-35.7°) — (0.277 £~56.3°) - (~0.277 £~56.3)
= (0.084./-62.3°) — (0.077 £-112.6) — (0.039 — j0.074) — (— 0.023 — j0.071)

— (0.062—j0.003 = 0.062./—2.8°)
Also,

* If unfamiliar with MATLAB, please refer to Appendix A
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5,0° —(0.277.£-56.3°)
10.£180° (0.325/-35.7°)
= (5.£0°)(0.325./-35.7°) — (10.£180°)[~(0.277 £-56.3°)]
(1.625/-35.7° + 2.770.£123.7°) = 1.320 — j0.948 + (— 1.537 + j2.305)
~0.217 +j1.357 = 1.374.£99.1°

D1:

and
D. = ‘ (0.258£-26.6°) 54£0°
—(0.277 £-56.3°) 10£180°
(0.258./-26.6°)(10./180°) — (~0.277 /~56.3°)(5 £0°)
2.580./153.4° + 1.385 /-56.3° = (= 2.307 + j1.155 + 0.769 — j1.152)
—1.358 +j0.003 = 1.358.£179.9°

Therefore, by substitution into (7.7) and (7.8), we obtain

D; _ 1374,99.1°

V, = = = 22.161.2101.9° = —4.570 + j21.685
A 0.062,-2.8°
and 5
Vg = —2 = L38LI° _ 54907/ 177.3° = —24.780 - j1.169

A 0.062,-2.8°

Finally, i .
Vag = Va—Vg = —4.570 +j21.685 — (— 24.780 — j1.169)
= 20.21 +j22.85 = 30.5.£48.5°

Check with MATLAB:
z1=4-j*6; z2=2+j*3; zZ3=8-j*3,; % Define z1, z2 and z3
Z=[1/z1+1/z2 -1/z2; -1/z2 1/z2+1/z3]; % Elements of matrix Z
=[5 -10]; % Column vector |

V=2z\I; Va=V(1,1); Vb=V(2,1); Vab=Va-Vb; % Va =V(1), Vb =V(2) are also acceptable
% With fprintf only the real part of each parameter is processed so we will use disp
fprintf(" \n"); disp('Va ="); disp(Va); disp('Vb = "); disp(Vb); disp('Vab ="); disp(Vab);
fprintf(* \n");

Va = -4.1379 + 19.6552i
Vb = -22.4138 - 1.03451
Vab = 18.2759 + 20.68971

These values differ by about 10% from the values we obtained with Cramer’s rule where we
rounded the values to three decimal places. MATLAB performs calculations with accuracy of 15
decimal places, although it only displays four decimal places in the short (default) number display
format. Accordingly, we should accept the MATLAB values as more accurate.
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7.2 Mesh Analysis

Again, the procedure of analyzing a phasor circuit is the same as in Chapter 3 except that in this
chapter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.2
For the circuit of Figure 7.3, use mesh analysis to find the voltage V,,,, that is, the voltage

across the 10£0° current source.

2Q  j3Q
N
| i
@ @ Vioa
5.0° A] —j6 30 l i
T T 10.£0° A

Figure 7.3. Circuit for Example 7.2

Solution:

As in the previous example, for convenience, we denote the passive devices in series as
Z,,Z,,and Z, and we write mesh equations in terms of these impedances. The circuit then is as

shown in Figure 7.4 with the mesh currents assigned in a clockwise direction.

We observe that the voltage across the 10£0° current source is the same as the voltage across

the 8 Q and —j3 Q series combination.

By inspection, for Mesh 1,
(7.9)

+
I~ 1
@ Vioa

520° Al ° i

10£0° A

Figure 7.4. Mesh analysis for the circuit of Example 7.2
By application of KVL around Mesh 2,
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—~(4-j6)1; +(14-j6)I,-(8-j3)I; = 0 (7.10)

Also, by inspection for Mesh 3,
I, = 10.£0° (7.11)

and in matrix form, (7.9), (7.10), and (7.11) are written as

1 0 0 hh 5
~(4-j6) (14-j6) —(8-j3)||ly = | O (7.12)
0 0 1 I, [10

We use MATLAB for the solution of 7.12."

Z=[1 0 0; —(4-j*6) 14-j*6 —(8-*3); 0 O 1J;

V=[5 0 10];

I=2\V; i1=I1(1); i2=1(2); i3=I(3); fprintf(' \n");

disp(‘il ="); disp(il); disp(‘i2 = "); disp(i2); disp('i3 = "); disp(i3); fprintf(' \n*);

il =5 12 = 7.5862 - 1.0345i 13 =10
Therefore, the voltage across the 10£0° A current source is

Vioa = Zs(l,—13) = (8—j3)(7.586 —j1.035 - 10) = —22.417 —j1.038

We observe that this is the same value as that of the voltage Vg in the previous example.

7.3 Application of Superposition Principle

As we know from Chapter 3, the superposition principle is most useful when a circuit contains
two or more independent voltage or current sources. The following example illustrates the appli-
cation of the superposition principle in phasor circuits.

Example 7.3

Use the superposition principle to find the phasor voltage across capacitor C, in the circuit of
Figure 7.5.

* As we experienced with Example 7.1, the computation of phasor voltages and currents becomes quite tedious. Accordingly,
in our subsequent discussion we will use MATLAB for the solution of simultaneous equations with complex coefficients.
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&)
5,0° Al -j6 © 3 0 l
T TCZ 10.20° A

Figure 7.5. Circuit for Example 7.3

Solution:

Let the phasor voltage across C, due to the 520° A current source acting alone be denoted as

V'c,, and that due to the 10£0° A current source as V", . Then,
Vez = Vi + Ve,

With the 5£0° A current source acting alone, the circuit reduces to that shown in Figure 7.6.

20 J3Q
8 Q

Vie

5-0°A| -j6Q -3 Q
il 1

Figure 7.6. Circuit for Example 7.3 with the 520° A current source acting alone

By application of the current division expression, the current 1'¢, through C, is

: 4-i6 . 7.211./-56.3°
I'e, = §/0° = fbmmer o

4-j6+2+j3+8-j3 = 15232,/ 0320040 = 236747331

The voltage across C, with the 5£0° current source acting alone is
Ve, = (<3)(2.367.£-33.1°) = (3.£-90°)(2.367.£-33.1°)
7.102£-123.1° = - 3.878 —5.949

(7.13)

Next, with the 10£0° A current source acting alone, the circuit reduces to that shown in Figure

7.1.
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4 Q

-j6 Q ‘ l
T TCZ 10.20° A

Figure 7.7. Circuit for Example 7.3 with the 10£0° A current source acting alone

and by application of the current division expression, the current 1", through C, is

. 4-j6+2+j3 B o
ez = 4—j6+2+j3+8—j3( 10£0%)
_ 6.708.£-26.6°
© 15.232.,-23.2°

10£180° = 4.404£176.6°

The voltage across C, with the 10£0° current source acting alone is

V"c, = (-)3)(4.404£176.6°) = (3£-90°)(4.404.£176.6°)

— (13.213.86.6 = 0.784 + }13.189) (7:1)
Addition of (7.13) with (7.14) yields
Ve, = Viep+ V', = —3.878—5.949 + 0.784 + j13.189
o Vo, = ~3.004 +j7.240 = 7.873/113.1° (7.15)
Check with MATLAB:

z1=4-6j; z2=2+3j; z3=8-3|; Is=5; i1l=z1*Is/(z1+z2+z3);...

i1, magll=abs(il), phasell=angle(i1)*180/pi, v1=-3j*il,...

magV1=abs(vl), phaseV1=angle(v1)*180/pi,...

Is2=-10; i2=(z1+z2)*1s2/(z1+z2+z3); magl2=abs(i2), phasel2=angle(i2)*180/pi,...
v2=-3j*i2, magV2=abs(v2), phaseV1=angle(v2)*180/pi,...

vC=v1+v2, magvC=abs(vC), phasevC=angle(vC)*180/pi

il =
1.9828 - 1.29311
magll =
2.3672
phasell =
-33.1113
vl =
-3.8793 - 5.94831
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magVl =
7.1015
phaseVl =
-123.1113
magl2 =
4.4042
phasel2 =
176.6335
V2 =
0.7759 +13.18971
magV2 =
13.2125
phaseVl =
86.6335
vC =
-3.1034 + 7.24141
magvC =
7.8784
phasevC =
113.1986

The Simulink models for the computation of V'c, and V"¢, are shown in Figures 7.8 and

7.9respectively.

1 [ 1 « =P

[ - || > ————— |*p™l 7.0
- : e | 2 =7 _— — 1|
Vol e raul| . . D730 | i - =
PR -p-_lL —————— ' "I — o — Progucta
.o R L 5 |  Prodct 1 5 J
- ] S ] e o
Complex o 1 i - & r - #
hag- Angle 18 Sl —_— b [ o erral — -2.148
! v | 0577l | +"P" —— |
_ - — "] arg(Ica) | ]
L | BT o b I sz pisz |- I sz

18 — | ™! — —_—
24T

Corrplext
hRg Argle 2

Figure 7.8. Model for the computation of V'c,, Example 7.3

The final step is to add V'¢, with V"¢, . This addition is performed with the model of Figure

7.10 where the models of Figures 7.8 and 7.9 have been converted to Subsystems 1 and 2 respec-
tively.
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g » e ] 1521
i) ==
M e o2 —
il g 5\ =] 10| Progucts Froets
T+ Ly v Divide 1 — -
Complex — [ [
WRg-Angle 5 > @ | T
[ _onsrel - .
b :I L || arg[Ic2i = ||
N | T _— Surn 5 Surn 6
148 " Sum 4
fu | Y]
12242132} I
Carples: o
hiag Andle 4
Figure 7.9. Model for the computation of V"¢, , Example 7.3
T8 T pling outs | XTI e
1 . | -AET9 - 5945
115 _|—D- In2 out? o | KT Mag-Angle e
o Cornples 1
Subsystem 1 p+
(T+Z2+28)(T) — | -5 105+ 72410
* -
L Wi+
S g T T
71+ 72 I, | 07759 + 15191
P2 ou &)
e — pasaae,
(14Z2+ 2102 Subsystem 2

Figure 7.10. Model for the addition of V'c, with V".,, Example 7.3

The model in Figure 7.10 can now be used with the circuit of Figure 7.5 for any values of the cur-
rent sources and the impedances.

7.4 Thevenin’s and Norton’s Theorems

These two theorems also offer a very convenient method in analyzing phasor circuits as illustrated
by the following example.

Example 7.4

For the circuit of Figure 7.11, apply Thevenin’s theorem to compute I, and then draw Norton’s

equivalent circuit.
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85 Q ~j100 ©

@ 100 Q

170£0° V j200 Q 50 Q

Figure 7.11. Circuit for Example 7.4
Solution:

With the 100 Q resistor disconnected, the circuit reduces to that shown in Figure 7.12.

85 Q -j100 Q
17020° V| j200 @ 50 Q

Figure 7.12. Circuit for Example 7.4 with the 100 Q resistor disconnected

By application of the voltage division expression,

V, = —J&NOAOO = MNOAOO = 156.46 £23° = 144 +j61.13

85 + j200 = 217.31.67°
and
V, = —29 17000 = ——20 ____170.,0° = 76./63.4° = 34+ 68
2 = 50-j100 = 111.8/(-634)° = AT =004

Then, from (7.16) and (7.17),
Voy = Voe = Vg, = V;—V, = 144 +]61.13 - (34 + j68)

Vg = 110-j6.87 = 110.21/£-3.6°

(7.16)

(7.17)

(7.18)

Next, we find the Thevenin equivalent impedance Z;, by shorting the 170£0° V voltage

source. The circuit then reduces to that shown in Figure 7.13.
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85 Q S-j100 Q 85 Q -j100 Q j200 Q 85 Q
X Y Y Zy
j200 Q 50 Q j200 50 Q 50 Q -j100 Q

Figure 7.13. Circuit for Example 7.4 with the voltage source shorted

We observe that the parallel combinations j200 || 85 and 50 || j100 are in series as shown in Fig-

ure 7.14.
j200 Q
Ity —>
50 Q < —j100 Q

Figure 7.14. Network for the computation of Z¢y for Example 7.4

From Figure 7.14,
_ 85200 , 50 x (=j100)
T ™ 854+j200  50-j100

and with MATLAB,
Zth=85*200j/(85+200j) + 50%(~100j)/(50-100j)

Zth =
1.1200e+002 + 1.0598e+0011
or
Zy = 1120 +j10.6 = 1125/5.4° Q

The Thevenin equivalent circuit is shown in Figure 7.15.
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_ A
| AMN— T | o X
112Q jl0.6Q
Lo — 5 J
S
VTH= 110214_360
= 110~j6.87
oY

Figure 7.15. Thevenin equivalent circuit for Example 7.4

With the 100 Q resistor connected at X-Y, the circuit becomes as shown in Figure 7.16.

AN SHO0 X
112 Q jl0.6Q l

Q) 10022 'x

Viy = 110-i6.87

Y
Figure 7.16. Simplified circuit for computation of 1y in Example 7.4
We find 1y using MATLAB:

Vth=110-6.87j; Zth=112+10.6j; Ix=Vth/(Zth+100);
fprintf(* \n"); disp('Ix = 7); disp(Ix); fprintf(' \n");

Ix = 0.5160 - 0.05821

that is,

v
Iy = — " - 0516-j0.058 = 0.519/-6.4° A (7.19)
Zrp + 100 Q

The same answer is found in Example C.18 of Appendix C where we applied nodal analysis to
find 1.

Norton’s equivalent is obtained from Thevenin’s circuit by exchanging Vyy, and its series Z1,

with Iy in parallel with Z as shown in Figure 7.14. Thus,

|- Yrn _ 11021/-36°
N7z, T 1125/54°

= 0.98£-9° A

and
Zy = Zpy = 1125/5.4° Q
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® 1

Figure 7.17. Norton equivalent circuit for Example 7.4

7.5 Phasor Analysis in Amplifier Circuits

Other circuits such as those who contain op amps and op amp equivalent circuits can be analyzed
using any of the above methods.

Example 7.5
Compute iy (t) for the circuit in Figure 7.18 where v;(t) = 2cos(30000wt) V.

()

Ve () 103
/[10/3 uF 5V (1)

Figure 7.18. Circuit for Example 7.5

Solution:

As a first step, we perform the t—domain, to jo —domain transformation. Thus,

iX_ = joL = j0.2x107°x30%10° = j6

and 1 .
iXe = s = = —j10
©C " T30x10°x % 107
Also,

and the phasor circuit is shown in Figure 5.19.
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Figure 7.19. Phasor circuit for Example 7.5

At Node @: V,-2£0° Vv V,-V. V,-5V
1 +—L L "€ 1 "'C (7.20)
2 8+j6 10 50
and since . )
1 1 86 86 4 .3

8+j6 8+j6 8.6 100 _ 50 150

the nodal equation of (7.20) simplifies to

35 i l — o
(SO_Jsojvl_st = 1.0 (7.21)
At Node @:
Ve-Va Ve _
10 -j10
or 1 1
L 1. .1 _
—10v1+(10+110)vC =0 (7.22)
At Node ®:

We use MATLAB to solve (7.21) and (7.22).

G=[35/50 —j*3/50; —-1/5 1/10+j*1/10]; I=[1 0]; V=G\|

Ix=5*V(2,1)/4; % Multiply Vc by 5 and divide by 4 to obtain current Ix
maglx=abs(Ix); theta=angle(Ix)*180/pi; % Convert current Ix to polar form

fprintf(* \n"); disp(* Ix = "); disp(IX);...

fprintf('maglx = %4.2f A \t', maglx); fprintf('theta = %4.2f deg \t', theta);...

fprintf(' \n"); fprintf(' \n");

IXx = 2.1176 - 1.75461 maglx = 2.75 A theta = -39.64 deg

Therefore, .
| = 2.75./-39.6° < i(t) = 2.75c0s(30000t — 39.6°)
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Example 7.6

Compute the phasor V, for the op amp circuit of Figure 7.20.

-5 Q
¥4
I\

Figure 7.20. Circuit for Example 7.6
Solution:

We assign phasor voltages V; and V" as shown in Figure 7.21, and we apply KCL at these nodes,
while observing that V , = V ¥

To4Q )
V., =420V =00
J

(o,

Figure 7.21. Application of KCL for the circuit of Example 7.6

At Node @:
V1—440°+V1_Vout+vl_vout vV, _
4 -j5 5 -j10
or
9 .i) _(1 'l) - °
(20”10 Vim(5 15 Vou = 140 72
At Node @, N
Vo, =V =Vt
and thus,
Vout Vout_vl Vout_vl _
+ - =0
10 5 -5
or
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_(%+j%)vl (130“5) out = 0 (7.24)

Solving (7.23) and (7.24) with MATLAB we obtain:

format rat

G=[9/20+j*3/10 —-1/5-j*1/5; —-1/5-j*1/5 3/10+j*1/5]; I=[1 O]; V=G\I,
fprintf(' \n");disp(‘V1 ="); disp(V(1,1)); disp(‘*Vout ="); disp(V(2,1));
format short

magV=abs(V(2,1)); thetaV=angle(V(2,1))*180/pi;

fprintf('maglx = %5.3f A \t', maglx); fprintf(‘theta = %4.2f deg \t', theta);...
fprintf( \n"); fprintf(' \n")

V1 = 68/25 - 24/25i Vout = 56/25 - 8/25i
maglx = 2.750 A theta = -39.64 deg

Therefore,
ereere Vi = 2.263/-8.13° (7.25)

7.6 Phasor Diagrams

A phasor diagram is a sketch showing the magnitude and phase relationships among the phasor
voltages and currents in phasor circuits. The procedure is best illustrated with the examples
below.

Example 7.7
Compute and sketch all phasor quantities for the circuit of Figure 7.22.

V@ QVLTL —i5Q

Figure 7.22. Circuit for Example 7.7

Solution:

Since this is a series circuit, the phasor current I is common to all circuit devices. Therefore, we
assign to this phasor current the value I = 120° and use it as our reference as shown in the
phasor diagram of Figure 7.23 where:
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Vg = (2 Q)(1£0°) = 220°V
V, = (j3 Q)(1£0°) = j3 = 3.£90° V

Ve = (-j5 Q)(1£0°) = —j5 = 5£-90° V
Vg = Ve+ (V| + V) = 2-j2 = 2./2/-45°
\
Ve I=1£0°
VL+VC ===
VS=VR+(VL+VC)
Ve

Figure 7.23. Phasor diagram for the circuit of Example 7.7

Example 7.8
Compute and sketch all phasor quantities for the circuit of Figure 7.24.

| |

+
! \T] lIR I RS

S

Ig | 10Q 20Q | —j10Q

Figure 7.24. Circuit for Example 7.8

Solution:

Since this is a parallel circuit, the phasor voltage V is common to all circuit devices. Therefore let
us assign this phasor voltage the value V = 120° and use it as our reference phasor as shown in
the phasor diagram of Figure 7.25 where:

1£0°/10 = 100.£0° mA
I, = 1£0°/j20 = 1/0°/20/90° = 50/-90° m
1£0°/(~j10) = 1.£0°/10/-90° = 100£90° mA
Ic+ 1, = 50£90° mA

lg = Ig+(le+1,) = 100 +j50 = 111.8./26.6°

(@]
I
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Tty feeeeeees Tg=Ig+(Ic+)

© V=100

Ir

I
Figure 7.25. Phasor diagram for Example 7.8

We can draw a phasor diagram for other circuits that are neither series nor parallel by assigning
any phasor quantity as a reference.

|
Example 7.9

Compute and sketch all phasor voltages for the circuit of Figure 7.26. Then, use MATLAB to
plot these quantities in the t—domain.

Figure 7.26. Circuit for Example 7.9

Solution:

We will begin by selecting Iz, = 1£0° A as our reference as shown on the phasor diagram of

Figure 7.27. Then,
Viy = 5 Qx g, =5x120° = 50°

V| = j3 Qx g, = 3290°x 1.£0° = 3./90°
Vey = 2 Qx gy = 2(Ig +1gy) = 2(ﬁ+ Ig,) = 2(283£3L
5 5/-90°
2.33./121° +100° =-12+]2+10 = 8.8 +j2 = 9./12.8°

+ 540")

and
Vg = Vg1 +V = 88 +j2+5+j3 = 13.8+j5 = 14.7220°
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V. = 5.83/31°
Vg = 14.7.£20°
V, = 3290°
Vg, = 9212.8°
Vgp = 520° g, = 120° A

Figure 7.27. Phasor diagram for Example 7.9

Now, we can transform these phasors into time—domain quantities and use MATLAB to plot
them. We will use the voltage source as a reference with the value Vg = 1£0°, and we will apply

nodal analysis with node voltages V3, V,, and V3 assigned as shown in Figure 7.28.

Figure 7.28. Circuit for Example 7.9 with the voltage source taken as reference

The node equations are shown below in matrix form.

1 0 0
1o(L,i.1y L Vi 1
2 2 —-j5 j3 J3 V, 0
\Y 0
TG RN
i 17 |
G

The MATLAB script is as follows:

% Enter the non-zero values of the G matrix
G(1,1)=1;

G(2,1)=-1/2;

G(2,2)=1/2-1/5j+1/3j;

G(2,3)=-1/3j;

G(3,2)=-1/3j;

G(3,3)=1/3j+1/5;

%

% Enter all values of the | matrix
I=[1 0 O];

%

% Compute node voltages
V=G\I;

%
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VR1=V(1)-V(2);

VL=V(2)-V(3);

% Compute magnitudes and phase angles of voltages

magV1=abs(V(1)); magV2=abs(V(2)); magV3=abs(V(3));
phaseV1=angle(V(1))*180/pi; phaseV2=angle(V(2))*180/pi; phaseV3=angle(V(3))*180/pi;
magVR1=abs(VR1); phaseVR1=angle(VR1)*180/pi;

magVL=abs(VL); phaseVL=angle(VL)*180/pi;

%

% Denote radian frequency as w and plot wt for O to 2*pi range

wt=linspace(0,2*pi);

V1=magV1l*cos(wt—phaseV1);

V2=magV2*cos(wt—phaseV2);

V3=magV3*cos(wt—phaseV3);

VR1t=magVR1*cos(wt—-phaseVR1);

VLt=magVL*cos(wt—-phaseVL);

%

% Convert wt to degrees

deg=wt*180/pi;

%

% Print phasor voltages, magnitudes, and phase angles

fprintf(’ \n’);

% With fprintf only the real part of each parameter is processed so we will use disp
disp(V1 ="); disp(V(1)); disp(V2 = ); disp(V(2)); disp('V3 =); disp(V(3));

disp('VR1 ="); disp(VR1); disp('VL = "; disp(VL);

fprintf('magV1 = %4.2f V \t', magV1); fprintf(magV2 = %4.2f V \t', magV2);
fprintf('magV3 = %4.2f V', magV3); fprintf(' \n"); fprintf(' \n");

fprintf('phaseV1 = %4.2f deg \t', phaseV1);

fprintf('phaseV2 = %4.2f deg \t', phaseV2); fprintf('phaseV3 = %4.2f deg’, phaseV3);
fprintf(' \n"); fprintf(' \n");

fprintfCmagVR1 = %4.2f V \t', magVR1); fprintf(‘'phaseVR1 = %4.2f deg ', phaseVR1);
fprintf(" \n"); fprintf(' \n");

fprintf('magVL = %4.2f V \t', abs(VL)); fprintf('phaseVL = %4.2f deg ', phaseVL);
fprintf(’ \n');

%

plot(deg,V1,deg,V2,deg,V3,deg,VR1t,deg,VLt)

fprintf(* \n");

vl =1
V2 = 0.7503 - 0.12961
V3 = 0.4945 - 0.42631

VR1 = 0.2497 + 0.12961

VL = 0.2558 + 0.29671

magVl = 1.00 V magV2 = 0.76 V magV3 = 0.65 V
phasevVl = 0.00 deg phaseV2 = -9.80 deg phaseV3 = -40.76 deg
magVR1l = 0.28 V phaseVR1l = 27.43 deg

magVL = 0.39 V phaseVL = 49.24 deg

and with these values we have

Vg(t) = vy(t) = cosmot V,(t) = 0.76cos(ot—-9.8°) v,(t) = 0.65cos(wt—40.8°)
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Vg, (1) = 0.28cos(wt +27.4°) v (1) = 0.39cos(wt +49.2°)

These are plotted with MATLAB as shown in Figure 7.29.

- I I I f I I I
0 50 100 150 200 250 300 350 400

Figure 7.29. The t—domain plots for Example 7.9

7.7 Electric Filters

The characteristics of electric filters were introduced in Chapter 4 but are repeated below for con-
venience.

Analog filters are defined over a continuous range of frequencies. They are classified as low—pass,
high—pass, band—pass and band—elimination (stop—band). Another, less frequently mentioned filter,
is the all-pass or phase shift filter. It has a constant amplitude response but is phase varies with fre-
quency. This is discussed in Signals and Systems with MATLAB Computing and Simulink Modeling,
ISBN 978-1-934404-11-9.

The ideal amplitude characteristics of each are shown in Figure 7.30. The ideal characteristics are
not physically realizable; we will see that practical filters can be designed to approximate these
characteristics. In this section we will derive the passive RC low and high—pass filter characteris-
tics and those of an active low—pass filter using phasor analysis.

A digital filter, in general, is a computational process, or algorithm that converts one sequence of
numbers representing the input signal into another sequence representing the output signal.
Accordingly, a digital filter can perform functions as differentiation, integration, estimation, and,
of course, like an analog filter, it can filter out unwanted bands of frequency. Digital filters are dis-
cussed in Signals and Systems with MATLAB Computing and Simulink Modeling, ISBN 978-1-
934404-11-9.
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VLUt Vout
Vin Vin
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©; 03 O )
Ideal band— pass Filter Ideal band — elimination filter

Figure 7.30. Amplitude characteristics of the types of filters

7.8 Basic Analog Filters

An analog filter can also be classified as passive or active. Passive filters consist of passive devices
such as resistors, capacitors and inductors. Active filters are, generally, operational amplifiers
with resistors and capacitors connected to them externally. We can find out whether a filter,
passive or active, is a low—pass, high—pass, etc., from its the frequency response that can be
obtained from its transfer function. The procedure is illustrated with the examples that follow.

Example 7.10

Derive expressions for the magnitude and phase responses of the series RC network of Figure
7.31, and sketch their characteristics.

0 A
+ R N

Vin C 7= Vou
(o]

Figure 7.31. Series RC network for Example 7.10

Solution:

By the voltage division expression,
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v . _LijoC
ot T R+1/joC N

and denoting the ratio V,,;/V;, as G(jo), we obtain

out

V
Gljw)= 2 = z

1 1 _
Vi  1+J0RC 1 02R2C?) zatan(wRC) A1+ 0?RC?

The magnitude of (7.26) is

Z-atan(wRC) (7.26)

G(jo)l= ‘V—t =L (7.27)
inl  J1+0°R*C?
and the phase angle 0, also known as the argument, is
_ e argf Your) _
0 = arg{G(jm)}= arg v = —atan(wRC) (7.28)
in

We can obtain a quick sketch for the magnitude |G(jw)| versus o by evaluating (7.27) at
o =0,0 =1/RC,and w — o . Thus,

asw—0,|G(jo) =1
for ® = 1/RC, |G(jo)| = 1/.2 = 0.707
and as ® — o, |G(jo)| =0

The magnitude, indicated as |G(jw)| versus radian frequency for several values of ® is shown in
Figure 7.32 where, for convenience, we have let RC = 1. The plot shows that this circuit is an
approximation, although not a good one, to the amplitude characteristics of a low—pass filter.

We can also obtain a quick sketch for the phase angle, i.e., 8 = arg{G(jo)} versus ® by evaluat-
ingof (11.3)atw = 0, ®w = 1/RC, ® = -1/RC, ® — —o and o — . Thus,

as w— 0, 6=z—-atan0=0°

form = 1/RC, 0 = —atanl = —45°
for® = -1/RC, 6 = —atan(-1) = 45°
as W — —oo, B = —atan(—eo) = 90°
and as @ — e, 0 = —atan(e) = -90°
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Figure 7.32. Amplitude characteristics of a series RC low—pass filter

Figure 7.33 shows the phase characteristic of an RC low—pass filter where, again for conve-

nience, we have let RC = 1.

Phase Angle Ghamcteristics for RC low-pass filter

L1 S—
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P26 -n-
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=
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e e L I L =

I I I I I I I
L Fr====--" r==-=-=--" r==-=-=--- Fr===-=-=" r- -~ I
1 1 1 L 1 1 1
: : . : : RCi=1
s TRETEERL PN B i~ S B SRR () WU T PR
1 1 1 1 1
1 1 d T 1 1 1
1 1 1 ' 1 1 1
r====-- r=- Sep====-- FP=====- F=====- Fe==—-- P -
1 1 1 1 1 1 1
1 1 1 ' 1 1 1
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Figure 7.33. Phase characteristics of a series RC low—pass filter
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Example 7.11

The network of Figure 7.31 is also a series RC circuit, where the positions of the resistor and
capacitor have been interchanged. Derive expressions for the magnitude and phase responses,
and sketch their characteristics.

O

o
+
Vin

+
§_V0ut
(o,

Figure 7.34. RC network for Example 7.11

Solution: R
V = ———V.
ut T R+1/joC "
or
G(jo) = Vour _ _joRC_ _ joRC+w’R’C’ _ 0RC(j+wRC)
Vin  1+joRC 1+w’R%C? 1+ w’R*C?
(7.29)
_ oRCW1+w’R’C’Zatan(1/wRC) _ 1 Aatan( 1 )
1+ w?R2C? J1+1/(0°R%CY) ORC
The magnitude of (7.29) is
G(jo)| = L — (7.30)
J1+1/(0°R%CY)
and the phase angle or argument, is
. 1
0 = arg{G(Jw)} = atan(ﬁ) (7.31)

We can obtain a quick sketch for the magnitude |G(jo)| versus @ by evaluating (7.30) at ® = 0,
o = 1/RC, and ® — o . Thus,

asmw—0,|G(jw) =0
for o = 1/RC, |G(jo)| = 1/4/2 = 0.707
and as ® — o, |G(jo)| =1

Figure 7.35 shows |G(jo)| versus radian frequency for several values of ® where RC = 1. The
plot shows that this circuit is an approximation, although not a good one, to the amplitude char-
acteristics of a high—pass filter.
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Frequency Chamteristios of an RS HighPass Filter
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Figure 7.35. Amplitude characteristics of a series RC high—pass filter

We can also obtain a quick sketch for the phase angle, i.e., 8 = arg{G(jo)} versus w, by eval-
uating (7.31) atw = 0, ® = 1/RC, ® = -1/RC, 0 — —oo, and w — o . Thus,

as w— 0, 6=—-atan0=0°

form = 1/RC, 6 = —atanl = —45°

for ®

-1/RC, 6 = —atan(-1) = 45°
as W — —oo , B = —atan(—e) = 90°
and as @ — e, 0 = —atan(e) = -90°

Figure 7.36 shows the phase angle 6 versus radian frequency for several values of @, where
RC = 1.
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Phase Angle Chamcteristics for RC HighFass Filter

22.5

22.6

Fhase Angle (degrees)
o

5

-67.6

-20
-10
Radizn Frequency’ w

Figure 7.36. Phase characteristics of an RC high—pass filter

We should remember that the RC low—pass filter in Figure 7.31 and the RC high—pass filter in
Figure 7.34 behave as filters only when the excitation (input voltage) is sinusoidal at some fre-
quency. If the excitation is any input, the RC network in Figure 7.28 behaves as an integrator
provided that vg 1 «Vv,y, while the RC network in Figure 7.31 behaves as a differentiator pro-

vided that v 1 « vy . The proofs are left as exercises for the reader at the end of this chapter.

7.9 Active Filter Analysis

We can analyze active filters, such as those we discussed in Chapter 4, using phasor circuit analy-
sis.

Example 7.12

Compute the approximate cut—off frequency of the circuit of Figure 7.37 which is known as a
Multiple Feed Back (MFB) active low—pass filter.

Solution:

We assign two nodes as shown in Figure 7.38, and we write the phasor circuit nodal equations as
follows:
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< 10 nF

Figure 7.38. Circuit for nodal analysis, Example 7.12

At Node @:
Vl_Vin " \-/1 +V1_V0ut+vl_v2 -0 (732)
R, 1/(joC) R, R,
At node @:
Vo-vi G (733)
R, 1/(joC,) '
and since v, = 0 (virtual ground), relation (7.33) reduces to

and by substitution of (7.34) into (7.32), rearranging, and collecting like terms, we obtain:

1 1 1 . . 1 1
—_ 4 = 4 = C —1oR,.C,) - — |V = —V. 7.35
[( R1+R2+R3+Jw 1)( JoR3Cy) Rj out = R Vin ( )
or
Vout _ 1 (7.36)
v; 1 1 1 . : 1 '
n R1|:( -R—1+R—2+-R—3+J(DC1)(_JQ)R3C2)_R—2i|

By substitution of given values of resistors and capacitors, we obtain
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Vout 1

Vin 2><105[( L 4j25x107% )(-j5x 10*x 10®w) -
20 x 10

4x 104J
or

. v _
G(jo)l= 24 = —L (7.37)
Vin  25x10 "0’-j5x10 0w +5

and now we can use MATLAB to find and plot the magnitude of (7.37) with the following script.

w=1:10:10000; Gjw=-1./(2.5.*10.M(-6).*w.2—5.*].*10.(-3).*w+5);
semilogx(w,abs(Gjw)); grid; hold on

xlabel('Radian Frequency w'); ylabel('|Vout/Vin|");

title('Magnitude Vout/Vin vs. Radian Frequency")

The plot is shown in Figure 7.39 where we see that the cutoff frequency occurs at about
700 rad/s. We observe that the half-power point for this plot is 0.2 x 0.707 = 0.141.

0.2

IR =] PSR
(ST 1] W S T S Lo
I:I_14_____I_ 1 1 III_:_:JI

042 oo o4 H 4

[Wout™fin
O

0.08f----r--r-2-raamaa
I:I'Dﬁ_----l- 1 [N
008kttt

002 boeoe b b i i

0
10

Radizn Frequency w

Figure 7.39. Plot for the magnitude of the low—pass filter circuit of Example 7.12
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7.10 Summary

In Chapter 3 we were concerned with constant voltage and constant current sources, resis-
tances and conductances. In this chapter we were concerned with alternating voltage and
alternating current sources, impedances, and admittances.

Nodal analysis, mesh analysis, the principle of superposition, Thevenin’s theorem, and Nor-
ton’s theorem can also be applied to phasor circuits.

The use of complex numbers make the phasor circuit analysis much easier.

MATLAB can be used very effectively to perform the computations since it does not require
any special procedures for manipulation of complex numbers.

Whenever a branch in a circuit contains two or more devices in series or two or more devices
in parallel, it is highly recommended that they are grouped and denoted as z,, z,, and so on

before writing nodal or mesh equations.

Phasor diagrams are sketches that show the magnitude and phase relationships among sev-
eral phasor voltages and currents. When constructing a phasor diagram, the first step is to
select one phasor as a reference, usually with zero phase angle, and all other phasors must be
drawn with the correct relative angles.

The RC low—pass and RC high—pass filters are rudimentary types of filters and are not used in
practice. They serve as a good introduction to electric filters.
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7.11 Exercises
Multiple Choice

1. In the circuit below the phasor voltage V is

A.

MY O W

2+j0V
1+j0V
1-jov
1+jV

none of the above

Is

¢

i
v
>£

1.0° A

IR
i0.5Q

e 10

2. In the circuit below the phasor current 1 is

A.

o g 0w

0+j2 A
0-j2 A
1+jO0 A
2+j2 A

none of the above

1
\

3.1In the circuit below the voltage across the capacitor C, is

A. 8x 10 *sin(2000t + 90°) V

B. ./50cos (2000t —45°) V/

C. ./50c0s(2000t + 45°) V
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D.

E.

./50¢0s (2000t + 90°) V

none of the above
R L, Cy
MWA—T—{— |
vs()| 4@ 3mHs00 uFy S
Q) c,

Bsin (2000t +90°) T 100 uF

4. In the circuit below the current is(t) through the capacitor is

A.

Mo 0w

4sin2000t
4sin (2000t + 180°)

/3205 (2000t-45°)

/32¢0s (2000t + 90°)

none of the above

is(t& 5 l 3

1Q 500 uF ro0.5 mH

000 1

ig(t) = 4cos2000t

5. The Thevenin equivalent voltage V1, at terminals A and B in the circuit below is

A.

Mg O W

10£-90° V
10£-53.13° V
10£53.13° V
10£-45° V

none of the above

A
Vs| 4Q 20

Q) T—jsgz

10«£0° V
oB
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6. The Thevenin equivalent impedance Z;, at terminals A and B in the circuit above is

A.

B.

C.
D.

E.

2+j4 Q
4+j2Q
4-j2 Q
-j5 Q

none of the above

7. In the circuit below the phasor voltage V. is

A.

<IN

8. In the circuit below the phasor voltage VR5 o is

A.

SIECRNe

5£-90° V
5/£-45° V
4,/-53.1°V
4/53.1°V

none of the above

Vs

20£0° V

20 +j0 V
0+j20 V
20+j20 V
80-j80 V

none of the above

+

@) 403 4Q 3 Vy

59% Vi
2Vy A
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9. In the circuit below the phasor voltage Vg1 , is

A 2+j0V
B. 4+j0V
C. 4-joV
D. 1+j1V

E. none of the above

[EEN
o
)

10 Q

2

1> 2 -j5 Q

AN
_|_ J—
+ Volton € >—0—0V +
1.£0° |~ —o0 OUT 2
£+ L 1 [ o

10. In the circuit below the t—domain voltage vg(t) is

A. 1.89cos(wt +45°) V

B. 0.53cos(wt-45°) V
C. 2cosot V
D. 0.5cos(wt+53.1°) V
E. none of the above
A
Vslt @ 28
@ 20 20
2/0°V 5
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Problems

1. For the circuit below ig(t) = 2c0s1000t A. Compute Vpg(t) and i (t).

lic (t)
1000/6 uF

20

2. Write nodal equations and use MATLAB to compute ic(t) for the circuit below given that
Vg (t) = 12cos(1000t +45°) V.

3. Write mesh equations and use MATLAB to compute i, (t) for the circuit below given that
Vg (t) = 100cos(10000t +60°) V.

4. For the circuit below it is given that

Vg, (t) = 40cos(5000t + 60°) V

and
Vg,(t) = 60sin(5000t + 60°) V. Use superposition to find v (t)
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+ 2mH 10Q
Vg (1) ,9 20 UF T_vc(t) Vg, (1)

5. For the circuit below find vg(t) if vg; = 15V, vg,(t) = 20c0s1000t V,
ig(t) = 4c0s2000t A. Plot v (t) using MATLAB or Excel.

10Q 1mH 2mH

6. For the circuit below find the value of Z| 5 which will receive maximum power.

Zg
+ /

@ %o

Vs |[—

and

7. For the circuit below, to what value should the load impedance Z,  be adjusted so that it will

receive maximum power from the voltage source?

4Q Z

8. For the circuit below draw a phasor diagram that shows the voltage and current in each

branch.
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4Q 10 Q 5Q

10. Prove that the RC network below, for any input it behaves as an integrator if v 7 « v,y that
is, show that

1
VOUTz_EJAVIN

o MN
+ R
+
Vin T~ Vout
C —
o

11. Prove that the RC network below, for any input it behaves as a differentiator if v 1« vy,
that is, show that

d
Vout = —RCET[(VW)

O~
+

VouT

<
=z
AMN
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7.12 Answers to End-of-Chapter Exercises
Multiple Choice
1.E

1400I:<>{]J05Q %Q §1Q

V = V| +V; where V| = 120°xj1/2 = j1/2 V and VC is found from the nodal equation

VC Vc_ . . _ _ 1 1_J J_l 1=
T+_—j_1+jOor(1+j)VC_1orVC—1+J 15 2 —2—12
Therefore,
V =j1/2+1/2-j1/2 = 1/2+j0V
2.C

Denoting the resistor in series with the voltage source as z;, the resistor in series with the
capacitor as z,, and the resistor in series with the capacitor as z5, the equivalent impedance
is

Z =z 425 o AIDAID g, 2 545

€ Z,+12, 1-jl+1+j1 =2
and
V -
1= =5-2*210_ 4 joa
4 2+]0
3.B

8sin(2000t + 90°) = 8c0s2000t < 8.£0° V, jol, = j6, jolL, = j4, —j/oC, = —ji,

—j/®wC,; = —j1 and the phasor equivalent circuit is shown below.
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R I—]_ C1
A € L,
J _:
Vs + 11Q 4Q
6" C,
8.,0° V[T I T‘J5 Q

e Vs 8+j0 _8+j0 4—j4 32-j32 . .
z_4+16-11+14—15_4+14,|_—Z-_4+j4-4+j4 Rl =1-j1, and

thus Ve, = -i5x(1-j) = 5-j5 = /50 /-45° < ./50cos (2000t — 45°) V

4. D
4c0s2000t < 4.0°, G = 1/R = 1 Q ", joC = j1 Q", j/oL = —j1 @, and the phasor

equivalent circuit is shown below.

s) Llc

!
4.0° A 107" fl}l Q' 1ot

000 s

Denoting the parallel combination of the conductance and inductance as Y; = 1-j1 and

using the current division expression for admittances we obtain

Ic = .—Jﬁ-lS = —11— = j1x4£0° = 1£90°x4.£0° = 4£90° A
JoC+Y, j1+1-j1
and thus .
ig(t) = 4cos(2000t +90°) A
5.B

A
Vs 4Q j2Q

@ T—jsg

10£0° V
oB

By the voltage division expression

Vi = Vag = —2— 10000 = 2£290°x10£0° _ 50£-90° _ 15 5390y
2+j2-j5 4-j3 5/-36.9°
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6.C

We short the voltage source and looking to the left of points A and B we observe that the
capacitor is in parallel with the series combination of the resistance and inductance. Thus

7 _ (54 +j2) _ 10-j20 _ 10-j20 4+j3 _ 100-j50 _
TH — -

= 2l = 4-j2
4+j2-j5 _ 4-j3 _ 4-j3 4+j3 25 J
7. D
Vs
Q
20./0° V
l, = 0L _ 2020° _ 4 3690 41, = 16./-36.9°
4+j3  5./369°
and
41 _36.9°
lo = =X = 18£369° _ ) 5310
T4 T Taz90°
8. E
IS + +
@ 4% HezVx SQ%VRSQ
4.0° A Ny A
L= A asoexja = BALO0° 84X uce 5 a5 g
4+14 J32.£45° 32
and

Vi, = 2Vx x5 = 20 x /32.£45° = 20J3’2(£+1{) = 80+j80
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9. B
10 Q
AMN 10 Q
j5 Q 5 0 MN
_|_ J—
+ v € — o +
oult P VOUT 2
1£0° ]~ —o [
Voury = _}—gxlzoo = j2x10° = 2./00°x 1.£0° = 2./90°
and
Vour s = _—1T05 xVour1 = —j2X2£0° = 2/-90°x 2./90° = 40° = 4 +j0
10. A
—
Vsly o 28
2/0°V .

We write the nodal equation at Node A for Vg as

Vag—2£40° Vg Vag
- + + — =
- 2 2+]2

1 )

1 Vg = 2290°
(2+J+2+j2 AB

2./90° _2,90°  _ 2,/90°

VAB

T 1/2+j+1/4—j/4  3/4+j3/4  1.06.45°

or Vg = 1.89245° and in the t—domain v,g(t) = 1.89cos(mt + 45°)
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Problems

1. We transform the current source and its parallel resistance to a voltage source series resis-
tance, we combine the series resistors, and we draw the phasor circuit below.

For this phasor circuit, Vg = 220°x5 = 10£0° V, joL = j10°x20x10™° = j20 Q and
“j/0C = —j/(10°x10°/6 x10™%) = —j6, 2z, = 5 Q, z, = (15+j20) Q, and z; = (8-j6) Q
We observe that V = Vag = Vac+ Veg = Vac+10£0° V and Vg = 0. At Node A,

Va-Vg Va-10£0° V,-Vg

-0
Z Zy Z3
Zy Z; Z3 Z;
(s Lo v v, = 10200 g0
5" 15+)20  8.j6 5
and
v - 2 /0° _ 2./0°
AT LT 1 02+0.04.531°+01.36.9°
¥ 25.,531° ' 10./-36.9°
_ 2./0°
0.2 + 0.04C0553.1° —j0.04sin53.1° + 0.10536.9° + j0.15IN36.9°
_ 2./0° 2.0
0.2+004x06-j004x08+01x08+]j01x06 0.304+]0.028
= 2£0° 655, 5060
0.305.5.26°

Then, in the t—domain v,g(t) = 6.55c0s(1000 + 5.26°).

Also,
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_ Va _ 6.55/-5.26°

lo = =2 = = 0.655./31.7°
z,  10/-36.9°

and )
ic(t) = 0.655c0s(1000 + 31.7°)

Check with MATLAB:

z1=5; z2=15+20j; z3=8-6j; VA=(10+0j)/(z1*(1/z1+1/z2+1/z3)); fprintf( \n’);...
fprintf(‘'magVA = %5.2f V \t',abs(VA));...
fprintf('phaseVA = %5.2f deg \t',angle(VA)*180/pi); fprintf(' \n"); fprintf(' \n");

magVA = 6.55 V  phaseVA = -5.26 deg

2. The equivalent phasor circuit is shown below where joL = j10°x5x107° = j5 and
“j/oC = —j/(10°x 107" = —j10

Node V;:
Vl_VS+V1_V2 Vi Vi-V,
Zy Z3 Zp Z7
or
(_:!'_+_].‘_+_1_ _];\)Vl_ivz_ivzg_ivs
zy 2, 23 74 Z3 Z7 1
Node V,:
V,-V, V, V,-V
2= Ve Vo Moz Vs _
Z, Z, Z:
or
—1v1+(l+l+i)v2—lv3_o
Z, 23 7, Zs Zs
Node Vj:
Via-Vy, V-V, V2—V3_0
Z: z, Zg
or
EESVE AV (i+l+i)v3:o
Z7 Zg5 Zs Zg 7

and in matrix form
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( 1. 1.1, _1_) 1 1
Z, I 13 Iy Z3 Z7 v, —1-V
s
_l (l+l+l) _l V2 — Zl
1 1 1.1.1 Va 0
21 21 (— +L1.1 )
zZ, Zg Zs zg Z

Shown below is the MATLAB script to solve this system of equations.

Vs=12*(cos(pi/4)+j*sin(pi/4)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=5j; z5=5; 26=-10j; z7=2;...
Y=[1/z1+1/z2+1/z3+1/z7 -1/z3 -1/z7;...

-1/z3 1/z3+1/z4+1/z5 -1/Z5;...

-1/z7 -1/z5 1/z5+1/26+1/z7];...

I=[Vs/z1 0 O]'; V=Y\I; Ic=V(3)/z6;...

maglc=abs(Ic); phaselc=angle(lc)*180/pi;...

disp('V1="); disp(V(1)); disp('V2="); disp(V(2));...

disp('V3="); disp(V(3)); disp('lc="); disp(Ic);...

format bank % Display magnitude and angle values with two decimal places
disp('maglc="; disp(maglc); disp('phaselc="); disp(phaseic);...
fprintf(* \n");

V1 = 5.9950 - 4.8789i
V2 = 5.9658 - 0.5960i
V3 = 5.3552 - 4.4203i
Ic = 0.4420 + 0.5355i
maglc = 0.69

phaselc = 50.46
Therefore, 1 = 0.69./50.46° & i(t) = 0.69cos(1000t + 50.46°) A

3. The equivalent phasor circuit is shown below where joL = j104><2><10_3 = j20 and

j/0C = -j/(10*x 10x 10™%) = —j10
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Vg = 100./60°
Mesh I, :
Mesh 1,:
Mesh 1
Mesh 1,:

and in matrix form

Z,+12, 0 -2, 0 I, Vs
0 z;+2,+124 —Z3 ~Z 1kl _ 1o
-2, —Z3 Z,+23+2, -2, I B 0
0 ~Z ~Z,  Z4+Zs+Z4 |l 0

Shown below is the MATLAB script to solve this system of equations.

Vs=100*(cos(pi/3)+j*sin(pi/3)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=20j; z5=5; 26=-10j; z7=2;...

Z=[z1+22 0 -z2 O;...

0 z3+z5+z7 -z3 -z5;...

-z2 -23 z22+z3+z4 -z4;...

0 -z5 -z4 z4+z5+z6];...

V=[Vs 0 0 0]; I=2\V; IL=I(3)-I(4);...

maglL=abs(IL); phaselL=angle(IL)*180/pi;...

disp('11="); disp(I(1)); disp('12="); disp(1(2));...

disp('13="); disp(l(3)); disp('14="); disp(l(4));...

disp('IL="); disp(IL);...

format bank % Display magnitude and angle values with two decimal places
disp('maglL="); disp(maglL); disp('phaselL="); disp(phasellL);...
fprintf(' \n");

11 = 5.4345 - 3.41101
12 = 4.5527 + 0.70281
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I3 = 4.0214 + 0.2369i
14 = 7.4364 + 1.9157i
IL= -3.4150 - 1.67871
maglL = 3.81

phaselL = -153.82

Therefore, 1, = 3.81£-153.82° < i, (t) = 3.81cos(10"t - ~153.82°)
4. The equivalent phasor circuit is shown below where
joL, = j5x10°x2x107° = j10
joL, = j5x10°x5x107° = j25
[j/0C = —j/(5x10°x20x 10°) = —j10

j10Q 10Q 50 j25Q

We let Vi = V¢ + V"¢ where V is the capacitor voltage due to Vg, acting alone, and V"¢ is
the capacitor voltage due to Vg, acting alone. With Vg, acting alone the circuit reduces to

that shown below.
Z o .

1.~ T~ —~ ) —
Fjl0Q 100, 259 j2597
\—TT
~ / /
+ - — - 22
V31@ -j10 Q Ve
40.,60° V T
By KCL VvV v v
c”Vsi, Ve, Ve _,
Z; Z; I3
(l+l+l)V' - \ﬁ'
Z; Z; I3 Zy
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VIC= VSl — VSl
o (2eEed) (18,3
Z; Z; I3 Z, 14

and with MATLAB,
Vs1=40%(cos(pi/3)+j*sin(pi/3)); z1=10+10j; z2=-10j; z3=25+25]; V1c=Vsl/(1+z1/z2+z1/23)
Vic = 36.7595 - 5.29621
Therefore,
Ve = 36.76 - j5.30 V

Next, with Vg, acting alone the circuit reduces to that shown below.

—_— p—
— -

o TN - .
7j10Q 10Qy\ 725Q j25

~ —
-j10 Q T Vs,
By KCL "
Ve Ve, Ve-Vs -0
Z, I Z3
V
(1,1, 1)y, Ve
Z, I, 13 Z3
Ve 1V521 1) [z st 2
Z3 (— = —) ( 3+—3+1)
Z; Z; 173 Z, 1,
and with MATLAB

Vs2=60*(cos(pi/6)—j*sin(pi/6));...

z1=10+10j; z2=-10j; z3=25+25j; V1c=36.7595-5.2962j;...
V2c=Vs2/(z3/z1+z3/z2+1); Vc=V1c+V2c; fprintf(' \n');...
disp('V1c ="); disp(V1c); disp('V2c =); disp(V2c);...
disp('Vc=V1c+V2c"); fprintf(' \n'); disp('Vc ="); disp(Vc);...
fprintf('magVc = %4.2f V \t',abs(Vc));...

fprintf('phaseVc = %4.2f deg \t',angle(Vc)*180/pi);...
fprintf(' \n"); fprintf(" \n");

V1ic = 36.7595 - 5.29621
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V2c = -3.1777 - 22.0557i

Vc = Vlc+V2c

Vc = 33.5818 - 27.35191

magVc = 43.31 V phaseVc = -39.16 deg

Then,

Ve = Ve + Ve = 33.58-j27.35 = 43.31£27.35°

and
Va(t) = 43.31cos (5000t - 27.35°)

5. This circuit is excited by a DC (constant) voltage source, an AC (sinusoidal) voltage source,
and an AC current source of different frequency. Therefore, we will apply the superposition

principle.

Let V¢ be the capacitor voltage due to vg; acting alone, V¢ the capacitor voltage due to
Vs,(t) acting alone, and V¢ the capacitor voltage due to ig(t) acting alone. Then, the
capacitor voltage due to all three sources acting simultaneously will be Vo = V¢ + Vg + V'
With the DC voltage source acting alone, after steady—state conditions have been reached

the inductors behave like short circuits and the capacitor as an open circuit and thus the cir-
cuit is simplified as shown below.

10 Q
M\ ® ®
+ +
' Vv
15 V Ve o VRgg § 50
° ®
By the voltage division expression
Ve =V —L-15—5VDC
C~ "Rgo 7 1045 T

and
Ve(t) = 5V DC

Next, with the sinusoidal voltage source vg,(t) acting alone the reactances are

jo,L, = j10°x1x107° = j1 Q

jo,L, = j10°x2x107° = j2 Q
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—j/w,C = —j/(10°x5x107%) = —j2 Q

and the equivalent phasor circuit is as shown below.

10 Q i1 Q/

\
. 2 +
H10Q AR VD §25 Q)

®
By KCL ViV, V&L V
€ "S2,°Ci_C_
Zy Z, I3
V
(1,1, 1)y, Ve
Z, Z 13 Zy
Vi = Vs, _ Vs,
Z, (—1-+—1-+-1-) (1+Z_1+ 1)
Z; 2 I3 Z, 1,
and with MATLAB

Vs2=20+0j; z1=10+j; z2=-2j; z3=5+2]; V2c=Vs2/(1+z1/22+21/z3); fprintf(' \n");...
disp('V2c ="); disp(V2c); fprintf('magV2c = %4.2f V \t',abs(V2c));...
fprintf('phaseV2c = %4.2f deg \t',angle(V2c)*180/pi); fprintf(' \n'); fprintf(' \n");

V2c = 1.8089 - 3.5362i
magV2c = 3.97 V phaseV2c = -62.91 deg

Then, .
Vi = 1.81-j3.54 = 3.97£-62.9°

and
Vi(t) = 3.97cos (1000t - 62.9°)

Finally, with the sinusoidal current source ig(t) acting alone the reactances are
jo,L, = j2x10°x1x107° = j2 Q
jo,l, = j2x10°x2x107° = j4 Q

-1/ 0,C = —j/(2><103><5><10_4) =-j1Q
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and the equivalent phasor circuit is as shown below where the current source and its parallel
resistance have been replaced with a voltage source with a series resistor.

— 7 —_— -
~ - =4

— — \23
J0Q  j2Q_ | 4 50
B N
-j1Q R Ve @Vss
20£0° V|~
®
By KCL V'. V' V.-V
_._(_:+___(_:+ c__*S3 0
Z, 7 Z3
V
(1,1, 1)y = Ve
Z, Z; I3 Z3
v = Vss3 _ Vss3
Z3 (l"‘l"‘l) (Z3+Z—3+1)
Z; Z; 13 Z, 1,
and with MATLAB

Vs3=20+0j; z1=10+2j; z2=—j; z3=5+4j; V3c=Vs3/(z3/z1+z3/z2+1); fprintf(' \n');...
disp('V3c ="); disp(V3c); fprintf('magV3c = %4.2f V \t',abs(V3c));...
fprintf(‘'phaseV3c = %4.2f deg \t',angle(V3c)*180/pi); fprintf(' \n"); fprintf(’ \n");

V3c = -1.4395 - 3.1170i
magV3c = 3.43 V phaseV3c = -114.79 deg

Then, .
Ve = -144-j3.12 = 3.43/-114.8°
or
V'L (t) = 3.43C05(2000t — 114.8°)
and

Ve(t) = Vig + V() + V'a(t) = 5+ 3.97c0s(1000t — 62.9°) + 3.43¢0s (2000t — 114.8°)
These waveforms are plotted below using the following MATLAB script:

wi=linspace(0,2*2*pi); deg=wt*180/pi; V1c=5;
V2¢=3.97.*cos(wt—-62.9.*pi./180);
V3c=3.43.*cos(2.*wt-114.8.*pi./180); plot(deg,V1c,deg,V2c,deg,V3c, deg,V1c+V2c+V3c)
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15 T T T T T T T
V(1)
10 F —
Ve = 5V DC
5 A

NNAUANAY

1 1 1 1 1 1 1
0 100 200 300 400 SO0 600 FO0 &0
6.
Zg
+ /
S %o
Vs |[—

Since Zg and Z,  are complex quantities, we will express them as Zg = Re{Zg} +jIm{Zg}

and Z, 5 = Re{Z, p} +jIm{Z 5} where Re and Im denote the real and imaginary compo-
nents respectively.

We want to maximize the expression

Vs

2
(Zs+Z\p)

2
"o+ Z1p =

PLp “Zip

2
Vs-Zp

[Re{Zs}+jIm{Zs} +j(Re{Z p} +jIm{Z, o D1

The only quantities that can vary are Re{Z, 5} and Im{Z 5} and we must consider them
independently from each other.

From the above expression we observe that p, , will be maximum when the denominator is
minimum and this occurs when Im{Z, 5} = -Im{Zg}, that is, when the imaginary parts of

Z, p and Zg cancel each other. Under this condition, p, p simplifies to
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2

_ Vs-Rip

pLD - 2
(Rs+Ryp)

and, as we found in Chapter 3, for maximum power transfer R, 5 = Rg. Therefore, the load

impedance Z, , will receive maximum power when
Zip = Zs*

that is, when Z  is adjusted to be equal to the complex conjugate of Zg.

4Q bl

170.£0° j ~ —i10

For this, and other similar problems involving the maximum power transfer theorem, it is best
to replace the circuit with its Thevenin equivalent. Moreover, we only need to compute Z1.

For this problem, to find Z;,, we remove Z,  and we short the voltage source. The remain-
ing circuit then is as shown below.

We observe that z; is in parallel with z, and this combination is shown as z,, in the simpli-
fied circuit below.
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But this circuit cannot be simplified further unless we perform Wye to Delta transformation
which we have not discussed. This and the Delta to Wye transformation are very useful in
three—phase circuits and are discussed in Circuit Analysis Il with MATLAB Applications, ISBN

978-1-934404-19-5. Therefore, we will compute Z;,, using the relation Z;; = Voc/lgc
where Vq is the open circuit voltage, that is, V1, and Ig is the current that would flow

between the terminals when the load is replaced by a short. Thus, we will begin our computa-
tions with the Thevenin voltage.

We disconnect Z,  from the circuit at points X and Y as shown below.

20Q j 10
170.£0°

We will replace the remaining circuit with its Thevenin equivalent. Thus, with Z, ; discon-

nected the circuit simplifies to that shown below.

4Q X 10Q (50N v
+ s
\
S o

170 £0°

Now, we will find
Vi = Vxy = Vx=Vy = Vi = (Vo= Vg, )
At Node 1: V.oV, V. V._V
Vi-Vs Vi ViV,
Z; Z; Z3

=0
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Vv
(l+l+l)vl_!‘_ __S
Z, 7, 13 Z3 Zy
At Node 2: V.oV, V. vV
2= V1 Vo 2_9
_lvl+(i+l+i)vz
Z, z; 7, Zg
and with MATLAB,

Vs=170; z1=4; z2=20; z3=10; z4=5j; z5=5-10;j;...

Y=[1/z1+1/z2+1/z3 -1/z3; -1/z3 1/z3+1/z4+1/z5]; I=[Vs/z1 O]'; V=Y\I; V1=V(1); V2=V(2);...
VX=V1; VY=(5/z5)*V2; VTH=VX-VY; fprintf(' \n’);...

disp('V1 ="); disp(V1); disp('V2 ="); disp(V2);...

disp('VTH ="); disp(VTH); fprintf(magVTH = %4.2f V ',abs(VTH));...

fprintf(‘'phaseVTH = %4.2f deg ',angle(VTH)*180/pi); fprintf(' \n"); fprintf(' \n");

V1 = 1.1731e+002 + 1.1538e+001i

V2 = 44.2308+46.1538i

VTH = 1.2692e+002 - 1.5385e+0011
magVTH = 127.85 V phaseVTH = -6.91 deg
Thus, Vyy = 127.85/-6.91°

Next, we must find I from the circuit shown below.

|
4Q a x =% vy

We will write four mesh equations as shown above but we only are interested in phasor cur-
rent |,. Observing that a and b are the same point the mesh equations are
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(Z1+2) 112,15 = Vs

and in matrix form

Z,+2, -7, 0 0 I Vg
-2y Zy+Z3+2, -7, -Z3 | |l _|o
0 = Iy +25+2 —Zg I 0

0 -7, -2z 23+ |1, 0

With MATLAB,

Vs=170; VTH=126.92-15.39j; z1=4; z2=20; z3=10; z4=5j; z5=5; z6=-10j;...

Z=[z1+z2 -z2 0 O; —z2 z2+z3+z4 -z4 -z3; 0 —z4 z4+z5+z6 -z5; 0 —z3 -z5 z3+z5];...
V=[Vs 0 0 OI; I=2\V; 11=I(1); 12=1(2); 13=1(3); 14=1(4);...

ZTH=VTH/4; fprintf(' \n"); disp('I1 = "); disp(I11); disp('I2 = "); disp(12);...

disp('13 ="); disp(13); disp('14 ="); disp(l4); disp('ZTH ="); disp(ZTH); fprintf(' \n');

11 = 15.6745 - 2.63001

12 = 10.3094 - 3.1559i
I3 = -1.0520 + 10.73021
14 = 6.5223 + 1.47281

ZTH = 18.0084 - 6.42601
Thus, Z;,, = 18.09-j6.43 Q and by Problem 6, for maximum power transfer there must be

Zip=Z%yor
Z p = 18.09+j6.43 Q

8. We assign phasor currents as shown below.

4Q 10 Q 5Q

We choose 15 as a reference, that is, we let
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Iy, = 120° A
Then,

Vg = 5.0°V
and since I = Ig

Ve = 1/(-J10) = 1.£0°-10£-90° = 10£-90° V
Next,
V, = Vs+V. = 520°+10£-90° = 5+ (-j10) = 5-j10 = 11.18/-63.4° V

and I, = V,/j5 = (11.18£-63.4°)/(5.90°) = 2.24/-1534° = — 2| A
Now,

=1 +lg=-2-j+1=-1-j=.2,-135° A

and
Vo = 10x 42/-135° = 10x (-1-j) = -10-j10 V

Continuing we find that

Vyo = Vig+ V| = —10-j10+5-j10 = -5-j20 V

d
an lp = Vpe/20 = (~5-j20)/20 = —025-] A
Also, ) : ,
% Iy = I+l =-025-j-1-j=-125-j2 A
d
" V, =41, = 4x(-125-j2) = -5-j8 V
Finally,

Vg = V,+Vy = —5-j8-5-j20 = —10-j28 = 29.73./-109.7° V

The magnitudes (not to scale) and the phase angles are shown below.

The phasor diagram above is acceptable. However, it would be more practical if we rotate it by
109.7° to show the voltage source Vg as reference at 0° as shown below.
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9. The equivalent phasor circuit is shown below where z; = R, = 1 KQ, z, = R, = 3 KQ, and

Z, = —j/0C = —j/(10°x0.25x10™°%) = —j4 KQ

Ry

+ 21 1KQ

o ° o
Application of KCL at the inverting input yields
V-V V-V V-V
IN | ouT ouT

=0
Zy Z, Z3
and since V = 0 the above relation reduces to
1 1 -Vin
(522 Vour = 2
2 23 1
of V V
—Vin —Vin
Vour = 1 1Y 7z, z
7, (L+1) (4.4)
Z2 23 Z 23
and with MATLAB,

Vin=3; z1=1000; z2=3000; z3=—4000j; Vout=-Vin/(z1/z2+z1/z3);...
fprintf(* \n"); disp(‘"Vout = "); disp(Vout); fprintf('magVout = %5.2f V \t',abs(Vout));...
fprintf('phaseVout = %5.2f deg \t',angle(Vout)*180/pi); fprintf(' \n"); fprintf(' \n’);

Vout = -5.7600 + 4.32001
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Answers to End—of—Chapter Exercises

magVout = 7.20 V  phaseVout = 143.13 deg

Thus,
. Vour = —5.76 +j4.32 = 7.2/143.13° V
nd
a Vyui(t) = 7.2c0s(1000t + 143.13°) V
10.
2 lR=-
ViN 1~ Vout
C —
o
ic = Ig

dve _ Youtr —Vin

dt R

dvoyt _ Youtr—Vin
dt RC

and since Vg1 « V), by integrating both sides of the expression above, we obtain

1
VOUTz_EJVIN

11. '\
[o, -
IN | <
+ c ¢ iR& +
ViN §VOUT
_ R~
o
Vout

d
R - Ca‘t(VOUT -Vin)

and since Vg1 « V,y, we obtain

d
VouT = _RCd_t(VIN)
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Chapter 8

Average and RMS Values, Complex Power, and Instruments

his chapter defines average and effective values of voltages and currents, instantaneous and
average power, power factor, the power triangle, and complex power. It also discusses elec-
trical instruments that are used to measure current, voltage, resistance, power, and energy.

8.1 Periodic Time Functions
A periodic time function satisfies the expression

f(t) = f(t+nT) 8.1)
where n is a positive integer and T is the period of the periodic time function. The sinusoidal and

sawtooth waveforms of Figure 8.1 are examples of periodic functions of time.

coswt

\ cos(mt + 0)

yd

%T%‘%T%‘ T T

Figure 8.1. Examples of periodic functions of time

Other periodic functions of interest are the square and the triangular waveforms.
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

8.2 Average Values

The average value of any continuous function f(t) such as that shown in Figure 8.2 over an inter-
vala<t<b,

f(t)

a b

Figure 8.2. A continuous time function f (t)
is defined as

1 P 1
(Dave = 5] FO = g (areal) (8.2)

The average value of a periodic time function f(t) is defined as the average of the function over one
period.

|
Example 8.1

Compute the average value of the sinusoid shown in Figure 8.3, where Vi denotes the peak

(maximum) value of the sinusoidal voltage.

VP R
: /Vpsinwt
0 - wt(rad)
_VP : :u - 1 \
0 n/2 o 3n/2 2m  5m/2
T

Figure 8.3. Waveform for Example 8.1

Solution:

By definition,
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Average Values

1 T l oT . Y-E 21 .
Ve = T'[o v(tydt = wTjo V,sinotd(ot) = ano sinotd(ot)
2n 0
\ \Y \Y
2n( COSu)t)O 2n(cos.cot) N 2n( )=0

as expected since the net area of the positive and negative half cycles is zero.

Example 8.2

Compute the average value of the half~wave rectification waveform shown in Figure 8.4.

W Ipsinwt
T /\271 /\

Radians

Current (i)

|<—T—>

Figure 8.4. Waveform for Example 8.2

Solution:

This waveform is defined as

) I sinot O<ot<m
ity =1 P (8.3)
0 n<ot<2n
Then, its average value is found from
1 2n ] 1 b ] 2n
lye = ano Isinwtd(wt) = ZnUO Ipsmmtd(wt)+jn Od(wt)} "

I | I |
b T _ P 0_ Prq_(_1y1=2
2n( cosot|;) 2nCOS(nt|n 2n[l (-1)] -

In other words, the average value of the half-wave rectification waveform is equal to its peak
value divided by =.
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

8.3 Effective Values

The effective current 1.4 of a periodic current waveform i(t) is defined as the current which pro-

duces heat in a given resistance R at the same average rate as a direct (constant) current I,
that is,

Average Power = P, . = ngff = lec (8.5)

Also, in a periodic current waveform i(t), the instantaneous power is

p(t) = Ri*(t) (8.6)
and
1 ! 1 ! 2 R ! 2
Pave = ?.[ p(tydt = i[ Ri“dt = ?.[ i“dt (8.7)
0 0 0
Equating (8.5) with (8.7) we obtain
T
2 Rl .2
0
or N
2 1r¢' .2
0
or
. T
.2 / 2
lotr = -T-j i“dt = IRoot Mean Square = lrms = VAvVe() (8.8)
0
Caution 1:

In general, ave(i®) # (i ave)z since the expression ave(i®) implies that the function i must first be

squared and the average of the squared value is then to be found. On the other hand, (iave)2

implies that the average value of the function must first be found and then the average must be
squared. The waveforms in Figure 8.5 illustrate this point.
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Effective (RMS) Value of Sinusoids

sqrt(ave(iz)) #0 ave(iz) #0

2
ave

lve = 0 i3 =0 sqrt(iive) =0

Figure 8.5. Waveforms to illustrate that ave(i?) # (iave)z

Caution 2:

In general, P, #V, X |, For example, if v(t) = V,cosot and i(t) = I,cos (ot +¢), then

Vave = 0,andalso 1., = 0.Thus, P

ave . = 0. However,

av

T T T
Pave = H p(tydt = %I v(Di(t)dt = %J. (V,cosot)[1,cos(wt +@)]dt#0
0 0 0

8.4 Effective (RMS) Value of Sinusoids

Now, we will derive an expression for the Root Mean Square (RMS) value of a sinusoid in terms of
its peak (maximum) value. We will denote the peak values of voltages and currents as Vi and I

respectively. The value from positive to negative peak will be denoted as V and lh_p» and

p-p
the RMS values as Vgyg and Igpys - Their notations and relationships are shown in Figure 8.6.

RMS Value = 0.707 x Peak =120 V

Time (Degrees)

Figure 8.6. Definitions of Vp_p, Ip_p, Viems, and lgyg in terms of Vp and |IO
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

Let )
I = Ipcos(mt— 0)

then, . o
2 1p .2 1 2 2
1 Zs = fjou dt = ETJO 15 cos (ot - 0)d(wt)
and using the identity L
cosch = 5(0052¢+1)

we obtain

2
%TU:E cos(2mt — 0)d(wt) + J‘Oznd(wt)}

|2
RMS

(8.9)
2n

4T 2

2
lp{sinmet—e}
2

2 - -
. (‘”t|02n)J _ "‘_En[smmn—e) —sin(=0) , 211'1
0

Using the trigonometric identities

sin(X—y) = sinxcosy — cosxsiny

and . .
=sin(-a) = sina

by substitution into (8.9), we obtain

0 1
I2 —_— A A I2 I2
2 sin4mncosO — cos4nsind + sin®
1Eys = ZS?[ : +2nJ = 22w = 2

and therefore,

[
lams = —[PE = 0.7071, (8.10)

FOR SINUSOIDS ONLY

We observe that the RMS value of a sinusoid is independent of the frequency and phase angle,
in other words, it is dependent on the amplitude of the sinusoid only.

|
Example 8.3

Compute the I, and Izyg for the sawtooth waveform shown in Figure 8.7.

e
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RMS Values of Sinusoids with Different Frequencies

Figure 8.7. Waveform for Example 8.3

Solution:

By inspection, the period T is as shown in Figure 8.8.

Figure 8.8. Defining the period for the waveform of Example 8.3

The average value is

Area _ (1/2)x10xT _

= 5A
ave  period T

To find 15y we cannot use (8.10); this is for sinusoids only. Accordingly, we must use the defi-
nition of the RMS value as derived in (8.8). Then,

.
2 1:72 1:7/1002,. 1(100 t° 1{100 T3) 100
120 = = [ i%(tydt = = (—)dt:—[—.— = =2 ) 2190
RMS T'[o Tjo T T(72 3 T2 3 3
or
= 10 _10 _577

IRMS 3 - ﬁ

8.5 RMS Values of Sinusoids with Different Frequencies

The RMS value of a waveform which consists of a sum of sinusoids of different frequencies, is
equal to the square root of the sum of the squares of the RMS values of each sinusoid. Thus, if

i = lg+1cos(w,;t£0,)+ 1, cos(w,t£0,)+ ... + Iy cos(oyt+6y) (8.11)

where |, represents a constant current, and Iy, I,..., Iy represent the amplitudes of the sinu-

soids. Then, the RMS value of i is found from
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

2 .2 2 2
lrms = J'o +1lirms + 2 rms + -+ + INRMS (8.12)
or
2 1.2 1.2 1.2
lrms = /\/IO +2|1p+2|2p+"'+2|Np (8.13)

Example 8.4

Find the I5y,5 value of the square waveform of Figure 8.9 by application of (8.12)

ot

1F----
Figure 8.9. Waveform for Example 8.4

Solution:

By inspection, the period T = 27 is as shown in Figure8.10.

1

ot

| ~—T —]
Figure 8.10. Determination of the period to the waveform of Example 8.4
Then,

2 _ l T2 3 i 271:.2 3 i T 2 2n 2
Lo = T'[ol dt = - i d(ot) = ZNU()l ol(mt)+LE (-1) “d(wt)

1 [t+2n—-m] =1

1 T 27m
= 5-lotg+ot] "= =
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Average Power and Power Factor

or

lrms =1 (8.14)

b. Fourier series analysis textbooks™ show that the square waveform above can be expressed as

i(t) = L—l(sinwt+ ls.in3cot+ lsin5wt+ ) (8.15)
T 3 5

and as we know, the RMS value of a sinusoid is a real number independent of the frequency

and the phase angle, and it is equal to 0.707 times its peak value, that is, Igs = 0.707 x lp-

Then from (8.12) and (8.15),

s = 2o+ Ja e 31+ 3(2) 4 = oo 5.16)

n
The numerical accuracy of (8.16) is good considering that higher harmonics have been
neglected.

8.6 Average Power and Power Factor

Consider the network shown in Figure 8.11.

R
MN :
ILp(t)
Rest of + ¢ LD
@ the Circuit Vip(t)| Load
Vg (1) -

Figure 8.11. Network where it is assumed that i| 5(t) and v| p(t) are out—of—phase

We will assume that the load current i, (t) is 6 degrees out—of-phase with the voltage v  p(t),
ie., if v p(t) = V,cosot, then i, (t) = I,cos(wt +6). We want to find an expression for the
average power absorbed by the load.
We know that

p = Vi

that is . ) .
’ Instantaneous power = Instan taneous VOltage X Instantaneous current

and the instantaneous power p, p(t) absorbed by the load is

*  Refer to Signals and Systems with MATLAB Computing and Simulink Modeling, ISBN 978—0-9744239—-9-8.
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

PLp(t) = v p(t) xi p(t) = VI cosot x cos(mt +6) (8.17)
Using the trigonometric identity
COSXCOSY = %[COS(X +Y)+ cos(X—y)]
we express (8.17) as

VI
PLoap(t) = —S—E[cos(ZmH 0) + cos0] (8.18)
and the average power is

107 A
ave LD — 'T'JO p pdt = = i (—2—9[cos(2wt+e)+ cose])dt

(8.19)

VIl T VIl T
—bp _bp
>T Io ([cos(2mt + 0)])dt + T Io cosodt

We observe that the first integral on the right side of (8.19) is zero, and the second integral, being
a constant, has an average value of that constant. Then,

VI
pPp
Pave Lp = — €00 (8.20)
and using the relations
Vo
Vrms =
J2
and |
lrms = _}5
we can express (8.19) as
Pave Lo = VRums Lb lrms LDC0SO (8.21)

and it is imperative that we remember that these relations are valid for circuits with sinusoidal
excitations.

The term cos6 in (8.20) and (8.21) is known as the power factor and thus

P

Power Factor, p = PF p = c0sO, 5 = ave Lb (8.22)

RMS LD IRMS LD

8-10 Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling
Copyright © Orchard Publications



Average Power in a Resistive Load

8.7 Average Power in a Resistive Load

The voltage and current in a resistive branch of a circuit are always in phase, that is, the phase
angle 8 = 0°. Therefore, denoting that resistive branch with the subscript R we have:

Paver = Vrms r lrms r €0S0° = Veys g lrus r (8.23)
or
2 2
P _VRMSR_|2 R_lva_llz R
aveR ~ — R~ RMSR T = 5 p~ = 5'pR (8.24)

8.8 Average Power in Inductive and Capacitive Loads

With inductors and capacitors there is a 90° phase difference between the voltage and current,
that is, ® = 90° and therefore, denoting that inductive or capacitive branch with the subscript
X we obtain:

Pave x = VYRms x lrms x €0590° =0

Of course, the instantaneous power is zero only at specific instants.

Obviously, if the load of a circuit contains resistors, inductors and capacitors, the phase angle 6
between Vius Loap @04 lays Loap Will be within 0<6<90°, and the power factor cosé will

be within 0 < coso<1.
1 ——
Example 8.5

For the circuit of Figure 8.11, find the average power supplied by the voltage source, the average
power absorbed by the resistor, the inductor, and the capacitor.

10Q j20Q

@VSI%lelO Q

Figure 8.12. Circuit for Example 8.5

Solution:

Since this is a series circuit, we need to find the current | and its phase relation to the source
voltage Vg. Then,
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V o o o
| = Ys _ __170£0 _ 170£0° _ _170£0° _ 15 450 (8.25)

Z  10+j20-j10  10+j10 10, /22450

Relation (8.25) indicates that I, =12 A, 6 = -45°, and the power factor is

c0sO = cos(-45°) = 0.707

Therefore, using (8.24) we find that the average power absorbed by the resistor is

1.2 1 2
P = EIDR R = 5(12) 10 = 720 w (8.26)

ave R

The average power absorbed by the inductor and the capacitor is zero since the voltages and cur-
rents in these devices are 90° out—of—phase with each other.

Check: The average power delivered by the voltage source is

\VAN |
P = P Peog = @2M1_220_707 - 721w (8.27)

ave SOURCE 2

and we observe that (8.26) and (8.27) are in close agreement.

Example 8.6

For the circuit of Figure 8.13, find the power absorbed by each resistor, and the power supplied
(or absorbed) by the current sources.

Va 2Q  J3Q vg

4Q 8 Q \L

T
540°A€9 _i60 BQ @ 0
T T 10£0° A

Figure 8.13. Circuit for Example 8.6

Solution:
This is the same circuit as in Example 7.1 where we found that

\Y —4.138 +j19.655 = 20.086£101.9° (8.28)

A:

d
an Vg = —22.414-j1.035 = 22.440./-177.4° (8.29)

Then,
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Va—Vg 18276 +j20.690 _ 32.430.,145.0°

g = —B _ - - 8.983.88.7°
2+j3 3.61./56.3° 3.61./56.3°
and
P L% 0a)=1xs9832x2 = 8070w (8.30)
ave2Q " 2p2Q ) ' - )
Also, v
g = A - 20.086 £101.9° _ 5 105 1cg oo
4-j6  7.21/-56.3°
and
P -1 a0y =1x2786%xa = 1552w (8.31)
ave 4Q T 2p4Q T2 - )
Likewise, y
lg g = o = 22A0LTAT 5657/ 156.7°
8-j3  854/-206°
and
P L% 80y = Lxo627Px8 = 2761w (8.32)
aveSQ_gpgg( )_2 ) - ) :

The voltages across the current sources are the same as V, and Vg but they are 101.9° and

—177.4° out-of—phase respectively with the current sources as shown by (8.28) and (8.29).
Therefore, we let 6, = 101.9° and 6, = -177.4°. Then, the power absorbed by the 5 A source

is

V. I V.Al|I5 A
Poves A= —g—pcosel = [Vall |COS(101.9°)
(8.33)
= IXD 5 (-0206) = 1035 w
and the power absorbed by the 10 A source is
V. I V|10 A
p = —2P¢osp, = MCOS(—NT‘P)
ave 10 A 2 2
(8.34)
_ w x (~0.999) = ~112.08 w

The negative values in (8.33) and (8.34) indicate that both current sources supply power to the
rest of the circuit.

Check: Total average power absorbed by resistors is
80.70 + 1552 + 27.61 = 123.83 w
and the total average power supplied by current sources is

112.08 + 10.35 = 122.43 w
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Chapter 8 Average and RMS Values, Complex Power, and Instruments

Thus, the total average power supplied by the current sources is equal to the total average power
absorbed by the resistors. The small difference is due to rounding of fractional numbers.

8.9 Average Power in Non-Sinusoidal Waveforms

If the excitation in a circuit is non—sinusoidal, we can compute the average power absorbed by a
resistor from the relations

1¢7 1¢v2
Pave_TOpdt_TORdt_

-
% [ Rt (8.35)
0

|
Example 8.7

Compute the average power absorbed by a 5 Q resistor when the voltage across it is the half-
wave rectification waveform shown in Figure 8.14.

= 10sinmt

g e

i

ANV ANVA

t (ms)

Figure 8.14. Waveform for Example 8.7
Solution:

We first need to find the numerical value of o. It is found as follows:

T=2ms=2x10"s oT = 2n m=2?75=103n
and thus 5
10sinwt = 10sin10° 7
Then, , ,
T, 2 102 102ein2103 2x10”
PaVe = l V_dt = 1 3|:J- 10 sin 10 71:t+.|. g 0:|dt
T 0 R 2x10 0 5 10’3
or
100 [(107°1 3 af (107 107 3
Pave = =5/ | 5(1-cos2x10°ntydt| = 5x10°| [ dt-[" cos2x 10 ntdt
10 x 10 0 2 0 0
3 10_3 3 3
_ |5y 103{“ sing x 10 nt} . 103{10_3_ sin2 x 10°r x 10 }
2x10°n 2x10°n
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Lagging and Leading Power Factors

and since sin2nn = 0 for n = integer, the last term of the expression above reduces to

Pae =5W

8.10 Lagging and Leading Power Factors

By definition an inductive load is said to have a lagging power factor. This refers to the phase angle
of the current through the load with respect to the voltage across this load as shown in Figure

8.15.
T Vioap
|

LOAD

Figure 8.15. Lagging power factor

In Figure 8.15, the cosine of the angle 0, , that is, cose, is referred to as lagging power factor and
it is denoted as pf lag.

The term “inductive load” means that the load is more “inductive” (with some resistance) than
it is “capacitive”. But in a “purely inductive load” 6; = 90° and thus the power factor is

cos6; = c0s90° = 0

By definition a capacitive load is said to have a leading power factor. Again, this refers to the
phase angle of the current through the load with respect to the voltage across this load as shown

in Figure 8.16.
Z I oap
0
Vioap

Figure 8.16. Leading power factor

In Figure 8.16, the cosine of the angle 6,, that is, cos6, is referred to as leading power factor and
it is denoted as pf lead.

The term “capacitive load” means that the load is more “capacitive” (with some resistance) than
it is “inductive”. But in a “purely capacitive load” 6, = 90° and thus the power factor is

cos6, = €0s90° = 0
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8.11 Complex Power - Power Triangle
We recall that

1
Pave = évplpcose = Vgrums lrms €0sO

(8.36)

This relation can be represented by the so—called power triangle. Figure 8.17 (a) shows the power
triangle of an inductive load, and Figure 8.16 (b) shows the power triangle for both a capacitive

load.
P

real = Pave _
0 i P

-Q
P 0

Preal = Pave
(a) Power Triangle for Inductive Load (b) Power Triangle for Capacitive Load

Figure 8.17. Power triangles for inductive and capacitive loads

In a power triangle, the product Vgys X Igms is referred to as the apparent power, and it is

denoted as P,. The apparent power is expressed in volt—amperes or VA. The product

Virms X lrms % sin@ is referred to as the reactive power, and it is denoted as Q. The reactive

power is expressed in volt —amperes reactive or VAR . Thus, for either triangle of Figure 8.17,

P Pave = VRms lrms €086 = (in watts)

real =

Q = Reactive Power = Vgys lrms SiN6 = (in VARSs)

P, = Apparent Power = Vgys lrms  (in VAs)

(8.37)

(8.38)

(8.39)

The apparent power P, is the vector sum of the real and reactive power components, that is,

Pa = Preal powerijQ = Pae TiQ

(8.40)

where the (+) sign is used for inductive loads and the (-) sign for capacitive loads. Because rela-
tion of (8.40) consists of a real part and an imaginary part, it is known as the complex power.

|
Example 8.8

For the circuit shown in Figure 8.18, find:
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the average power delivered to the load

o @

the average power absorbed by the line

o

the apparent power supplied by the voltage source

&~

the power factor of the load
e. the power factor of the line plus the load
Rjine = 1 €
Vs
Load
SHr j10
480£0° V RMS |

MN
Riine = 1 £2

Figure 8.18. Circuit for Example 8.8

Solution:

For simplicity, we redraw the circuit as shown in Figure 8.19 where the line resistances have been
combined into a single 2 Q resistor.

Riine = 2 Q
NN |ZLD

V
> Load

6’ lrms || 10 +j10
480.20° V RMS |

Figure 8.19. Circuit for Example 8.8 with the line resistances combined
From the circuit of Figure 8.19, we find that

\ 480./0° 480./0° o
laps = ———=M3 - = = 30.73/-39.8

RiinetZLp 2+10+j10  15.62./39.8°

and therefore, the current lags the voltage as shown on the phasor diagram of Figure 8.20.

\J_sg.so " Vs
I

Figure 8.20. Phasor diagram for the circuit of Example 8.8

Then,

a. The average power delivered to the load is
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P = 12ys Re{Z, p} = (30.73)°x 10 = 9443 w = 9.443 Kw

ave LD
b. The average power absorbed by the line is

2 2
Pave tine = Irms Rjine = (30.73)"x2 = 1889 w = 1.889 Kw

c. The apparent power supplied by the voltage source is

P source = Vs rwis lays = 480x30.73 = 14750 w = 14.750 Kw

d. The power factor of the load is

Pave LD 9443
pfp = c0sO p = 2= =
Pato  |[Vrws Loll'rms|
_ 9443 _ 9443 _ 9443 _ 0.707
(480./0° — 2(30.73/-39.8°))| x 30.73 _ (434.56)(30.73) 13354
e. The power factor of the line plus the load is
P Py +P
line ™ Tave LD _ 1889 + 9443
pf I — Cose i — ave total — ave — — 0 77
(ne+1b) (ne+Lo Pa source Pa source 14750

8.12 Power Factor Correction

The consumer pays the electric utility company for the average or real power, not the apparent
power and, as we have seen, a low power factor (larger angle 8) demands more current. This
additional current must be furnished by the utility company which must provide larger current—
carrying capacity if the voltage must remain constant. Moreover, this additional current creates

larger i°R losses in the utility’s transmission and distribution system. For this reason, electric util-
ity companies impose a penalty on industrial facility customers who operate at a low power factor,
typically lower than 0.85. Accordingly, facility engineers must install the appropriate equipment
to raise the power factor.

The power factor correction procedure is illustrated with the following example.

Example 8.9

In the circuit shown in Figure 8.21, the resistance of the lines between the voltage source and the
load and the internal resistance of the source are considered small, and thus can be neglected.
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VS
1 Kw Load
@ @ pf =0.8 lag
480.20° v RMs | 80 HZ |
Figure 8.21. Circuit for Example 8.9

It is desired to “raise” the power factor of the load to 0.95 lagging. Compute the size and the rat-
ing of a capacitor which, when added across the load, will accomplish this.

Solution:

The power triangles for the existing and desired power factors are shown in Figure 8.22.

1 Kw 1 Kw
91 NI Qz
Q

0, = cos 0.8 = 36.9°

0, = cos '0.95 = 18.2°
This is what we have This is what we want

Figure 8.22. Power triangles for existing and desired power factors

Since the voltage across the given load must not change (otherwise it will affect the operation of
it), it is evident that a load, say Q, in opposite direction of Q; must be added, and must be con-

nected in parallel with the existing load. Obviously, the Q5 load must be capacitive. Accord-
ingly, the circuit of Figure 8.21 must be modified as shown in Figure 8.23.

Vg ! — le
apacitive
@ 1 Kw Load Load with
@ pf =0.8 lag Leading pf
480,0° V RMS |60 Hz T T

Figure 8.23. Circuit for power factor correction

For the existing load,
Q, = (1 Kw)tan36.9° = 750 VAR

and for the desired pf = cos@, = 0.95, the VAR value of Q, must be reduced to

Q, = (1 Kw)tan18.2° = 329 VAR

Therefore, the added capacitive load must be a vector Q5 such that
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Q; = Q;-Q, = 750329 = 421 VAR
The current I through the capacitive load is found from

Qs = IcVe = IcVg

Then, 0
o= —2— =421 _og3A
and v
Xo =~ =30 _ 570
Ic  0.88

Therefore, the capacitive load must consist of a capacitor with the value

c_ 1 1 1

= = = =485 MF
oXe  2nfX.  2m(60)(547)

However, not any 4.85 uF capacitor will do; the capacitor must be capable of withstanding a
maximum voltage of

Ve max = ~2 %480 = 679 V

and for all practical purposes, we can choose a 5 uF capacitor rated at 700 volts or higher.

8.13 Instruments

Ammeters are electrical instruments used to measure current in electric circuits, voltmeters mea-
sure Voltage, ohmmeters measure resistance, wattmeters measure power, and watt—hour meters
measure electric energy. Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure
current in milliamperes) are normally combined into one instrument called VOM. Figure 8.24
shows a typical analog type VOM, and Figure 8.25 shows a typical digital type VOM. We will see
how a digital VOM can be constructed from an analog VOM equivalent at the end of this sec-
tion. An oscilloscope is an electronic instrument that produces an instantaneous trace on the
screen of a cathode-ray tube corresponding to oscillations of voltage and current. A typical oscil-
loscope is shown in Figure 8.26. DC ammeters and voltmeters read average values whereas AC
ammeters and voltmeters read RMS values.

The basic meter movement consists of a permanent horse shoe magnet, an electromagnet which
typically is a metal cylinder with very thin wire wound around it which is referred to as the coil,
and a control spring. The coil is free to move on pivots, and when there is current in the coil, a
torque is produced that tends to rotate the coil. Rotation of the coil is restrained by a helical
spring so that the motion of the coil and the pointer which is attached to it, is proportional to the
current in the coil.
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Figure 8.24. The Triplett Analog Multimeter Model 60

T WOIFRAFT®

Figure 8.25. The Voltcraft Model 3850 Digital Multimeter
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Figure 8.26. The Agilent Technologies Series 5000 Portable Oscilloscope
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An ammeter measures current in amperes. For currents less than one ampere, a milliammeter or
microammeter may be used where the former measures current in milliamperes and the latter in
microamperes.

Ammeters, milliammeters, and microammeters must always be connected in series with the cir-
cuits in which they are used.

Often, the electric current to be measured, exceeds the range of the instrument. For example, we
cannot directly measure a current of 5 to 10 milliamperes with a milliammeter whose range is 0
to 1 milliampere. In such a case, we can use a low range milliammeter with a shunt (parallel)
resistor as shown in Figure 8.27, where the circle with mA represents an ideal milliammeter (a
milliammeter with zero resistance). In Figure 8.27 I is the total current to be measured, 1y, is

the current through the meter, Ig is the current through the shunt resistor, Ry, is the milliamme-

ter internal resistance, and Ry is the shunt resistance.

Iy Ry Iy
— (mA) —
), MN
Rs
WA

Is
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Figure 8.27. Milliammeter with shunt resistor Rg

From the circuit of Figure 8.27, we observe that the sum of the current flowing through the mil-
liammeter Iy, and the current Ig through the shunt resistor is equal to the total current Iy, that

is,

Also, the shunt resistor Rq is in parallel with the milliammeter branch; therefore, the voltages

across these parallel branches are equal, that is,

and since we normally need to calculate the shunt resistor, then

R —I—MR (8.42)
S~ IS M :

|
Example 8.10

In the circuit of Figure 8.28, the total current entering the circuit is 5 mA and the milliammeter
range is 0 to 1 milliampere, that is, the milliammeter has a full-scale current I¢, of 1 mA, and

its internal resistance is 40 Q. Compute the value of the shunt resistor Rg.

Iy =Maximum allowable current
through the milliammeter

leg = 1 mA
Iy Iy R I
S Dy
NN
o/ 40 Q
Rs
I AAA
S

Figure 8.28. Circuit for Example 8.10
Solution:

The maximum current that the milliammeter can allow to flow through it is 1 mA and since the

total current is 5 milliamperes, the remaining 4 milliamperes must flow through the shunt resis-
tor, that is,

The required value of the shunt resistor is found from (8.42), i.e.,
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Rg = MR, =%><40= 10 Q

Check:The calculated value of the shunt resistor is 10 Q ; this is one—fourth the value of the mil-
liammeter internal resistor of 40 Q. Therefore, the 10 Q resistor will allow four times as much
current as the milliammeter to flow through it.

A multi-range ammeter/milliammeter is an instrument with two or more scales. Figure 8.29
shows the circuit of a typical multi-range ammeter/milliammeter.

Figure 8.29. Circuit for a multi—range ammeter/milliammeter

A voltmeter, as stated earlier, measures voltage in volts. Typically, a voltmeter is a modified mil-
liammeter where an external resistor Ry, is connected in series with the milliammeter as shown

in Figure 8.30 where
I = current through circuit

Ry = internal resistance of milliameter
Ry = external resistor in series with Ry,

V\ = voltmeter full scale reading
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Ry = Voltmeter internal resistance

V= Voltmeter range

Iy R R
—’@'\/\XWV\,

+ vy, —

Figure 8.30. Typical voltmeter circuit

For the circuit of Figure 8.30,
Iy(Ry +Ry) = Vy,

or

v
Ry = |_M ~Ry (8.43)
M

Voltmeters must always be connected in parallel with those devices of the circuit whose voltage
is to be measured.

|
Example 8.11

Design a voltmeter which will have a 1 volt full-scale using a milliammeter with 1 milliampere
full-scale and internal resistance 100 Q.

Solution:

The voltmeter circuit consists of the milliammeter circuit and the external resistance Ry, as

shown in Figure 8.31.

Iy R R
_ @ M V
AN AMN
- 1000

+ v, -

Figure 8.31. Circuit for Example 8.11

Here, we only need to compute the value of the external resistor Ry, so that the voltage across

the series combination will be 1 volt full scale. Then, from (8.43),

Y,
Ry = TH-Ry = -1—3-100 = 1000-100 = 900 Q (8.44)
M 10
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Therefore, to convert a 1 milliampere full-scale milliammeter with an internal resistance of
100 Q to a 1 volt full-scale voltmeter, we only need to attach a 900 Q resistor in series with
that milliammeter.

Figure 8.32 shows a typical multi-range voltmeter.

oY 100 V
N
‘ 9.9 kQ 10V r @ 1,\(/)8\’9
Ry
900 O Iyy=1mAfs
0—/\/\/\,—01 v
" Vm 2

Figure 8.32. Circuit for a multi—range voltmeter

An Ohmmeter measures resistance in Ohms. In the series type Ohmmeter, the resistor Ry whose

resistance is to be measured, is connected in series with the Ohmmeter circuit shown in Figure

8.33.

I R
— (A A
AN O-—
-/
Vg Zero oo 0
Adjust § Ry

Figure 8.33. Circuit for a series type Ohmmeter

We observe from Figure 8.33 that for the series type Ohmmeter, the current | is maximum when
the resistor Ry is zero (short circuit), and the current is zero when Ry is infinite (open circuit).
For this reason, the 0 (zero) point appears on the right-most point of the Ohmmeter scale, and
the infinity symbol appears on the left-most point of the scale.

Figure 8.34 shows the circuit of a shunt (parallel) type Ohmmeter where the resistor Ry whose
value is to be measured, is in parallel with the Ohmmeter circuit.
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Figure 8.34. Circuit for a parallel type Ohmmeter

From Figure 8.34 we see that, for the shunt type Ohmmeter, the current through the milliamme-
ter circuit is zero when the resistor Ry is zero (short circuit) since all current flows through that

short. However, when Ry is infinite (open circuit), the current through the milliammeter
branch is maximum. For this reason, the 0 (zero) point appears on the left—most point of the

Ohmmeter scale, and the infinity symbol appears on the right-most point of the scale.

An instrument which can measure unknown resistance values very accurately is the Wheatstone
Bridge shown in Figure 8.35.

Figure 8.35. Wheatstone Bridge Circuit

One of the resistors, say R,, is the unknown resistor whose value is to be measured, and another
resistor, say R; is adjusted until the bridge is balanced, that is, until there is no current flow

through the meter of this circuit. This balance occurs when

Ry _ Rs

from which the value of the unknown resistor is found from

R, = =2R (8.45)
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Example 8.12

In the Wheatstone Bridge circuit of Figure 8.36, resistor Ry is adjusted until the meter reads zero,

and when this occurs, its value is 120 Q. Compute the value of the unknown resistor R,

Figure 8.36. Circuit for Example 8.12

Solution:

When the bridge is balanced, that is, when the current through the meter is zero, relation (8.45)
holds. Then,

R
R4=R—iR3=%x120=409

When measuring resistance values, the voltage sources in the circuit to which the unknown resis-
tance is connected must be turned off, and one end of the resistor whose value is to be measured
must be disconnected from the circuit.

Because of their great accuracy, Wheatstone Bridges are also used to accept or reject resistors
whose values exceed a given tolerance.

A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with
two sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these
coils produce a torque which is proportional to the V x | product.

A watt-hour meter is an instrument which measures electric energy W, where W is the product
of the average power P in watts and time t in hours, that is, W = Pt in watt—hours. Electric util-
ity companies use kilowatt—hour meters to bill their customers for the use of electricity.

Digital meters include an additional circuit called analog—to—digital converter (ADC). There are
different types of analog-to—digital converters such as the flash converter, the time-window con-
verter, slope converter and tracking converter. Shown in Figure 8.37 is a flash converter ADC.
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ANALOG—TO-DIGITAL CONVERTER

12 V Supply
Overflow
12V i ——
Ag
105V N Comparator
A7 V)(— ~ A
9V }Ae vyl ; > i
75V % Y Inputs | Output
6V > Vx =Vy |Previous Value
j>§ 8—to=3 7B vy>Vy|A=0
> Encod .=
45V i ncoder B Vx<Vy|Ai=1
3V —> For Example, if Analog Input=5.2'V,
Ay then Ag=A; = A, =Az=1
15V % and Ay = Ag= Ag = A; = Ag =0
oV
e i'/ Ao
Analog Input
Figure 8.37. Typical analog—to—digital converter
Analog Input A8| A7| A6| A5| A4| A3| A2| A1| Aol B2| B1| Bo
Less than 0V O (0 [0 |0 |0 |0 |0 |0 |0 |Ix |x |xt
O toless than 1.5V o (0 |0 |0 |0 (0O |O |0 |1 JO |0 |0
1.5 to less than 3.0 V o |0 |0 |0 |O |O |O |1 |1 Jo |jo |1
3.0tolessthan 4.5V O |0 |0 |0 |0 (0 |1 1 1 Jo |1 |O
4.5 to less than 6.0 V 0O |0 |0 |0 |0 |1 1 1 1 10 |1 1
6.0 to less than 7.5 V o |0 |0 |0 {1 |1 |1 |1 |1 }J1 |0 |O
7.5 to less than 9.0 V O |0 |0 |1 1 1 1 1 1 1 |0 |1
9.0tolessthan 10.5V |0 [0 |1 1 1 1 1 1 1 1 1 |0
105012V 0 1 1 1 1 1 1 1 1 1 1 1
Greater than 12V 1 1 1 1 1 1 1 1 1 Ix |x |x*
T Underflow
1 Overflow

As shown in Figure 8.37, the flash type ADC consists of a resistive network, comparators (denoted
as triangles), and an eight—to—three line encoder.

A digital-to—analog converter (DAC) performs the inverse operation, that is, it converts digital
values to equivalent analog values.

Figure 8.38 shows a four—bit R—2R ladder network and an op—amp connected to form a DAC.
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DIGITAL-TO-ANALOG CONVERTER

e |

Switch Settings: For Logic “0” (ground) positioned to the right
For Logic “1” (+5 V) positioned to the left

With the switches positioned as shown, B; B, B; B, = 0100

Negative reference voltage is used so that the
inverting op amp’s output will be positive.

Isb = least significant bit
msb = most significant bit

Figure 8.38. A typical digital-to—analog converter
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8.14 Summary

e A periodic time function is one which satisfies the relation f(t) = f(t+nT) where n is a posi-
tive integer and T is the period of the periodic time function.

e The average value of any continuous function f(t) over an interval a<t<b ,is defined as
f(t),00 = Lj bf(t)dt = L (area)
ave_b_aa _b—a ‘a

e The average value of a periodic time function f(t) is defined as the average of the function
over one period.

o A half-wave rectification waveform is defined as

Asinot O<ot<n
f(t) =
0 n<ot<?2rn

o The effective current I ¢ of a periodic current waveform i(t) is defined as

T

.2 / .2
I i“dt = IRoot Mean Square — lrms = ~AVe(I")

0

!
eff = |IT

e For sinusoids only, lgys = 1,/+2 = 0.7071

S . . 2 2 2 2
e For sinusoids of different frequencies, Igyg = «/lo +1 ams+ 12 Rms + -+« + IN RMS

e For circuits with sinusoidal excitations the average power delivered to a load is

\Y

I
P = —pgcose =V

ave LD 2 RMS LD I

RMs LD C0S0

where 6 is the phase angle between V| and | ;5 and it is within the range 0 <6 <90°, and

cosO is known as the power factor defined within the range 0 < cose <1.

e The average power in a resistive load is

2
= _VRMSR_|2 R
ave R — R = 'IRMSR

o The average power in inductive and capacitive loads is

ave X
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e If the excitation in a circuit is non—sinusoidal, we can compute the average power absorbed by
a resistor from the relations

17 1¢7v2 1p7.2
Pave = 7 Pt = T'[o -t = T'[o i°Rdt

e An inductive load is said to have a lagging power factor and a capacitive load is said to have a

leading power factor.

e In a power triangle

Preal = Pave = VRms lrms €086 (in watts)
Q = Reactive Power = Vs Igrms sin®  (in VARSs)
P, = Apparent Power = Vgys lrus  (in VAsS)

o The apparent power P, also known as complex power, is the vector sum of the real and reac-

tive power components, that is,

Pa = Preal powerijQ = Pave TIQ

where the (+) sign is used for inductive loads and the (-) sign for capacitive loads.

e A power factor can be corrected by placing a capacitive load in parallel with the load of the
circuit.

e Ammeters are instruments used to measure current in electric circuits. Ammeters, milliamme-
ters, and microammeters must always be connected in series with the circuits in which they
are used.

e Voltmeters are instruments used to measure voltage. Voltmeters must always be connected in
parallel with those devices of the circuit whose voltage is to be measured.

e Ohmmeters are instruments used to measure resistance. When measuring resistance values,
the voltage sources in the circuit to which the unknown resistance is connected must be
turned off, and one end of the resistor whose value is to be measured must be disconnected
from the circuit.

e A Wheatstone Bridge is an instrument which can measure unknown resistance values very
accurately.

Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure current in milliam-
peres) are normally combined into one instrument called VOM.

Wattmeters are instruments used to measure power.
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Watt—Hour meters are instruments used to measure energy.

An oscilloscope is an electronic instrument that produces an instantaneous trace on the
screen of a cathode-ray tube corresponding to oscillations of voltage and current.

DC ammeters and DC voltmeters read average values

AC ammeters and AC voltmeters read RMS values.

Digital meters include an additional circuit called analog—to—digital converter (ADC).
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8.15 Exercises

Multiple Choice

1. The average value of a constant (DC) voltage of 12 V is
A. 6V
B. 12V

C. 12/.2V

D. 12x .2V
E. none of the above

2. The average value of i = 5+ cos100t A is
A . 5+.2/2A
B. 5x.2 A

C. 5/J2 A
D. 5A
E. none of the above

3. The RMS value of a constant (DC) voltage of 12 V is
A. 1272V

B. 6x.2/2V
C. 12V

D. 12x .2V
E. none of the above

4. The RMS value of i = 5+ cos100t A is
A. 5+.J2/2A
B. 5x.2 A

C. 5/.2 A
D. 5A
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E. none of the above

5. The voltage across a load whose impedance is Z = 75+ j38 Q is 115 V RMS. The average
power absorbed by that load is

176.33 w
157.44 w
71.3 w

352.67 w

Mg 0w

none of the above

S
—

he average value of the waveform below is

24V
16 V
12V

6V

oo 0w >

none of the above
7. The RMS value of the waveform below is

T A

t (s)

[T S
W

10/.2 V
10x 2 V

10/./3 V

S O v »

10x /3 V
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E. none of the above

8. A current with a value of i = 5c0s10000t A is flowing through a load that consists of the
series combination of R = 2 Q, L = 1 mH, and C = 10 uF. The average power absorbed by
this load is

A. 25w
10 w
5w

0w

Mmoo 0w

none of the above

9. If the average power absorbed by a load is 500 watts and the reactive power is 500 VAR, the
apparent power is

A. 0 VA
B. 500 VA
C. 250 VA

D. 500 x /2 VA
E. none of the above

10. A load with a leading power factor of 0.60 can be corrected to a lagging power factor of 0.85
by adding

A. a capacitor in parallel with the load
B. an inductor in parallel with the load
C. an inductor is series with the load
D. a capacitor in series with the load
E. none of the above

Problems

1. The current i, (t) through a 0.5 H inductor is given as i (t) = 5+ 10sint A. Compute:
a. The average values of the current, voltage and power for this inductor.

b. The RMS values of the current and voltage.
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2. Compute the average and RMS values of the voltage waveform below.
v(t) \V4

15

t(s)

0

3. Compute the RMS value of the voltage waveform below.

v(t)

A _____ ¢

t(s)

0

4. Compute the RMS value of i(t) = 10 + 2c0s100t + 5sin200t .

5. A radar transmitter sends out periodic pulses. It transmits for 5 us and then rests. It sends out

one of these pulses every 1 ms. The average output power of this transmitter is 750 w. Com-
pute:

a. The energy transmitted in each pulse.
b. The power output during the transmission of a pulse.
6. For the circuit below, vy(t) = 100c0s1000t V. Compute the average power delivered (or

absorbed) by each device.

2Q  3mH
AN

Vg (t) o
— 5
@ Ta00 ur

7.For the circuit below, the input impedance of the PCB (Printed Circuit Board) is
Z,n = 100-j100 Q and the board must not absorb more that 200 mw of power; otherwise it

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling  8-37
Copyright © Orchard Publications



Chapter 8 Average and RMS Values, Complex Power, and Instruments

will be damaged. Compute the largest RMS value that the variable voltage source Vg can be

adjusted to.
Vs
/@Q/ Zn—| PCB

8. For the multi-range ammeter/milliammeter shown below, the meter full scale is 1 mA. Com-
pute the values of Ry, R,, Rg, and R, so that the instrument will display the indicated values.

10 mA 9’?/(\)/\,Q
R |
R, @
Ry =20 Q
R,

9. The circuit below is known as full-wave rectifier. The input and output voltage waveforms are
shown in Figure 8.47. During the positive input half cycle, current flows from point A to point
B, through D, to point C, through the resistor R to point D, through diode D5 to point E,

and returns to the other terminal point F of the input voltage source. During the negative
input half cycle, current flows from point F to point E, through diode D, to point C, through

the resistor R to point D, through the diode D; to point B, and returns to the other terminal
%
point A of the input voltage source. There is a small voltage drop v across each diode but it

can be neglected if v;, » v . Compute the value indicated by the DC voltmeter.

* For silicon type diodes, the voltage drop is approximately 0.7 volt.
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_N:I Diode — Allows current to flow in the indicated direction only

DC Voltmeter

Vin(D

Vo “/‘\Vp sinmt /\
0 \/ ot (r)

Vout(t) VpSin wt

ot ()
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8.16 Answers / Solutions to End-of-Chapter Exercises

Multiple Choice
1.B
2.D
3.C
4. A
5.E
Z = 75+)38 = 84.08£26.87°, Igys = 115£0°/84.08.£26.87° = 1.37/-26.87° and thus
Pove = Vams  lrmsC0s0 = 115 x 1.37 x cos(~26.87°) = 140.54 w
6. B
7. C
8. A
9.D
10. B
Problems
. . diL d .
1. i, = 5+10sint, v| = LE = O.Sa(5+103|nt) = 5cost
a.
. 1,¢7. 1T .
I ave = Tj-o i dt = TIO (5+ 10sint)dt
and since
1¢T .
=| 10sintdt = 0
1
it follows that
1T 1
Tjo 5dt = 5T = 5 A
Likewise,
1¢T
Vi ave = -T-'[o Scostdt = 0
Also,

1 T

T T T
PLave = _HO p dt = -T-'[o viidt = %Io 5cost(5 + 10sint)dt = %—Io (25cost + 50sintcost)dt
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and using sin2x = 2sinxcosx it follows that 50sintcost = 25sin2t and thus

1¢T ,
PL ave = '?Io (25cost + 25sin2t)dt = 0

T T
lﬁ RMS = %J.o iidt = %—J-o (5 + 10sint)’dt

17 . 2 25¢T . .2
TIO [5(1 + 2sint)]°dt = T'[o (1 + 4sint + 4sin“t)dt

T T
Using sin’x = % and observing that _%_I 4sintdt = 0 and _%_j cos2tdt = 0 we obtain
0 0

2 25/, 7 4. T 25

and

For sinusoids Vgys = V,/(+2) = 0.707V, and since V,, = 5 it follows that
Vays = 0.707x5 = 354 V

2. From the waveform below we observe that Period = T = 5t and since

V,e = Area/Period = (151 +201)/51 = 7V

v(t) v

15 | - ___

T ! t(s)

Also,

2 1¢T 2 170" 102 2 1 3
V2s = T'[o vadt = STUO (15) dt+L (5) dt} = £-(225T+ 1251~ 257) = 65
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and thus
Vims = +/65 = 8.06 V

3. We choose the period T as shown below.

2 /‘

0] — T —

v(t)

A

t(s)

Using the straight line equation y = mx +b we find that for 0<t<T/2, v(t) = 2#0\'[. Then,

2 1 T 2 T/Z(zA) 2 '|'/22
VRus = T.[O vidt = T.[ TIW JO tdt
2 T/2
- 4—A3t3 _4AT_ a2
3T . 24

and

2 J6
Vews = JA"/6 = 22A = 0.41A

4. The effective (RMS) value of a sinusoid is a real number that is independent of frequency and

phase angle and for current it is equal to Izpyg = 1,/+/2. The RMS value of sinusoids with dif-
ferent frequencies is given by (8.13). For this problem

lams = 102+%22+%52 = J100+2+125 = 10.7 A

5. The waveform representing the transmitter output pulses is shown below.

A

_’SMS‘_

—~

™
~
~

5 ts)

8-42 Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling
Copyright © Orchard Publications



Answers / Solutions to End—of—Chapter Exercises

For this problem we do no know the amplitude A of each 5 us pulse but we know the average
power of one period T = 1 s. Since

Area Area
P, = 750 w = A€ _ Area
ave "= Period 1s
it follows that:
a. Energy transmitted during each pulse is
Area of each pulse = 750 w - s

b. The power during the transmission of a pulse is
P=W/t=750w-5/5us = 750 w-s/5x10° = 150 x 10° w = 150 Mw

6. The phasor equivalent circuit is shown below where joL = j103><3>< 107 = i3 Q and

_j/oC = -j/10®x2x 107" = j5 Q@

2,20 Vo i3Q
MN——

Vs 2 o
@
100£0°
By application of KCL
Vo-V: V Vv
~Cc 'S + ~C + ~-C =0
Z; Z, I
V
( i + l + l)VC = _S
Z; I I3 Zy
Vv
A+zy/2,+2./25)
Also,
L, = Ys—Ve 1. = Yo | = Ve
20 Z, c Z, L= 7,
and with MATLAB

Vs=100; z1=2; z2=-5j; z3=5+3j;...

Vc=Vs/(1+z1/z2+z1/z3); 12=(Vs-Vc)/z1; Ic=Vc/z2; IL=Vc/z3; fprintf(’ \n');...
disp('Vc ="); disp(Vc); disp('magVc ="); disp(abs(Vc));...

disp(‘phaseVc ="); disp(angle(Vc)*180/pi);...

disp('12 =); disp(12); disp('magl2 ="); disp(abs(12));...

disp('phasel2 ="); disp(angle(12)*180/pi);...
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disp(lc ="); disp(lc); disp('maglc = "); disp(abs(Ic));...
disp(‘phaselc ="); disp(angle(lc)*180/pi);...

disp('IL ="); disp(IL); disp(‘'magIL ="); disp(abs(IL));...
disp('phaselL ="); disp(angle(IL)*180/pi);

Vc = 75.0341-12.9604i
magVc = 76.1452
phaseVc = -9.7998

12 = 12.4829 + 6.4802i
magl2 = 14.0647
phasel2 = 27.4350

Ic = 2.5921 + 15.0068i
maglc = 15.2290
phaselc = 80.2002

IL = 9.8909 - 8.52661
maglL = 13.0588
phaselL = -40.7636

The average power delivered by the voltage source Vg is computed from the relation

1
Pave = VrRmslrmsCOSO = EVpIpcose

where 6 = 27.43° as shown by the phasor diagram below.

/ IZQ
b= 2143

Therefore,

P ave = % X [V X |1, o cOSB = 0.5x 100 x 14.07 x €0527.43° = 624.4 W

Also, L, 2
Proave = §|pR29 = 05%(14.07)" x2 = 19797 w
and L, 2
Psoave = EILRSQ = 0.5%(13.06)" x5 = 42641 w
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Check:
Py o avet Psoave = 197.97 +426.41 = Py, = 6244 w

The average power in the capacitor and the inductor is zero since 6 = 90° and cos6 = 0.

7. Let us consider the t—domain network below.

Vs|[ i)
%Z,Nq PCB
vg(t)

Let
Vg = V cosmt
and .
i = Ipcos(mt+e)
Then, )
p = Vgl = VI cosmt- cos(wt +0)
and using 1
COSX - COSY = E[cos(x+y) + cos(X—-Yy)]
we obtain

VI
p = -—é"—f[cos(Zwt+6)+cose]

We require that the power p does not exceed 200 mw or 0.2 w, that is, we must satisfy the
condition

AV
p= —g—g[cos(th +0)+c0s0]<0.2 w

and therefore we must find the phase angle 0. Since 0 appears also in the jo —domain, we
can find its value from the given input impedance, that is, Z;, = 100 -j100 Q or

-1
Zyy = |2 26 = +/100% + 100° £tan—=30) = 100,/2.2-45°
and in the t-domain

VI
p= —%—E[cos(th—45°)+ 0s(—45°)]

The maximum power p occurs when cos(2wt —45°) = 1, that is,

Pmax = \—/S—IE(1+§) =02w
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Then,
VI, = 04/1.707

and now we can express I,

I, = V,/|Z)\| and by substitution

in terms of V, using the relation |Z\| = 10042 and

v2 o 04x100.2 _ 454,
P 1.707
or
= /3314 = 5.76
and v
Vays = -2 = 218 _ 407v
2 1414

8. With the switch at the 10 mA position, the circuit is as shown below.

980 Q
10 mA 9 mA 1 mA
0Q
10 mA
Then, 5 5
9x 10 (R, + R, +Ry) = (980 +20) x 10°
or

R, +R,+R, = M (1)

With the switch at the 100 mA position, the circuit is as shown below.

980 Q
MV
Ry ll mA
R, @
20 Q
R,
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Then,
99%x 10 (R, + Ry) = (R, + 980 +20) x 10°°

o _R,+99R, + 99R, = 1000 (2)

With the switch at the 1 A position, the circuit is as shown below.

980 Q
MN l
R, 1 mA
. (@
20 Q
R
Then, 5 5
999 x 10 R; = (R1+R2+980+20)X107
or

“R,~R,+999R, = 1000 (3)
Addition of (1) and (3) yields

1000 10000

1000R, = +1000 =

or 10
R, = 5 Q (4

Addition of (1) and (2) yields

_ 10000

100R, + 100R; = 9

or

Substitution of (4) into (5) yields R, =10Q (6)

and substitution of (4) and (6) into (1) yields
R, = 100 @ (7)
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9. DC instruments indicate average values. Therefore, the DC voltmeter will read the average
value of the voltage vt across the resistor. The period of the full-wave rectifier waveform is
taken as 7.

Then,

Vout(® V,sinot
ob--

T T ot ()

T V T
VouT ave = %J.Ovpsinmtd(mt) = #—’(—cosmt)
ot=0
0
N 2V
= 7[9(1 +1)=—28

V
= —Lcosmt
T - T

As expected, this average is twice the average value of the half-wave rectifier waveform in
Example 8.2.
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Chapter 9

Natural Response

his chapter discusses the natural response of electric circuits. The term natural implies that
there is no excitation in the circuit, that is, the circuit is source—free, and we seek the cir-
cuit’s natural response. The natural response is also referred to as the transient response.

9.1 Natural Response of a Series RL circuit

Let us find the natural response of the circuit of Figure 9.1 where the desired response is the cur-

rent i, and it is given thatat t = 0, i = |, that is, the initial condition is i(0) = 1.
- +
R§ L
+ i -

Figure 9.1. Circuit for determining the natural response of a series RL circuit

Application of KVL yields
o di

LG +Ri =0 (9.1)
Here, we seek a value of i which satisfies the differential equation of (9.1), that is, we need to find
the natural response which in differential equations terminology is the complementary function. As
we know, two common methods are the separation of variables method and the assumed solution
method. We will consider both.

1. Separation of Variables Method

Rearranging (9.1), so that the variables i and t are separated, we obtain

di

R
= —Ldt

Next, integrating both sides and using the initial condition, we obtain

Joja =5 e
0
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where ¢ is a dummy variable. Integration yields

il = Rg!
= o0
or R
Ini—Inl, = _Et
or _ R
In+ = Tt
I, L
Recalling that x = Iny implies y = e”, we obtain
i(t) = 1,6 ®" (9.2)

Substitution of (9.2) into (9.1) yields 0 = 0 and thatat t = 0, i(0) = I. Thus, both the differ-

ential equation and the initial condition are satisfied.
2. Assumed Solution Method

Relation (9.1) indicates that the solution must be a function which, when added to its first deriv-
ative will become zero. An exponential function will accomplish that and therefore, we assume a
solution of the form

i(t) = Ae® (9.3)

where A and s are constants to be determined. Now, if (9.3) is a solution, it must satisfy the dif-
ferential equation (9.1). Then, by substitution, we obtain:

RAeS +sLAE = 0

(s+B )Aest =0
L

or

The left side of the last expression above will be zeroif A = 0, orif s = —e, orif s = -R/L. But,
if A =0 ors = —oo, then every response is zero and this represents a trivial solution. Therefore,
s = —R/L is the only logical solution, and by substitution into (9.3) we obtain

i(t) = Ae ®/M!

We must now evaluate the constant A. This is done with the use of the initial condition
i(0) = ly. Thus, I, = Ae” or A = 1, and therefore,

i(t) = 1,6 *!
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as before. Next, we rewrite it as .
%D _ e—(R/L)t (9.4)
0
and sketch it as shown in Figure 9.2.

1

oo (R/L)t
osl €

o7t i(t)/1y = =(R/L)t+1
0.6t

36.8%

Percent i(t)/I,

0.5¢

0.4+

sl VT : 13.5%

' / 5%

0z2r

[T 1 S U E /

) T [ |
0 1 2 3 4 5

Time constants

Figure 9.2. Plot for i(t)/ly in a series RL circuit

From Figure 9.2 we observe thatatt = 0, i/l; = 1,and i >0 as t— 0.

The initial rate (slope) of decay is found from the derivative of i/1, evaluated at t = 0, that is,

iiliy)

1 Re—(R/L)t R
I

L L

t=0 t=0
and thus the slope of the initial rate of decay is -R/L

Next, we define the time constant t as the time required for i/1, to drop from unity to zero

assuming that the initial rate of decay remains constant. This constant rate of decay is repre-
sented by the straight line equation

i) = —Bt+1
andatt = 1, i/l, = 0. Then,
0= —Er+1
or
1=k
R (9.5)

Time Constant for RL Circuit
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Evaluating (9.4) att = © = L/R, we obtain

@ _ e—(R/L)r _ e—(R/L)(L/R) _ e—l — 0.368
ly
or

i(t) = 0.368l, (9.6)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial
value.

If we express the rate of decay in time constant intervals as shown in Figure 9.2, we find that
i(t)/15=0 after t = 57, that is, it reaches its final value after five time constants.

|
Example 9.1

For the circuit shown in Figure 9.3, in how many seconds after t = 0 has the
a. current i(t) has reached ¥ of its initial value?
b. energy stored in L has reached % of its initial value?

c. power dissipated in R has reached %4 of its initial value?

10RQ§ % 10 mH

Figure 9.3. Circuit for Example 9.1

Solution:

From (9.2), i) = 1, e R/
=l

where 1, = i (0). Then,

a. The current i(t) will have reached ¥ of its initial value when

(10/10% 10 )t 1000t
051y = lge = loe

ot 1000t
e =05

or
~1000t = In(0.5) = —0.693
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and therefore,
t = 693 us

b. To find the energy stored in L which reaches Y of its initial value, we begin with

W, (1) = L%
andatt = 0, I, = i (0). Then,

1,2

and )
L o) = Y(301,2)
7V = (5L
Therefore, . . . > 11
1 1 .2 _1 ~(R/L)t 2 _(_ 2)
ZWL = 5LID = 5L(ge ) =354
or 2(R/L)t
e 2R/ 14
e—2000t - 1/4
~2000t = In(0.25) = —1.386
and

t = 693 us

This is the same answer as in part (a) since the energy is proportional to the square of the cur-
rent.

c. To find the power dissipated in R when it reaches % of its initial value, we start with the fact

. ‘ . 2 . .
that the instantaneous power absorbed by the resistor is ps = igxR, and since for the given
circuit

i(t) = ig(t) = lpe *"
then,

O = IgRe—Z(R/L)t

and the energy dissipated (in the form of heat) in the resistor is

oo

=12

Wp = jo prdt = |§Rj0 ¢ M0Vt = iZR(- )P - L

2R

Also, from part (b) above,

1,2
W, (0) = 5Ll

and thus
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3 3 1, .2 1 ~-R/LLZ 3(1, 2
Wg = SW,(0) = SLi%(D) = SLge ™Y = —(—Llo)

4 2 a\2
or 2(R/L)t
A Y
e—2000t - 3/4
~2000t = In(0.75) = —0.288
and

t = 144 us

In some examples and exercises that follow, the initial condition may not be given directly but it
can be found from the fact that the current through an inductor cannot change instantaneously
and therefore,

iL(07) = i(0) =i (0") 9.7)

where i, (07) will be used to denote the time just before a switch is opened or closed, and i, (07)

will be used to denote the time just after the change has occurred.

Also, in our subsequent discussion, the expression “long time” will mean that sufficient time has
elapsed so that the circuit has reached its steady—state conditions. As we know from Chapter 5,
when the excitations are constant, at steady state conditions the inductor behaves as a short cir-
cuit, and the capacitor behaves as an open circuit.

Example 9.2
In the circuit of Figure 9.4, the switch S has been in the closed position for a long time and opens

att = 0.Find i (t) for t>0, vg(0), and VR(0+)

Figure 9.4. Circuit for Example 9.2

Solution:

We are not given an initial condition for this example; however, at t = 0° the inductor acts as a
short thereby shorting also the 20 Q resistor. The circuit then is as shown in Figure 9.5.
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Circuitatt = 0

I{./(i/\gl!
\ _VR(t)+ L
iL(t) <_>32V

Figure 9.5. Circuit for Example 9.2 att = 0

From the circuit of Figure 9.5, we observe that
i, (07) =i, (0) =i (0") = 32/10 = 3.2A
and thus the initial condition has now been established as 1, = 3.2 A. We also observe that
Vg(0) =0

Att = 0", the 32 V source and the 10 Q resistor are disconnected from the circuit which now is
as shown in Figure 9.6.

Circuitatt = 0"

y |
V(1) 1 mH
) —gzog i (t)

Figure 9.6. Circuit for Example 9.2 att = 0"

For the circuit of Figure 9.6,

-3
. ~(20/107 3yt
i (1) = 1e ®D = 3.2¢ :
or 20000t
and .
VR(0) = 20(-1,) = 20(-3.2)
or

Ve(0") = —64 V

We observe that VR(O+) #Vg(0)
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Example 9.3

In the circuit shown in Figure 9.7, the switch S has been closed for a long time and opens at
t = 0. Find:

a. i (t) fort>0

C. igg(t) att = 200 ps

I45(t)

Figure 9.7. Circuit for Example 9.3
Solution:

a. At t = 0 the inductor acts as a short thereby shorting also the 24 Q and 48 Q resistors. The
circuit then is as shown in Figure 9.8.

Circuitatt = 0
4 Q 30 Q

iL(0)

Figure 9.8. Circuit for Example 9.3 att = 0

Then,
2V _ T2V _ 44

4+6030 4+20

ir(0) =
and by the current division expression,

oo 60
(0 = 35160

»

Gip(0) = 2x3=2A

©

and thus the initial condition has been established as 1, = 2 A

Att = 0, the 72 V source and the 4 @ resistor are disconnected from the circuit which now
is as shown in Figure 9.9.

9-8  Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling
Copyright © Orchard Publications



Natural Response of a Series RC Circuit

Circuitatt = 0"
30 Q 24 Q

i4g (1)

Figure 9.9. Circuit for Example 9.3 at t = 0"

From (9.2), ~(R,./L)t
(1) = lee
here
w Rgq = (60 +30) || (24+48) = 40 Q
and thus _ 40,107t
i (t) = 2e
or _ —40000t
i (t) = 2e
Also,
SO I o _ (24 + 48) [—i )]
60 ‘t:lOO us ~ (30+60)+(24+48)" - t =100 us
or
Igo(1)| - S72e - ge ' = 163 mA
t =100 ps 27 t =100 us
and
8O _ 50 us  (30+60)+(24+48)" | _ L0, us
or
i45(0)| = 227 - ge " = 0373 mA
t=200 us 27 t =200 us 9

9.2 Natural Response of a Series RC Circuit

In this section, we will find the natural response of the RC circuit shown in Figure 9.10 where
the desired response is the capacitor voltage v, and it is given thatat t = 0, vo = V,, that is,

the initial condition is v(0) = V.
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Ic

——

l.
+ IR
Ve SR
i §

Figure 9.10. Circuit for determining the natural response of a series RC circuit

By KCL,
ic+ig =0 (9.8)
and with
dve
Ic = CE
and
Ve
R™R

by substitution into (9.8), we obtain the differential equation

dve Ve
—+—==0 9.9
dat ' RC (©9)
As before, we assume a solution of the form
ve(t) = Ae®
and by substitution into (9.9) o
Ase+ AL _ g
RC
or
(s+ ﬁ%)AeSt =0 (9.10)

Following the same reasoning as with the RL circuit, (9.10) will be satisfied when s = -1/RC

and therefore,

Ve (t) = A~ (/RO

The constant A is evaluated from the initial condition, i.e., vo(0) = V, = Ae” or A = V.

Therefore, the natural response of the RC circuit is

Va(t) = Ve /RO (9.11)

We express (9.11) as
ve(t) _ o—(1/RO)

Vo
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and we sketch it as shown in Figure 9.11.

1

ool
~1/(RO)t

nel €
sl Ve(t)/Vy = —1/(RC)t+1
o
3 nel
S sl 36.8%
(@]
> pal
"g asl VT : 13.5%
o : 5%
S oz2f /
P S U .

o1l ;

) I TR o I

o 1 P 3 4 5

Time constants
Figure 9.11. Circuit for determining the natural response of a series RC circuit

From Figure 9.11 we observe thatatt = 0, vo/Vy = 1,and i >0 as t— oo

The initial rate (slope) of decay is found from the derivative of v(t)/V, evaluated at t = 0,
that is,
dt\v, "RC " RC

RC RC

d(vc)‘ _ ]_ef(l/RC)t 1
t=0 t=0

and thus the slope of the initial rate of decay is —1/(RC)

Next, we define the time constant t as the time required for v(t)/V, to drop from unity to zero

assuming that the initial rate of decay remains constant. This constant rate of decay is repre-
sented by the straight line equation

ve(t) _ 1

v, —rat+! (9.12)
and att = 1, vo(t)/V, = 0. Then,
1
0= —Rcr+1
or
t = RC

(9.13)

Time Constant for RC Circuit

Evaluating (9.11) at t = © = RC, we obtain
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V(1) _ ¢ /RC _ o RC/RC _ 1 _ (a0
Vg |

or

ve(t) = 0.368V,, (9.14)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial
value.

If we express the rate of decay in time constant intervals as shown in Figure 9.11, we find that
v (t)/Vy=0 after t = 51, that is, it reaches its final value after five time constants.

In the examples that follow, we will make use of the fact that

ve(07) = ve(0) = v¢(0) (9.15)

|
Example 9.4
In the circuit of Figure 9.12, the switch S has been in the closed position for a long time, and

opensatt = 0. Find v(t) for t>0,i(0), and i(07).

S 10 KQ

| | Zt =0
i(t)§ 10 uF J_rvc(t) CE)
50 KQ T 60V

Figure 9.12. Circuit for Example 9.4

Solution:
Att = 0 the capacitor acts as an open. The circuit then is as shown in Figure 9.13.

Circuitatt = 0

10 KQ
MN

ALy

50 KQ l 60 V

Figure 9.13. Circuit for Example 9.4 att = 0

From the circuit of Figure 9.13 we observe that
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- + - 60 V
Ve(07) = v(07) = 50 KQxi(07) = 50 o = 50 V

and thus the initial condition has been established as V; = 50 V. We also observe that

60 V — 1mA

i(O_) = =
10 KQ + 50 KQ

Att = 0" the 60 V source and the 10 KQ resistor are disconnected from the circuit which now
is as shown in Figure 9.14.

From (9.11), RO
ve(t) = Ve RO
Circuitatt = 0"
\ .
()2 LONFAR Ve (D
50 KQ
Figure 9.14. Circuit for Example 9.4 at t = 0
where 5 6
RC =50x10"x10x10 " = 05
Then, —(1/0.5)t -2t
vc(t) = 50e = 50e
and
i(0") = =2 S0V 1 mA

We observe that i(0%) = i(07). This is true because the voltage across the capacitor cannot
change instantaneously; hence, the voltage across the resistor must be the same att = 0~ and at
t=0".

1 ——

Example 9.5

In the circuit of Figure 9.15, the switch S has been in the closed position for a long time and
opens at t = 0. Find:

a. vg(t) fort>0
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6 KQ S 30 KQ 20 KQ

+
Vo (1)

72V

Figure 9.15. Circuit for Example 9.5

Solution:
a. Att = 0 the capacitor acts as an open and the circuit then is as shown in Figure 9.16.

Circuitatt = 0

6 KQ 30 KQ 20 KQ
M\~ * ‘VW—T—’VW— _
— i (t) + H L—Ilo(t)
(t) 60 KQ S Veo (1) v () 10KQ§V10(U
72V - 1 B

Figure 9.16. Circuit for Example 9.5att = 0

From the circuit of Figure 9.16,

L (07) = 72V _ 72V o mA
6 KQ+60 KQII60 KQ 6 KQ+30 KQ

and using the current division expression, we obtain

o 60 KQ o
10(0) = Gokareo ke 1O =

x2 =1mA

NI

Then,
Ve (07) = (20 KQ+10 KQ) - iyy(07) = 30 V

and thus the initial condition has been established as V, = 30 V.

At t = 0", the 72 V source and the 6 KQ resistor are disconnected from the circuit which
now is as shown in Figure 9.17.
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Circuitatt = 0"

30 KQ 20 KQ

+ | +
VoS g HF = $ Vio(t)

s _Vc(t)
1 60 KQ T 10 KQ

Figure 9.17. Circuit for Example 9.5 at t = 0

From (9.11),
~(1/R_ C)t
ve(t) = Ve
where
Req = (60 KQ+30 KQ) || (20 KQ+10 KQ) = 225 KQ
Then, 40
ReqC = 225107 x5 x 107" = 0.1
and ~(1/0.1)t _10t
Ve(t) = 30e = 30e
b.
Ve (D _ B0KQ |
0] 100 ms = 30KQ + 60 K@ VC ‘= 100
= ms
T
’ Veo()| = 2(30e71%Y, = 206t =736V
60 = - -
t=100ms 3 t =100 ms
¢ vlt) ~ 10 KQ Ve
100} 20 ms = TOKQ+20 K VC = 200
= ms
or
1 -10t -2
Vio(t) = (30 = 10e° = 135V
|t=200 ms 3 {2 200 ms

|
Example 9.6

For the circuit of Figure 9.18, it is known that v (0) = V, = 25 V.

a. To what value should the resistor R be adjusted so that the initial rate of change would be
-200 V/s?
b. What would then the energy in the capacitor be after two time constants?
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+
C 7~ Ve R

Figure 9.18. Circuit for Example 9.6
Solution:

a. The capacitor voltage decays exponentially as

Ve(t) = Voe—(l/RC)t
and with the given values, 100000/R)t
ve(t) = 25¢7¢ )

Now, if the initial rate (slope) is to be =200 V/s, then

dve

_ 25x10° _
at

t=0

(_10(;5)00 )25 o~ (100000/R)t 200

t=0

and solving for R we obtain R = 12.5 KQ

b. After two time constants the capacitor voltage will drop to the value of
Ve(21) = 256 1/ROIZT _ g (2RC/RC) _ 95672 _ 338 v

Therefore, the energy after two time constants will be

1.2 -6 2
We|, _,, = 5CVc = 5x107x3.38" = 572 )
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9.3 Summary

o The natural response of the inductor current i) (t) in a simple RL circuit has the form

—~(R/L)t

i () = loe where 1, denotes the value of the current in the inductor at t = 0

e Inasimple RL circuit the time constant 7 is the time required for i, (t)/1, to drop from unity
to zero assuming that the initial rate of decay remains constant, and its value is T = L/R

¢ In one time constant the natural response of the inductor current in a simple RL circuit has
dropped to approximately 36.8% of its initial value.

e The natural response of the inductor current in a simple RL circuit reaches its final value,
that is, it decays to zero, after approximately 5 time constants.

e The initial condition I, can be established from the fact that the current through an inductor

cannot change instantaneously and thus i (07) = i, (0) = il_(0+)

e The natural response of the capacitor voltage V¢(t) in a simple RC circuit has the form
~(1/RC)t

Ve(t) = Vye where V, denotes the value of the voltage across the capacitor at t = 0

e In a simple RC circuit the time constant t is the time required for v¢(t)/V, to drop from

unity to zero assuming that the initial rate of decay remains constant, and its value is T = RC

e In one time constant the natural response of the capacitor voltage in a simple RC circuit has
dropped to approximately 36.8% of its initial value.

e The natural response of capacitor voltage in a simple RC circuit reaches its final value, that
is, it decays to zero after approximately 5 time constants.

e The initial condition V, can be established from the fact that the voltage across a capacitor

cannot change instantaneously and thus v (07) = v(0) = VC(O+)
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9.4 Exercises

Multiple Choice

1. In a simple RL circuit the unit of the time constant r is
A. dimensionless
B. the millisecond

C. the microsecond

D. the reciprocal of second, i.e., st
E. none of the above
2. In a simple RC circuit the unit of the term 1/RC is

A. the second

B. the reciprocal of second, i.e., st
C. the millisecond

D. the microsecond

E. none of the above

3. In the circuit below switch S; has been closed for a long time while switch S, has been open
for a long time. At t = 0. switch S; opens and switch S, closes. The current i (t) forall t>0
is
A 2A

-100t
B. 2e

A
C. 2% A

D. e A

E. none of the above

100 mH

MOW% |

0 |
- O?Sz i; (1)
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4. In the circuit below switch S; has been closed for a long time while switch S, has been open
for a long time. At t = 0. switch S; opens and switch S, closes. The voltage v¢(t) for all

t>0 is

A. 10V
B. 10e % v
C. 10e'Vv

D. 10e %M v
E. none of the above

50 KQ 50 KQ

( ? ) /f< Vc(t)/\ 20 pF

5. In the circuit below switch S; has been closed for a long time while switch S, has been open

for a long time. At t = 0. switch S; opens and switch S, closes. The power absorbed by the

inductor at t = +oo will be
A. 0w

B. 1w

C. 2w

D. 02w

E. none of the above
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Chapter 9 Natural Response

6.1In the circuit below, switch S; has been closed for a long time while switch S, has been open
for a long time. At t = 0. switch S; opens and switch S, closes. The power absorbed by the

capacitor at t = +oo will be
A. 0w

10 w

Sw

10 mw

Mg 0w

none of the above

50 KQ Sq 50 KQ

t=20

+
Ve(DAR 20 uF
t=009g
10V 2

7. In a simple RL circuit where R = 10 MQ and L = 10 uH the time constant = is
A. 1s

100 s

. 10%s

B
C
D. 10%s
E. none of the above
8. In a simple RC circuit where R = 10 MQ and C = 10 uF the time constant = is
A. 100 s
B. 0.01s
C. 100 us
D. 0.01 us

E. none of the above
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9. In a simple RL circuit the condition(s) __ are always true.
A. i (07) =i (0) =i (0") and v, (07) = v, (0) = v (0")
B. i, (07) =i (0) =i (0") and iz(0") = iz(0) = iz(0")
C. i, (07) =i (0) = i (0") and vgx(0") = vg(0) = vgx(0")
D. i (07) =i (0) =i (0")

E. none of the above.

10. In a simple RC circuit the condition(s) __ are always true.
A. ve(07) = ve(0) = v(0") and ig(07) = ic(0) = ic(0")
B. ve(07) = vg(0) = ve(07) and vg(07) = Vg(0) = Vgx(0)
C. ve(07) = vg(0) = ve(0)

D. vo(07) = ve(0) = ve(07) and ig(07) = ig(0) = ir(0")
E. none of the above.

Problems

1. In the circuit below, switch S; has been closed for a long time and switch S, has been open
for a long time. Then, at t = 0 switch S; opens while S, closes. Compute the current ig,(t)

through switch S, for t>0.

30 s,  8Q 38

§ 32.5 mH
S2 t=0
[

2. In the circuit below, both switches S; and S, have been closed for a long time and both are

opened at t = 0. Compute and sketch the current i (t) for the time interval 0<t<1 ms

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems® Modeling  9-21
Copyright © Orchard Publications



Chapter 9 Natural Response

12V 2Q S,
@ vy =0

16 Q S, 6Q 8Q
AN <; - AN——AN—9

= l

i (t

10/3 mH L(0)
Ct) 40 129§

24V 10 Q

—2000t

3.In a series RL circuit, the voltage v, across the inductor is v| = 0.2e V and the current

i att =0 1isi (0) = 10 mA. Compute the values of R and L for that circuit.

4.1In the circuit below both switches S; and S, have been closed for a long time, while switch S,
has been open for a long time. At t = 0 S; and S, are opened and S; is closed. Compute the

current i  (t) for t>0.

10 KQ
NN
* — 3 mH
T
1 KQ 2KQ + —i
L
t= 0?( +
Vin1 Vin2 S, sKO SV
10 mV 20 mV §_ out
{0 t-0 10 KQ
Sy S,

5. In the circuit below switch S; has been closed and S, has been open for a long time. At t = 0

switch S; is opened and S, is closed. Compute the voltage v, (t) for t>0.

10 KQ s, t=0s,

T,
Ve (1) _6 uE < Vea(h)
T 3 MF|
MWV .

10 KQ 50 KQ

12V
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6. In the circuit below switch S has been in the A position for a long time and at t = 0 is
thrown in the B position. Compute the voltage v (t) across the capacitor for t>0, and the

energy stored in the capacitor at t = 1 ms.

2KQ A S 4KQ 16 KQ

+
= Ve(b)

7. In the circuit below switch S has been open for a long time and closes at t = 0. Compute
igw () for t>0.

10 uF

AY |
/
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8.
a. In the Simulink / SimPowerSystems model shown below, are the values shown in the Dis-
play blocks justified after the simulation command is issued?

VM = Voltage Measurement —> All resistor values in Ohms CVS = Controlled Voltage Source

Display 1 4 6

M s es et w il e A S S

72V DC =R M1 - VM 2 Display 4
T Manual r Vs
= Switch in 2 1 mH 3 =

I E_ Simulink = _ Continuoug

1 Ground in Ground in 1 !
= Simulink SimPower Systems : L powergui

cM1 . -

I CM=Current Measurement
-4

Display 2

Display 3

b. When the Manual Switch block is double-clicked the model is as shown below. Are the
values shown in the Display blocks justified after the simulation command is issued?

powergui

VM = Voltage Measurement —> All resistor values in Ohms CVS = Controlled Voltage Source
Display 1 4 6
NN\ —+—=[+

R oo e S A B B

+ VM 1 -
72V DC J— - VM 2 Display 4
T Manual VS
- E Switch in 2 1 mH 3 _L?

I simulink "= Continuous
L Ground in Ground in :

= Simulink SimPower Systems 1

CM1

CM=Current Measurement

pes - ©

Display 2

Display 3
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9.5 Answers / Solutions to End-of-Chapter Exercises
Multiple Choice

E 1 = L/R = [volt/(ampere/second)]/[volt/ampere] = second (s)
B

o ® N ok W=
@ O » » O U

D
10.C

Problems

1. The circuit at t = 0 is as shown below.

3Q 8Q x 5Q
ANN—
(t) 6Q 10Q o
15V IL(O)
y

Replacing the circuit above with its Thevenin equivalent to the left of points x and y we find

that vy = 5 15-10V and Rry = 3x6,8=100 and attaching the rest of the cir-
3+6 3+6

cuit to it we obtain the circuit below.

10Q

NN—2

Roy \

+
O ez (350
THI10V

By voltage—source to current—source transformation we obtain the circuit below.
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oy ek ok
()@(igz 109/\ SQ§

1A - =75 1.(0)

and by inspection, i, (07) = 0.5 A, that is, the initial condition has been established as
i (0) =i (0) =i (0") =1,=05A

The circuitat t = 0" is as shown below.

8Q 50
—AMA—
i, (0") =05A
§ 60 ‘ Clqsed L
) Switch
Is2(1) 2.5mH

We observe that the closed shorts out the 6 Q and 8 Q resistors and the circuit simplifies to
that shown below.

_ | se liL(o+) =1, =05A
Is2(t) 2.5 mH
-3
Thus for t>0, ig,(t) = —i (1) = —lpe" "' = _05e */2°¥10 ) = 057200 p

2. The circuitat t = 0 is as shown below and the mesh equations are

20i, — 4, = 24
16i, - 6i; — 8i, = —12
— 4i, — 6iy+ 20i5— 10i, = 0
8i, — 10i + 30i, = 0

Then, i, (07) = i5—i,
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24V

and with MATLAB

R=[20 0 -4 0;0 16 -6 -8; -4 -6 20 -10; 0 -8 -10 30j;...
V=[24 -12 0 OJ; I=R\V; iLO=I(3)-I(4); fprintf(' \n");...

forintf('il = %4.2f A \t, I(1)); fprintf(i2 = %4.2f A\t 1(2));...
forintf('i3 = %4.2f A \t, 1(3)); fprintf(i4 = %4.2f A\t 1(4));...
fprintf('iLO = %4.2f A\t 1(3)—-1(4)); fprintf(' \n'); fprintf(' \n");

11 =1.15 A 12 =-1.03 A 13 =-0.26 A 14 = -0.36 A 1LO = 0.10 A
Therefore, .
i, (07) =i, (0) =i (0") = I, =01A

Shown below is the circuit at t = 0" and the steps of simplification.

-~

/ N

6Q TQ
) N~
/ VX\’/ l IW\’\ \ 20/3 Q
. + =mH | IL(O )l §-mH I (0+)j 3 mH
240 0O@) oy (300 120 © s "
']/ we -1 L _ 10Q 2013 Q
Thus for t>0,
i (1) = l,e ®P' = 01 A
and )
| = 0.1e° = 0.0137 A = 13.7 mA
t=0.4 ms

To compute and sketch the current i, (t) for the time interval 0<t<1 ms we use MATLAB
as shown below.

£=(0: 0.01: 1)*107(=3):...

iLt=0.1.¥10.7(~3).*exp(~5000.*t):...

plot(t,iLt); grid
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and with i, (0) = 10 mA, by substitution R(10x10™°%) = 0.2¢”° = 0.2

or R = 02/107% = 20 Q Also, from R/L = 2000, L = 20/2000 = 0.01 = 10 mH

4. The circuitat t = 0 is as shown below and using the relation

V. V:
in1 in2

that was developed in Example 4.11 we have

-2 -2
10 Kg( 10, 2x10 ) = 10x2x102 = 02V

\
1 KQ 2 KQ

out =
and

IL(0) = lg = s ko = Tt = ~40x10° A = ~40 uA
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10 KQ
MN
1 KQ 2KQ / i (1)
+
Viny Yin2 20my 5 KQ§ Vout

3 mH
R g o
IL(O) - - I(0+) —
§10K9 5m§ 0.2V L §
15 KQ
+ 4 3 mH +

Then for t>0

3 -3 5
i (1) = |Oe(R/L)t — 40 % 10—6e(15><10 /3x1079t _ 409—5><10 t WA

with the direction shown.

5. The circuit at t = 0 is as shown below. As we've learned in Chapter 5, when a circuit is
excited by a constant (DC) source, after sufficient time has elapsed the capacitor behaves as
an open and thus the voltage across the capacitor C, is 12 V as shown.

10 KQ
—AM—

(if) ?{ Ve (0) = 12V

The circuitat t = 0" is as shown below where the 12 V represents the voltage across capaci-
tor C;.
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~(1/RCyy) _C-C,  6x3

where v, = 12V and Cg, = C.iC " 64+3

= 2 uF

Then, 1/RC,q = 1/(5x10"x2x10™°) = 10 and thus v,(t) = 12¢"

6. The circuitat t = 0 is as shown below.

2 KQ 4 KQ 16 KQ

+ _
:_ ve(0)

Because the capacitor behaves as an open, there is no current in the 16 KQ. Then,

6 KQ

KQ+6 Ko A =12V

Ve(0) = Vg = Vgeg =

The circuitat t = 0" is as shown below where VC(O+) =12 V.
4 KQ 16 KQ

+ +
§8KQ 6K Z2ve(0")
5 uF

Series and parallel resistances reduction yields

Req = [(8 KQ+4 KQ) 116 KQ]+16 KQ = i;igua = 4416 = 20 KQ

and the circuit for t > 0 reduces to the one shown below.

9-30  Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling
Copyright © Orchard Publications



Answers / Solutions to End—of—Chapter Exercises

+
§20 KQ == ve(t)
5uF| ™~

Now, ReqC = 2x10*x5x107° = 0.1, 1/Re,C = 10 and v¢(t) = Ve ' = 1267, Also,

_ 12
WC’l ms ZCVC(t)

= 05%5x10 ° x 144e |

=1ms
1 ms

360x 10 % | _|  =0.35m)

7. The circuit at t = 0 is as shown below.

6Q 100 Q
AMN————AW
I
) R
36 V 30 -
Then, 36 v/
WO =59 a "
and

Ve(0) = 3xi, (07) = 3x4 = 12V
The circuitat t = 0" is as shown below and the current g (t) through the switch is the sum

of the currents due to the 36 V voltage source, due to i|_(0+) = 4 A, and due to
ve(07) = 12 V.

so () =4A

100 Q
——AM——
6mH‘ \
foy (t + +
@) sw (D) = ve(0) =12V
10 uF
36V 30

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems® Modeling  9-31
Copyright © Orchard Publications



Chapter 9 Natural Response

We will apply superposition three times. Thus for t>0:

I. With the 36 V voltage source acting alone where i, = 0 (open) and v = 0 (shorted), the

circuit is as shown below.

6 Q 100 Q
MN T MN
=0

36V

t
S Ve(®) = 0
3Q % i'SW (t)

Since the 100 Q is shorted out, we have

II. With the i, (0) = 4 A current source acting alone the circuit is as shown below where we

observe that the 6 Q and 100 Q resistors are shorted out and thus i"g,, (t) = —i (t) where
i () = 1,e "1, =4A,R=3Q,L=6mH,R/L = 3/(6x10"°) = 500 and thus
"sw () = =i (1) = —4e7"
6Q 100 Q
M\ * M
. l 6 mH ‘
3Q

III. With the v(0") =V, = 12 V voltage source acting alone the circuit is as shown below

where we observe that the 6 Q resistor is shorted out.
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6 Q 100 Q
NN T M
(=20 ‘ .
Msw (1) —=Vvc(0) =12V
3Q %
and thus .
Ve(t) = Voe—(l/RC)t = 10 11/(200x1071t _ 4, ,~1000t
Then,

"o (1) = ve(1)/100 Q = 0.12¢

Therefore, the total current through the closed switch for t> 0 is

—-500t —1000t

igw(t) = T'gy (1) + sy (D) +i"gy () = 6-4e " +0.12€ A

a. With the Manual Switch block in the upper position, all resistors are in parallel with the
72 V voltage source and thus the voltages across the 8, 2, and 4 Ohm resistors are 72
volts. Thus, the current through the 2 Ohm resistor is 72/2 = 36 amps, and the current
through the 4 Ohm resistor is 72/4 = 18 amps. It is observed that immediately after the
simulation command is issued, the current through the inductor resists any change, and
finally stabilizes at 18 amps. The 6 and 3 Ohm resistors are shorted by the inductor.

b. With the Manual Switch block in the lower position, all resistors and the inductor to the
right of the switch are grounded and thus all readings are zero. The 8 Ohm resistor is still
in parallel with the 72 V voltage source and thus the voltages across it is 72 volts.
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Chapter 10

Forced and Total Response in RL and RC Circuits

his chapter discusses the forced response of electric circuits. The term “forced” here implies

that the circuit is excited by a voltage or current source, and its response to that excitation

is analyzed. Then, the forced response is added to the natural response to form the total
response.

10.1 Unit Step Function uy(t)

A function is said to be discontinuous if it exhibits points of discontinuity, that is, if the function
jumps from one value to another without taking on any intermediate values.

A well-known discontinuous function is the unit step function uy(t) which is defined as

0 t<O0
uo(t)={1 tio (10.1)

It is also represented by the waveform in Figure 10.1.

U (1)
1

0
Figure 10.1. Waveform for ug(t)

In the waveform of Figure 10.1, the unit step function uy(t) changes abruptly from 0 to I at

t = 0. But if it changes at t = t, instead, its waveform and definition are as shown in Figure

10.2.

0 t<t,
1 t>1t,

|

0' to

Up(t—ty) = {

Figure 10.2. Waveform and definition of uy(t—ty)

* In some books, the unit step function is denoted as u(t), that is, without the subscript O. In this text we will reserve this des-
ignation for any input.
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Likewise, if the unit step function changes from 0 to 1 at t = —t; as shown in Figure 10.3, it is

denoted as uy(t+t)

Ug(t+tp)

—tg 0 t

0 t<—t,
1 t>-t,

Figure 10.3. Waveform and definition of uy(t + t;)

Other forms of the unit step function are shown in Figure 10.4.

T —
t . t
@ o o
A—— —A —A —
~Aug(t) ~Auy(t-T) —Auy(t+T)
Aug(-t) Auy(—t+T) Auy(-t-T)
— % A — A A
t ! t : t
o @ 0 T (o) O
T -T
t . t - t
0 © O m O W
— A - —A —_— —A
~Aug(-t) -Aug(-t+T) -Auy(-t-T)

Figure 10.4. Other forms of the unit step function

Unit step functions can be used to represent other time-varying functions such as the rectangular
pulse shown in Figure 10.5. This pulse is represented as ug(t) —uy(t—1) .

u(t)

1 uy(t) —ug(t—1)

R — t —

Figure 10.5. A rectangular pulse expressed as the sum of two unit step functions
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The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source. For example, a constant voltage source of 24 V applied at t = 0, can be
denoted as 24u,(t) V. Likewise, a sinusoidal voltage source v(t) = Vcosmt V that is applied to
a circuit at t = t;, can be described as v(t) = (V,cosmt)uy(t-ty) V. Also, if the excitation in a
circuit is a rectangular, or triangular, or sawtooth, or any other recurring pulse, it can be repre-
sented as a sum (difference) of unit step functions.

|
Example 10.1

Express the square waveform of Figure 10.6 as a sum of unit step functions. The vertical dotted
lines indicate the discontinuities at T, 2T, 3T, and so on.

v(t)
Ao ®
T 12T 3T .
0 I : I
_A | @ I | @

Figure 10.6. Square waveform for Example 10.1

Solution:

The line segment M has height A, starts at t = 0, and terminates at t = T on the time axis.
Then, as in Figure 10.5, this segment can be expressed as

vi(t) = Alug(t) - Ug(t—T)] (10.2)

The line segment @ has height —A, starts at t = T, on the time axis, and terminates at t = 2T.
This segment can be expressed as

V() = —AlUg(t—T) - Ug(t—2T)] (10.3)

Line segment @ has height A, starts at t = 2T, and terminates at t = 3T . This segment can be
expressed as
V(1) = Alug(t—2T) - ug(t—3T)] (10.4)

Line segment @ has height —A, starts at t = 3T, and terminates at t = 4T . This segment can
be expressed as
V(1) = ~Alug(t—3T) - ug(t—4T)] (10.5)

Thus, the square waveform of Figure 10.6 can be expressed as the summation of (10.2) through

(10.5), that is,
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v(t)

V(1) + Vo (t) + v3(t) + v, (1)
Alug(t) —up(t=T)]-Alug(t—=T) —uy(t-2T)] (10.6)
+A[U(t—2T) —up(t—3T)[-Afuy(t—3T) —uy(t—4T)]

Combining like terms, we obtain
V(1) = Alug(t) = 2ug(t—T) + 2ug(t— 2T) — 2ug(t—3T) + ...] (10.7)

|
Example 10.2

Express the symmetric rectangular pulse of Figure 10.7 as a sum of unit step functions.

i(t)

-T2 0 T/2

Figure 10.7. Symmetric rectangular pulse for Example 10.2

Solution:

This pulse has height A, it starts at t = —T/2, and terminates at t = T/2. Therefore, with refer-
ence to Figures 10.3 and 10.4 (b), we obtain

i(t) = Auo(t+-§r )—Auo(t—g) = A[uo(t+g )—uo (t—% H (10.8)

Example 10.3

Express the symmetric triangular waveform shown in Figure 10.8 as a sum of unit step functions.

v(t)
1

-T2 0 ‘ T/2 '

Figure 10.8. Symmetric triangular waveform for Example 10.3
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Solution:

As a first step, we derive the equations of the linear segments @ and @ shown in Figure 10.9.

v(t)

_T 0] T
Figure 10.9. Equations for the linear segments of Figure 10.8

For line segment @,
vy(t) = (% t+ 1) [uo (t + g) - uo(t)J
and for line segment @),
Vy(t) = (% t+1) [uo(t) ~ g (t- gﬂ

Combining (10.9) and (10.10), we obtain

V(t) = vi(t) +Vvy(t)

(_%_t+ 1)[u0 (t+ g) —uo(t)J + (-% t+ 1) [uo(t)—uo (t—gﬂ

|
Example 10.4

Express the waveform shown in Figure 10.10 as a sum of unit step functions.

v(t)

3__
2 4

1_

| | : t
0 1 2 3
Figure 10.10. Waveform for Example 10.4

(10.9)

(10.10)

(10.11)
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Solution:

As in the previous example, we first find the equations of the linear segments @D and @ shown in
Figure 10.11.

V(1)

Figure 10.11. Equations for the linear segments of Figure 10.10
Following the same procedure as in the previous examples, we obtain
V(t) = (2t+1)[up(t) —ug(t= 1) +3[ug(t—1) —ug(t-2)]
+ (= t+3)[ug(t—2) — ug(t—3)]

Multiplying the values in parentheses by the values in the brackets, we obtain

V(1) = (2t+ 1)ug(t) — (2t + 1)ug(t— 1) + 3ug(t—1)
~BUg(t—2) + (= t+ 3)Ug(t— 2) — (— t+ 3)uy(t—3)
of V() = (2t+ 1)ug(t) + [ (2t + 1) + 3]u(t—1)
# =3+ (—t+3)]ug(t—2) — (~ t+3)up(t—3)
and combining terms inside the brackets, we obtain

V(D) = (2t+ 1)ug(t)—2(t - 1)ug(t - 1)—tug(t—2) + (t— 3)ug(t - 3) (10.12)
Two other functions of interest are the unit ramp function and the unit impulse or delta function. We

will discuss the unit ramp function first.

10.2 Unit Ramp Function u,(t)

The unit ramp function, denoted as u,(t), is defined as

uy(t) = jt ug(T)dt (10.13)

where 1 is a dummy variable.
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We can evaluate the integral of (10.13) by considering the area under the unit step function
Uy(t) from —eo to t as shown in Figure 10.12.

Area =1t =1t =1t

t

T

Figure 10.12. Area under the unit step function from —eo to t
Therefore,

0 t<0
t) = 10.14
Uy (1) {t 0 (10.14)

and since u,(t) is the integral of uy(t), then uy(t) must be the derivative of u,(t), i.e.,

d
a—tul(t) = Ugy(t) (10.15)

Higher order functions of t can be generated by repeated integration of the unit step function.
For example, integrating uy(t) twice and multiplying by 2, we define u,(t) as

0 t<0 t
uy(t) = { , or u,(t) = 2j uy(t)de (10.16)
t t>0 -
Similarly,
0 t<0 t
Ug(t) = { X or Ug(t) = 3j u,(t)dt (10.17)
t t>0 -
and in general,
0 t<0 t
u,(t) = { ] or u,(t) = nI u,_,(t)dt (10.18)
t t>0 .
Also,
u 0 = 29y o (10.19)
=187 pdt " '

10.3 Delta Function 9(t)

The unit impulse or delta function, denoted as 3(t), is the derivative of the unit step uy(t). It is
generally defined as
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Copyright © Orchard Publications



Chapter 10 Forced and Total Response in RL and RC Circuits

t

j S(t)dt = uy(t) (10.20)

where

o(t) = 0 forall t#0 (10.21)

To better understand the delta function 3(t), let us represent the unit step uy(t) as shown in Fig-
ure 10.13 (a).

1| j—
/0/: Figure (a)
t
—€ €
— L
Area=l 128 Figure (b)
| 0 |
= | ¢ t

Figure 10.13. Representation of the unit step as a limit.

The function of Figure 10.13 (a) becomes the unit step as € — 0. Figure 10.13 (b) is the deriva-
tive of Figure 10.13 (a), where we see that as € = 0, 1/2¢ becomes unbounded, but the area of
the rectangle remains 1. Therefore, in the limit, we can think of §(t) as approaching a very large
spike or impulse at the origin, with unbounded amplitude, zero width, and area equal to 1.

Two useful properties of the delta function are the sampling property and the sifting property.

The Sampling Property of the Delta Function states that

f(t)d(t) = f(0)d(t) (10.22)

or

f(1)d(t—a) = f(a)d(t) (10.23)

that is, multiplication of any function f(t) by the delta function 8(t) results in sampling the func-
tion at the time instants where the delta function is not zero. The study of discrete—time systems
is based on this property.

The Sifting Property of the Delta Function states that

j T H 08— a)dt = f(a) (10.24)

that is, if we multiply any function f(t) by 8(t—a) and integrate from —e to +eo, we will obtain
the value of f(t) evaluated at t—o..
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The proofs of (10.22) through (10.24) and additional properties of the delta function are beyond
the scope of this book. They are provided in Signals and Systems with MATLAB Computing and
Simulink Modeling, ISBN 978-1-934404-11-9.

MATLAB has two built-in functions for the unit step and the delta functions. These are desig-
nated by the names of the mathematicians who used them in their work. The unit step uy(t) is

called Heavyside(t) and the delta function 8(t) is called Dirac(t). Shown below are examples of
how they are being used.

symskat
u=k*sym('Heaviside(t-a)") % Create unit step function at t=a

u =
k*Heaviside(t-a)

d=diff(u) % Compute the derivative of the unit step function
d =

k*Dirac(t-a)

int(d) % Integrate the delta function

ans =
Heaviside(t-a)*k

Example 10.5

For the circuit shown in Figure 10.14, the inputs are applied at different times as indicated.

50 KQ
NN
R¢
B p—--=_
3KQ 6 KQ t +
5 KQ Vout
i
Vin1 Vin2 n _
- - =

Vipy = 0.8uy(t-3) V
Vi, = 0.5uy(t-1) V
lip, = 0.14[up(t+ 1) + uy(t—2)] mA

Figure 10.14. Circuit for Example 10.5
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Compute v, at:

a. t=-05s
b. t=15s
c.t=5s
Solution:

Let us first sketch the step functions for each of the inputs.

i1y = 0.8uy(t-3) V

t(s)

Vin2 0.5uy(t-1) V

t(s)

[,

[Ug(t+1) + Uy(t—2)]

| [
| [
I 1
-1 0 1 2

t(s)

a. Att = -0.5 s only the signal due to i, is active; therefore, exchanging the current source and

its parallel resistance with an equivalent voltage source with a series resistance, the input cir-
cuit becomes as shown in Figure 10.15.

v +— To op amp’s inverting input
5 KQ
§ 3KQ 6 KQ
0.7V

- =
Figure 10.15. Input to the circuit of Example 10.5 when i, is acting alone

Replacing the circuit of Figure 10.15 with its Thevenin equivalent, we obtain the network of
Figure 10.16.
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3KQ || 6KQ =2KQ

2 KQ
Ve = V = —£0%  (07)=-02V
TH1 2KQ T 2KQ+5 KQ( )

_ 2KQx5KQ

Rim1 e = 10/TKQ

¢ >

§2KQ

5 KQ RTH1 10/7 KQ

—0.7V VTHi| —02 v

=

Figure 10.16. Simplified input to the circuit of Example 10.5 when i;,, is acting alone

Now, we can compute v, with the circuit of Figure 10.17.

50 KQ
MN
R¢
- p—
+
10/7 KQ ps
Vout1
VTH1|-02V -
L

Figure 10.17. Circuit for computation of V1,

50
Vout1 = _(10/7)VTH1 =-35x(-02mV) =7V (10.25)

b. Att = 1.5 s the active inputs are

i = 0.14[Ug(t+1) + Uy(t—2)] mA

and

Vipy = 05Ug(t—1) V

Since we already know the output due to i;,, acting alone, we will find the output due to v;,

acting alone and then apply superposition to find the output when both of these inputs are
present. Thus, with the input v, , acting alone, the input circuit is as shown in Figure 10.18.
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o—» To op amp’s inverting input

§3K9 5KQ j]

6
0.
- =

KQ
5V

Figure 10.18. Input to the circuit of Example 10.5 when v; ., is acting alone

Replacing this circuit of Figure 10.18 with its Thevenin equivalent, we obtain the network of

Figure 10.19.

3KQ || 5KQ = 15/8 KQ >
o 158 o 5, 6KQ  RyypS10/7 KQ
TH2 = Vas/s ke = 15,8560 = 1 §15/8 KQ
0.5V
S

<

>
Viue| 22

Rriz = Ry = 10/7 KQ

[}

Figure 10.19. Simplified input to the circuit of Example 10.5 when v; ., is acting alone

Now, we can compute v, with the circuit of Figure 10.20.

50 KQ
M\
Ry
—
+ +
10/7 KQ S Ry,
Vout2
5
Viie | 215 vV _
L

Figure 10.20. Circuit for computation of V4,

Voutz = _(%)VTHZ = _35X(‘%) = _2_65 \4 (10.26)

Therefore, from (10.25) and (10.26) the op amp’s output voltage at t = 1.5 s is

v =72 _ 1Ty, (10.27)

v out2 - 6 6

outl
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c. At t = 5 s the active inputs are
0.8U,(t—3) V

in1

and

v 0.5uy(t-1) V

in2
Since we already know the output due to v;,, acting alone, we will find the output due to v;;

acting alone and then apply superposition to find the output when both of these inputs are
present. Thus, with the input v, , acting alone, the input circuit is as shown in Figure 10.21.

v o—» To op amp’s inverting input

3 KQ
6KQ§ 5 KQ

- e L
Figure 10.21. Input to the circuit of Example 10.5 when v;,,, is acting alone

Replacing this circuit of Figure 10.21 with its Thevenin equivalent, we obtain the network of
Figure 10.22.

4 >
6 KQ [| 5 KQ = 30/11 kQ
30/11 10 3 KQ 10/7 KQ
Ving = Vo ke = 3orag 508 = 31 V §30/11 KQ .
Rrps = Rypp = Rppy = 1077 KQ 0.8V 21V
T 1
Figure 10.22. Simplified input to the circuit of Example 10.5 when v;,,, is acting alone
Now, we can compute v, with the circuit of Figure 10.23.
50 10 50
Vouts = (1007 Vs = -35x(57) = -2 v (10.28)
Therefore, from (10.26) and (10.28) the op amp’s output voltage at t = 5 s is
25 50 125
Vout2 * Vouts = "5 3 "6 \% (10.29)
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50 KQ
AN
R¢
>
+
10/7 KQ
Vouta
10
Vv Y
TH3| 57 \% _

Figure 10.23. Circuit for computation of V45

10.4 Forced and Total Response in an RL Circuit
For the circuit shown in Figure 10.24(a), Vg is constant. We will derive an expression for the
inductor current i, (t) = i(t) for t>0 given that the initial condition is i, (0") = 0. Here, the

inductor current i (t) will be referred to as the total response.

The switch in Figure 10.24 (a) can be omitted if we multiply the excitation Vg by the unit step

function uy(t) as shown in Figure 10.24 (b).

R t=20
W—
O i ) @)
Vs Vs Ug (1)
(@) (b)

Figure 10.24. Circuits for derivation of the total response i (t) = i(t)

We begin by applying KVL, that is,

LS+ Ri = Vguy() (10.30)

The initial condition states that i, (07) = 0; thus for t<0, i(t) = 0

For t >0, we must solve the differential equation

Lg—i+ Ri = Vg (10.31)
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[t is shown in differential equations textbooks that a differential equation such as the above, can
be solved by the method of separation of the variables. Thus, rearranging (10.31), separating the
variables, and integrating we obtain:

di

La = Vg—Ri
or
_Ldi _ g
Vs—Ri
or
J‘& :Idt
Vs—RI

and referring to a table of integrals, we obtain
—EIn(Vs—Ri) = t+k (10.32)

The constant k in (10.32) represents the constant of integration of both sides and it can be eval-
uated from the initial condition, and as we stated in the previous chapter

i, (07) =i,(0) =i (0") (10.33)

Therefore, at t = 0" .
—=In(V5-0) = 0+k

L
k = —=InV
R S

and by substitution into (10.32), we obtain

L . L
R In(Vg-Ri) = t—ﬁlnvS

—%[In(VS—Ri)—InVS] —t

V< —-Ri
—L[In S J =t
RL" Vg

Vs —Ri R
In—=—— = -t
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Ri = Vg—Vge R/D)!
- Vs Vs —(r/u)t
i(t) = E— R e
The general expression for all t is
i Vs Vs R/t
i(t) = (E_ e Jup(® (10.34)

We observe that the right side of (10.34) consists of two terms, Vg/R which is constant called

Vs —(R/L)t
the forced response, and the exponential term —ES e" R that has the same form as that of the

previous chapter which we call the natural response.

The forced response Vg/R is a result of the application of the excitation (forcing) function
Vg uy(t) applied to the RL circuit. This value represents the steady—state condition reached as

t — o since the inductor L at this state behaves as a short circuit.

The amplitude of the natural response is =V4/R and depends on the values of Vg and R.

The summation of the forced response and the natural response constitutes the total response or
complete response, that is,

I(t)total = 1(t) forced response +1(t) natural response
or

o = e+, (10.35)

Now, let us return to the RL circuit of Figure 10.24 to find the complete (total) response iy, by

the summation of the forced and the natural responses as indicated in (10.35).

The forced response i¢ is found from the circuit of Figure 10.25 where we let t — o

Short
Circuit
ast— oo

Vg Ug(t)
Figure 10.25. Circuit for derivation of the forced response i

Then, from the circuit of Figure 10.25,
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_ Vs

if = = (10.36)

Next, we need to find the natural response. This is found by letting the excitation (forcing func-
tion) Vg Ug(t) go to zero as shown in the circuit of Figure 10.26.

R

Figure 10.26. Circuit for derivation of the natural response i,

We found in Chapter 9 that the natural response i, has the exponential form

i = Ae /M)t (10.37)
Therefore, the total response is

—(R/L)t

Vv
otal =I5+ ip = E5+Ae (10.38)

where the constant A is evaluated from the initial condition i (07) =i (0) = iL(0+)

Substitution of the initial condition into (10.38) yields

v
i(0) = 0 = —R§+Ae°

or

A= =2
R

and with this substitution (10.38) is rewritten as

. Vs Vg _(r/L
total = (ES_?Se ( )t)uo(t) (10.39)

and this is the same as (10.34).

\Y
. q s s_—~(R/L)t
We can sketch i, easily if we sketch R and -Re

is done with MATLAB and the plots are shown in Figure 10.27.

separately and then add these. This
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1 f ! ;
s i(t) = W/R—(\w/Rje /"
x ih = (/e i
w ] ] ] 1
Z 0632%/R | | :
c 0 { ! ! !
S !
2 :
& !
0.5 : i R SRRRREES .
i i elnm_ 5
R i
4 5

Time Constants

Figure 10.27. Curves for forced, natural, and total responses in a series RL circuit

The curves in Figure 10.27 were created with the following MATLAB script:
x=0:0.01:5; Vs=1; R=1; L=1; y=—(Vs./R).*exp(—R.*x./L); z=Vs./R+y; plot(x,y,x,z)

The time constant t is defined as before, and its numerical value can be found from the circuit
constants R and L as follows:

The equation of the straight line with slope = Vg/L is found from

Q(i I) = B . \ée_(R/L)t = \LS
tota - -
dt t=0 L R t=0 L

Assuming constant rate of change as shown in Figure 10.27, at t = r,

Vg
1(t) = =
(1) R

and thus
R L'

or

_ L
T = —
R

as before. Also, from (10.39)

\é_\ée—(R/L)(L/R) _

V. PR
i) = -2 Es(l—e Y = 33(1_0.368)

or
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Therefore, the current in a series RL circuit which has been excited by a constant source, in one
time constant has reached 63.2% of its final value.

|
Example 10.6

For the circuit of Figure 10.28, compute the energy stored in the 10 mH inductor at
t = 100 ms.

AA——e .
6Q ‘
@ wdho O
12V i Sug(t) A

Figure 10.28. Circuit for Example 10.6

Solution:

For t<0, the circuit is as shown in Figure 10.29 where the 3 Q resistor is shorted out by the
inductor.

M\
6Q

O

12V

Figure 10.29. Circuit of Example 10.6 for t <0

From the circuit of Figure 10.29,

i (07) = 163 _2A
and this value establishes our initial condition as
i (01 =2A (10.41)
For t >0, the circuit is as shown in Figure 10.30.
;\é\g - -
C_f 10 mH IL(?Q @
12V 5A

Figure 10.30. Circuit of Example 10.6 for t>0
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We will compute i, (t) from the relation
() =ig+1,

The forced component i is found from the circuit at steady state conditions. It is shown in Figure

10.31 where the voltage source and its series resistance have been exchanged for an equivalent
current source with a parallel resistor. The resistors have been shorted out by the inductor.

@ 10 mH lif @)

2A 5A

Figure 10.31. Circuit of Example 10.6 under steady—state conditions

By inspection, i = 2-5 or
i =-3A (10.42)

To find i, we short the voltage source and open the current source. The circuit then reduces to

that shown in Figure 10.32.

MARR ! 3Q(6Q=20Q I
10mH g i 30 'n §2gz

10 mH

Figure 10.32. Circuit of Example 10.6 for determining the natural response

The natural response of RL circuit of Figure 10.32 is

~(R/L)t o (2/10% 1073t

in:Ae = A

or
i = Ae 2 (10.43)

The total response is the summation of (10.42) and (10.43), that is,
liotal = I¢+i, = _ 34+ A (10.44)

Using the initial condition of (10.42), we obtain

i (0 =2=-3+Ae"
or

A=5

Finally, by substitution into (10.44) we obtain
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i = (—3+56 2 ug(t) (10.45)

and the energy stored in the inductor at t = 100 ms is

1. .2
W =Li =
L‘t =100ms 2 ‘-

—200 x 100 x 10_3 ) 2

NI

10 x 10‘3(- 3+5e
t =100 ms (10.46)

_ _20 2
5x10 2(=3+5e 2% = 45 mJ

10.5 Forced and Total Response in an RC Circuit

For the circuit shown in Figure 10.33 (a), Vg is constant. We will derive an expression for the

capacitor voltage v (t) for t>0 given that the initial condition is vo(0™) = 0. Here, the capac-

itor voltage v (t) will be referred to as the total response.

R t=20 R
A P (Y
+ R Cl+
©) == ve(t) ® = Ve(®)
Vs Vsup(t)

(a) (b)
Figure 10.33. Circuits for derivation of the total response V(t)

The switch in Figure 10.33 (a) can be omitted if we multiply the excitation Vg by the unit step
function uy(t) as shown in Figure 10.33 (b).

We begin by applying KVL, that is,

VR+ Ve = VsUg(t) (10.47)
and since g
L L:
i=ic=0C it
we can express Vg as
. dve
Vg = RI = RCE

By substitution into (10.47), we obtain

dve
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The initial condition states that vo(07) = 0; thus for t<0, v(t) = 0

For t >0, we must solve the differential equation

dve
RCF + VC = VS

Rearranging, separating variables and integrating, we obtain:

dve _ ——l—dt
Ve — Vg RC

dv
jvc —C\/Sdt - _R_l(ljdt

or

where k represents the constant of integration of both sides of (10.51). Then,

~(L/RC) tek _ k ~(1/(RC)t ~(1/RC) t

ot (1/RC) t

(10.49)

(10.50)

(10.51)

The constant k; can be evaluated from the initial condition v¢ (0% = Ve (07) = 0 where by sub-

stitution into (10.51) we obtain
ve(0%) = 0 = Vg — ke’

T

Therefore, the solution of (10.49) is

e—(l/RC)t

ve(t) = (Vs—Vs JUg(t)

(10.52)

As with the RL circuit of the previous section, we observe that the solution consists of a forced

response and a natural response. The constant term Vg is the voltage attained across the capaci-

tor as t — = and represents the steady—state condition since the capacitor C at this state behaves

as an open circuit.

The amplitude of the exponential term natural response is -V
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The summation of the forced response and the natural response constitutes the total response,
i.e.,

Ve() complete response = Ve(t) forced response +Ve(t) natural response

or

= Ve, +V, (10.53)

VCtotal f

Now, let us return to the RC circuit of Figure 10.33(b) to find the complete (total) response by
summing the forced and the natural responses indicated in (10.53).

The forced response v, is found from the circuit of Figure 10.34 where we let t — co.

M
R -1~. Open
D Veg L A~ [ Circuit
Von(t) 1~ ast— o

Figure 10.34. Circuit for derivation of the forced response V.

Then, from the circuit of Figure 10.34,

Ver = Vs (10.54)

f

Next, we need to find the natural response and this is found by letting the excitation (forcing
function) Vgug(t) go to zero as shown in Figure 10.35.

R
MN

Cc
Vslg(t) = 0 Ven =

Figure 10.35. Circuit for derivation of the natural response V¢
We found in Chapter 9 that the natural response v¢ = has the exponential form

_ aa—(1/RO)
Ve, = Ae

and thus the total response is

Ve(t) = Vg, +Vg, = Vg+Ae RN (10.55)

where the constant A is evaluated from the initial condition vo(07) = vc(0) = ve(0') = 0
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Substitution of the initial condition into (10.55) yields

ve(0) = 0 = V- Ae’
or
With this substitution (10.55) is rewritten as

—~(1/RC)t
e ¢ )

Ve(t) = (V- Ve Yug(t) (10.56)

and this is the same as (10.52).

~(1/RC)t

We can sketch v, ., easily if we sketch Vs and -Vse separately and then add these.

This is done with MATLAB and the plots are shown in Figure 10.36.

0.5 b Y™ o -\ eme b GRS .
vo(t) = (G/RC)L i

® 0632Mc/ Vs | 5 5

= i

= :

1

o 1

S 405 :

o !

tul 7]
Time Constants

Figure 10.36. Curves for forced, natural, and total responses in a series RC circuit

The time constant t is defined as before, and its numerical value can be found from the circuit
constants R and C as follows:

The equation of the straight line with slope = V5/RC is found from

d 1 ~(1/RO)t Vs
dt t=0 RC t=0 RC

Assuming constant rate of change as shown in Figure 10.36, at t

T,

and thus
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VS

Vs = ﬁ‘t
or

T = RC
as before. Also, from (10.56)

Ve(t) = Ve-Vee RORE _v1—e™) = Vg(1-0.368)
or
ve(t) = 0.632V (10.57)

Therefore, the voltage across a capacitor in a series RC circuit which has been excited by a con-
stant source, in one time constant has reached 63.2% of its final value.

Example 10.7
For the circuit shown in Figure 10.37 find:

a. vo(17) and ig (1)
b. ve(17) and i (17)
c. V(t=10 min.) and ic(t = 10 min.)

d. ic(t) fort>1

uy(t-1) mA
)
* -/ ‘
+ l ic(t) 19\/168
Ve 60 KQ 20 KQ§
10 uF c

Figure 10.37. Circuit for Example 10.7
Solution:
a. No initial condition is given so we must assume that sufficient time has elapsed for steady—

state conditions to exist for all t<1 s. We assume time is in seconds since we are not told

otherwise. Then, since there is no voltage or current source present to cause current to flow,
we obtain

ve(l) =0
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and
ic (1) =0

b. Exchanging the current source and the 10 KQ resistor with a voltage source with a 10 KQ

series resistor, the circuitat t = 17 is as shown in Figure 10. 38.

u,(t-1) V
+ lic(t) 10 KQ

ve(t) A< 60KQ 20 K9§
C |10 uF

Figure 10.38. Circuit for Example 10.7 at t = 1"

Now, since VC(1+) = V¢ (1), no current flows through the 60 kQ resistor at t = 175 if it did,
the voltage across the capacitor would change instantaneously, and as we know, this is a physi-
cal impossibility. Instead, the current path is through the capacitor which at exactly t = 17
acts as a short circuit since v (1" = Ve (1) = 0. Therefore,

N 90 V _
ic(l) = —(20+10) Ko - 3 mA (10.58)

c. The time t = 10 min is the essentially the same as t = o, and at this time the capacitor volt-
age V¢ (t = 10 min) is constant and equal to the voltage across the 60 KQ resistor, i.e.,

90 V
(20+ 10+ 60) KQ

Ve(t=10 min)= V() = Vgy ko = -60 KQ = 60 V

Also, dv
ic(t)], _ . = c—df =0
d. Fort>1 . . .
i, = Tcttlicn
where from part (c) )
I(:f () =0
and H(1/Rg Ot
ic, = Ae

With the voltage source shorted in the circuit of Figure 10.38, the equivalent resistance is

Req = (10 KQ +20 KQ) || 60 KQ = 20 KQ
or
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ReqC = 20x10°x10x10° = 0.2'5
Therefore,

-5t

e 0D _ pg (10.59)

iy = A
We can evaluate the constant A using (10.59) where

ic(1") =3mA = Ae”®
or

and by substitution into (10.59),

(O, = ief+icn = icn = 0.445¢ Uy (t— 1) mA (10.60)

Example 10.8

In the circuit shown in Figure 10.39, the switch is actually an electronic switch and it is open for
15 s and closed for 15 ps. Initially, the capacitor is discharged, i.e., vo(0) = 0. Compute and

sketch the voltage across the capacitor for two repetitive cycles.

1 KQ 250 Q

Vs (t) 350 Q C .\
® 0.02 WFAR Ve(t)

Figure 10.39. Circuit for Example 10.8

Solution:

With the switch in the open position the circuit is as shown in Figure 10.40.

1 KQ 250 Q
NN NN
Vs cls
+ —<v
C— Swich  COZHFAS Ve(©)
6V open

Figure 10.40. Circuit for Example 10.8 with the switch in the open position
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For the time period 0 <t .. <15 us the time constant for the circuit of Figure 10.40 is

open
Topen = RegC = (1 KQ+025 KQ)x0.02x10°° = 25 pis
Thus, at the end of the first period when the switch is open, the voltage across the capacitor is

—t/RC _4x10%

-06
Ve®)], _ s us = VeftVen = Vg— Vs e = 6-6e =6-6e =271V (10.61)

Next, with the switch closed for 15 <t )s.q <30 ps the circuit is as shown in Figure 10.41.

1 KQ 250 Q

+
<_Vc(t)

closed y

Figure 10.41. Circuit for Example 10.8 with the switch in the closed position

Replacing the circuit to the left of points x and y by its Thevenin equivalent, we obtain the circuit
shown in Figure 10.42.

A
350
Vil 2s90 2s0a |, Vi = 155 X6 = 156 V
~ Ve(t)
156V 0.02 uF Ry = 022000 250 0

Figure 10.42. Thevenin equivalent circuit for the circuit of Figure 10.41

The time constant for the circuit of Figure 10.42 where the switch is closed, is

-6
= ReqC = (259 Q+250 Q)x0.02x10 " = 10.2 us

Tclosed

The capacitor voltage v(t) for the circuit of Figure 10.42 is

—(1/RC)(t-15us) —(1/10.2us)(t—15us)

Ve(t) = Vg + Ve, = Vo +Age = 156+Ae (10.62)

and the constant A, is evaluated from initial condition at t = 15 ps which by (10.62) is

Vc(t)|t= 15 s = 271V

Then,
Vc(t)| =271 = 1.56+A1e_(l/10'2“5)(15‘15)l*5
15<t<30 us
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or
A, = 115

and by substitution into (10.62)

_ 156+ 1.15¢ (1 10218)(t-15u5) (10.63)

VC(t)|15<t<30 us
At the end of the first period when the switch is closed, the voltage across the capacitor is

—(1/10.2us) (30— 15)us

Ve(®)], _ g s = 156+ L.15¢ =182V (10.64)

For the next cycle, that is, for 30 <t, . <45 us when the switch is open, the time constant

open

is the same as before, i.e., © = 25 us and the capacitor voltage is

Topen open

—(1/25ps)(t-30us)

Ve(t) = Vg + Ve, = 6+ A€ (10.65)

The constant A, is computed with (10.65) as
Ve®], 50 s = 182 = 6+ Ao (1/25H8)(30-30us
or
A, = ~4.18
and by substitution into (10.65)
—(1/25us)(t-30
Ve(Ol,y s = 6418 (1/25u5)(t- 30ps) (10.66)

At the end of the second period when the switch is open, the voltage across the capacitor is

—(1/25us)(45 - 30)us

Ve, _ g o = 6-418¢ =371V (10.67)

The second period when the switch is closed is 45 < t;joseq < 60 ps. Then,

~(1/RC)(t-45) _

= Vei+Ven = Vrp +Age = 1.56 + A3e_(1/10'2“5)(t_45“5) (10.68)

Ve (t
C( )‘45<t<60 us

and with (10.67) we obtain
A, = 215
Therefore,

ve(h)| = 1.56 + 2.15¢ (1/102n)(t-4509) (10.69)
45<t<60 pus

and
~(1/10.215)(60 — 45) s

Vo), gy o = 156 +215e = 205V (10.70)
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Repeating the above steps for the third open and closed switch periods, we obtain

ZOIISE S 3.95¢ (1/2Hs)(1-60ns) (10.71)

and Ve = 383V (10.72)

Likewise ve(D)| = 1.56 +2.27¢ 1/ 102m9)(=T509) (10.73)
75<t<90 pus

and Ve®|, o . 2.08 V (10.74)

and using the MATLAB script below we obtain the waveform shown in Figure 10.43.

t0=(0:0.01:15)*10"(-6);

v0=6-6.*exp(—4.*10.74.*t0);

t1=(15:0.01:30)*10"(-6);
v1=1.56+1.15.*exp((-1./(10.2.*10.7(—6))*(t1-15.*10.~(-6))));
t2=(30:0.01:45)*10"(-6);
v2=6-4.18.*exp((—1./(25.¥*10.7(—6))*(t2—30.*10.7(-6))));
t3=(45:0.01:60)*10"(-6);
v3=1.56+2.15.*exp((—1./(10.2.*10.7(—6))*(t3—45.¥10./(-6))));
t4=(60:0.01:75)*10"(-6);
v4=6-3.95.*exp((-1./(25.¥10.7(—6))*(t4-60.*10.(-6))));
t5=(75:0.01:90)*10"(-6);
v5=1.56+2.27.*exp((—1./(10.2.*10.7(—6))*(t5-75.¥10.~(-6))));
plot(t0,v0,t1,v1,t2,v2,t3,v3,t4,v4,t5,v5)

4 : : : : : : : :
35 ' : : : : : : :
3
2.5
2
1.5
1

0.5r

Figure 10.43. Voltage across the capacitor for the circuit of Example 10.8
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10.6 Summary

¢ The unit step function ugy(t) is defined as

U (t) = 0 t<0
| t>0

and it is represented by the waveform below.

U (t)

e Unit step functions can be used to represent other time—varying functions.

e The unit step function offers a convenient method of describing the sudden application of a
voltage or current source.

¢ The unit ramp function u,(t), is defined as the integral of the unit step function, that is,

t
uy (t) =j Ug(t)dt

—oo

where 1 is a dummy variable. It is also expressed as

U (t) = 0 t<0
LYt t>0

e The unit impulse or delta function, denoted as 3(t), is the derivative of the unit step uy(t). It
is defined as

3(1) = Sug(t)

or
t

I d(t)dt = uy(t)

—oo

d
an 5(t) = 0 for all t=0

e In asimple RL circuit that is excited by a voltage source Vg uy(t) the current is

. \V
i(t) = e+, = (\é_ﬁse (R/L)t)uo(t)
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where the forced response i represents the steady—state condition reached as t — . Since the

inductor L at this state behaves as a short circuit, i; = \§ /R. The natural response i, is the

, . . o ~(R/L)t
second term in the parenthesis of the above expression, that is, i, = (-4 /R)e " ")

e In a simple RC circuit that is excited by a voltage source V; Uy(t) the voltage across the capac-
itor is

JUg(1)
where the forced response v, represents the steady-state condition reached as t — . Since
the capacitor C at this state behaves as an open circuit, V¢, = Vs . The natural response v¢

. . . . . ~(1/RC)t
is the second term in the parenthesis of the above expression, that is, vo, = Ae RO The

constant A must be evaluated from the total response.
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10.7 Exercises
Multiple Choice

1. For the circuit below the time constant is

A. 0.5 ms

B. 7143 us

C. 2,000 s
D. 0.2 ms
E

none of the above
4 Q 2 Q

(t) 12 Q 1 mH

12uy(t) V

2. For the circuit below the time constant is
A. 50 ms
B. 100 ms
C. 190 ms
D. 78.6 ms
E

. none of the above

4 KQ 5 KQ

Suy(t) A

3. The forced response component i, ¢ of the inductor current for the circuit below is

A. 16 A
B. 10 A
C.6A
D.2A

E. none of the above
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50
— VW
(D 4Q 12 Q 1 mH
16ug(t) A

4. The forced response component V¢ of the capacitor voltage for the circuit below is
P p cf p g

A. 10V
B. 2V
C. 32/3V
D. 8V
E. none of the above
4 KQ 2 KQ
() 12 KQ 1 uF =
16u,y(t) V

5. For the circuit below i, (07) = 2 A. For t>0 the total response of i (t) is

A. 6 A
B- 6e—5000t A
C. 6+6e°A
D. 6-4e A
E. none of the above
5Q
' —W\
D 4e 1203  1mH %\
16u,(t) A ()

6. For the circuit below v(07) = 5 V. For t>0 the total response of v¢(t) is
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A. 12V
B. 10-5e7°%'y
C. 12-7e00y
D. 12+7e %y
E. none of the above
4 KQ 2 KQ
+
(D) 12keZ  1uFARVe®
16u,(t) V

7. For the circuit below i, (07) = 2 A. For t>0 the total response of v (t) is

-5000t

A. 20e Vv
B. 20"y
C. —32¢ 7800ty
D. 32 3%y
E. none of the above
50Q
*— A \\N
+
4Q 12Q 1 mH% V(D)
16u,(t) B

8. For the circuit below v(0) = 5 V. For t>0 the total response i(t) is

—200t

A. 1400e A

—200t

B. 1.4e A

-500t

C. 3500e A

-500t

D. 3.5e A

E. none of the above
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4 KQ 2 KQ

Ct 12 KQ 1 uF ZX(1)
16uy(t) V

9. The waveform below can be expressed as

A. 3tuy(t) A

B. 3[Ug(t)]-3[Ug(t-3)] A

C. 3t[ug(t) — Ug(t—1)] + (- L5t + 4.5)[Ug(t— 1) — uy(t—3)] A
D. 3t[uy(t) — Ug(t—3)] + (- L5t + 4.5)[U(t) — Ug(t—3)] A
E

. none of the above

|3 t(s)

[y
N+

10. The waveform below can be expressed as
A 2(1-e ™ —ePYuy ) v
B. (2-2e "[ug(t) - ug(t—2)] + (26 P [ug(t—2) - ug(t—3)1 V
C. (2-2e""Y[ug(t) - ug(t—2)]—(2e ) [ug(t-2) —ug(t—3)] V

D. (2-2e ") [ug(t)]~(2e ") uy(t-3)] V

E. none of the above
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— 2e_Bt

T t(s)
3

Problems

1. In the circuit below, the voltage source vg(t) varies with time as shown by the waveform

below it. Compute, sketch, and express v| p(t) as a sum of unit step functions for 0<t<5s.

6 Q 6 Q

+
+> 120 10 Q§ Vi p()

Vg (t)
Vg(D)t (V)
120 F---
60
o | 2 3 )
_60 ___________
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3. In the circuit below the excitation vg(t) is a pulse shown next to it.
a. Compute i, (t)for 0<t<0.3 ms
b. Compute and sketch i, (t) forall t>0

VS (t) AV
24

30 . i(®

: | 0.3 t (ms)
(a) (b)

4. In the circuit below switch S has been open for a very long time and closes at t = 0. Compute
and sketch i, (t) and ig, (t) for t>0.

4Q
Vg 60
& o
_20 \% IH
80 i (1)
5. For the circuit below compute v(t) for t>0.
10u,(t) A
()
/
MN
Vs 38 Q ’\3\/% .
(f 50 uF A= Ve (1)
24V

6. For the op amp circuit below compute v, (t) for t>0 in terms of R, C, and v;,uy(t) given

that ve(0) = 0
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2
O

+ p——o0

VinUo(t) + +
in-o Voui(t)

7. In the circuit of Figure 10.61, switch S has been open for a very long time and closesat t = 0.
Compute and sketch v(t) and vgg(t) for t>0.

+
Vs1 = V(b

§VR3(t)

100u,(-t) V

8. For the circuit below it is given that vc(0") = 5 V. Compute i(t) for t>0. Hint: Be careful

in deriving the time constant for this circuit.

|

ic(t) RS 18Q

+
C A= vc(t) R;Z 120
1F

10i(t)

9. A 12V DC,a 1 MQ, and a 1 uF are connected in series. Create a Simulink / SimPower Sys-
tems modedisplay the waveform of the voltage across the capacitor as a function of time.
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10.8 Answers / Solutions to End-of-Chapter Exercises
Multiple Choice

1.D

2.B

3.C

4.E 12V

5.E 6-4e A
6.C

7.D

8. A

9.C

10. B

Problems

1. We replace the given circuit shown below with its Thevenin equivalent.

10Q
MV
+ +
§VLD(t) C_’ 10£2§ Vio(D)
B ven( ]
vg(Dt (V)
120 | ---
60
0 12 3 405 6 )
_60 ___________

For the Thevenin equivalent voltage at different time intervals is as shown below.
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%vs(t)=§x60=4ov O<t<1s
%vs(t)=§x120=80v 1<t<3s
VTl =1, 2
Evs(t)=§x(—60)=—4ov 3<t<4s
%vs(t)=§x60=4ov t>4s
and
05x40 =20V O<t<ls
10 05x80 =40V 1<t<3s
Vio() = 20VrH(D) = 0VeuD) = | o o 40y = 20V 3<t<4s
05x40 =20V t>4s

The waveform of the voltage across the load is as shown below.

Vot (v)
40T

20

(CHE
w

SN
o

0 1 t (s)

-20—

The waveform above can now be expressed as a sum of unit step functions as follows:

20U (t) — 20Ug(t — 1) + 40ug(t — 1) — 40uy(t — 3) + 20U, (t — 4)
~20Ug(t— 3) + 20Uy (t — 4) + 20Uy (t— 4)
20U (t) + 20Uy (t— 1) — 60uy(t — 3) + 40Uy (t — 4)

V| p(t)

2. The circuit at t = 0 is as shown below and since we are not told otherwise, we will assume

thati, (0) =0

MNA
3 KQ

1 mH
vg(0) =0 [i(0) =0
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For t>0 we let i ;(t) be the inductor current when the 15uy(t) voltage source acts alone and

i_,(t) when the 30uy(t—2) voltage source acts alone. Then, i} tora (1) = i (t) +i (1)

For 0 <t<2 s the circuit is as shown below.

3 KQ
+ .
(‘ I mH 11 (1)
15V
Then. i . . here i . = 15 _ di _ ~(R/L)t _ A .—3x10%
6
Thus, i 4(t) = 5+A1e_3X1O "mA and using the initial condition i, (07) = iL(0+) =0, we

obtain i ;(0) = 5+A,e’ mA or A, = -5. Therefore,

6

Next, with the 30u,(t-2) voltage source acts alone the circuit is as shown below.

3 KQ
(+> 1 mH IL(t)
30V
Then,
iLp(t) = e+ 5,
. -30
||_2f = m = -10 mA
and
6
i, = Aze—(R/L)(t—Z) _ ge3x10°t-2)
Thus,

6
-3x10°(t-2
*10°(t=2) 1

and the initial condition at t = 2 is found from (1) above as
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6

. -6x10°t
i = 5-be =
Ll‘t:ZS

5 mA
Therefore, |
iL2t=25 - iLl‘t:zs =5= —10+A2e_3X10 2-2) A
or .
and

6
i () = —10+15e 21D A (2)

Thus, the total current when both voltage sources are present is the summation of (1) and (2),
that is,

6 6
I rotaL() = i (D) +i,(t) = 5_5e3x10t_ 104 15e3X0°(t-2)

A
6 6
_ 5 g 3x10%t g 3x10°(t-2)

A
3.

a. For this circuit vg(t) = 24[uy(t) - uy(t-0.3)] and since we are not told otherwise, we will

assume that i, (07) = 0. For 0<t<0.3 ms the circuit and its Thevenin equivalent are as
shown below.

8Q
| |
i (1) CtD 1mHS i (t)
Vry (D)

Vs (1) = 24[uy(t) —uy(t—0.3)] Vry (D) = 16[ug(t) — ug(t-0.3)]

Then,
i (1) = i +i, = 16/8+Ae F/D = 24 AP
andatt =0
iL(0) = iL(07) = 0=2+A’
or
A, = 2

and thus for 0 <t< 0.3 ms

i (1) = 2-2¢7%" (1)

b. For t>0.3 ms the circuit is as shown below. For this circuit
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i (1) = Aze—(R/L)(t—O.S) _ Azefsoooafo.s) 2)
and A, is found from the initial condition at t = 0.3 ms, that is, with (1) above we obtain

3Q 6 Q

60 1mHg (D) §8gz 1 mHSY i ()

3 -3
_ 2_2e78><10 x0.3x10 _ 2_262.4 - 182 A

=0.3 ms

and by substitution into (2) above

~8000(0.3 - 0.3)

IL|t:0.3 o = 1.82 = A,e
or
A, = 182
Therefore for t> 0.3 ms
i (1) = 1.82¢" 1703 ™)

The waveform for the inductor current i, (t) for all t>0 is shown below.

iL (A)
182 +

t (ms)

|
0.3

4. Att = 0 the circuit is as shown below where i, (07) = 20/(4+6) = 2 A and thus the initial

condition has been established.
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MN
4Q

69‘

Vs
® iL(0)

20V

For t >0 the circuit and its Thevenin equivalent are as shown below where

Vi = —=x20 = 40/3 V

4+38
and
Ry = 554+6 = 26/3 0
4Q
MWA—¢
Closed
Vg Switch 6Q
+
© .
oY 8 & i (1)
Then,
i (6) = ig+i, = Lzlg_;g +Ae PN 2 20/13 + Ae P

and A is evaluated from the initial condition, i.e.,
i (07) =i (0") = 2 = 20/13 + A¢’
from which A = 6/13 and thus for t>0

i (1) = %+%e_(26/ O 15440462 A (1)

Next, to find igy, (t) we observe that this current flows also through the 8 Q resistor and this

can be found from vg , shown on the circuit below.
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Now,

and

isw(t) = igg =

_Vso _ 9.24-123e — 116-015¢ 2%t A 2)

MA—
4Q \
Vs isw () 6Q
®
20V *  1HZ!
8Q SVsa i ()
. di,
Vg otV (1) = 6i (1) + L-aT
6(1.54 + 0.46e ") + 1 x adz<1-54 +0.46e 70"
9.24 +2.76e "' ~ 8,67 x 0.46¢ *°""
9.24 - 1.23e°"

-8.67t

8 8

Therefore, from the initial condition, (1) and (2) above we have

i, (07) =2 i (o) = 154 igy(0) = 1.16-0.15 = 1.01

and with these values we sketch i (t) and igy, (t) as shown below.

Current (mamperes)

1.8

1.6

1.4}-

1.2

Currents through inductor and switch

L i ()= 1544 046e " A
isw(Di= 11640152 A 1
0 0.1 02 03 04 05

Time (seconds)

)

igy(e) = 1.16
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5. Att = 0 the circuit is as shown below where vo(07) = 24 V and thus the initial condition
has been established.

(+> 50 uF 7% V(1)

The circuit for t > 0 is shown below where the current source has been replaced with a voltage

source.
M 40 Q
Vg MA—AMW @ vy
CE) 20 ;’0 MF7Eer(t) C—D ;;VC ®
24V R AL
Now,
Ve(t) = vep+vg, = 4+ Ae RO 2 44 ae™™

and with the initial condition v(07) = VC(0+) =24V = 4+Ae’ from which A = 20 we

obtain

Ve(t) = 4+ 20"

6. For t> 0 the op amp circuit is as shown below.

(=
I\
R v €
a'A'A =

+ ——
V. (t +

Application of KCL at the minus (=) input yields

V_ -V, Cdﬁ o

and since v. = 0
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dve

dt TR
or

dVC _ Vin

dt ~ RC

Integrating both sides and observing that v, (t) = —v(t) we obtain

_ Vi
Vout(D) = —Rct+

where k is the constant of integration of both sides and it is evaluated from the given initial
condition. Then,

Ve(0T) = ve(0) = 0 = 0+k
or k = 0. Therefore,

Vout(D) = —( % t) Ug(t)

and v;,/RC is the slope as shown below.

slope = -v;,/RC

7.Att = 0 the circuit is as shown below where v;(07) = 150 V and thus the initial condition
has been established.

175 KQ
MN

(D I uF 2 Ve (0)
150 v -

The circuit for t> 0 is shown below where the voltage source vg;, is absent for all positive time
and the 50 KQ is shorted out by the closed switch.
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125 KQ
AN
+
(t) 1uF 7= Ve
50V
For the circuit above
“/(RC) _ g pg8t

Ve(t) = Veg+ Ve, = 50+ Ae

and with the initial condition
ve(07) = ve(0) = 150 = 50 + Ae”

from which A = 100 and thus for t>0
8t
ve(t) = 50 +100e ~ V

To find vgs(t) we will first find ic(t) from the circuit below where

dv
io(t) = cd—tC = 10°x (-8x107"e™®Y

Then,
4678 _ _goe Sty

Ves(t) = (100 KQ)i. = 10°(-8x 10”

The sketches below show v (t) and vgs(t) as they approach their final values.
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Yoltages across capacitor and resistor R3
160 , : . .

100 | --- - Snad oo oo e R -

‘oltage (wolts)

Time (seconds)

8. For this circuit we cannot short the dependent source and therefore we cannot find R, by
combining the resistances R; and R, in parallel combination in order to find the time con-

stant T = RC. Instead, we will derive the time constant from the differential equation of (9.9)
of the previous chapter, that is,

dv
_°C + E =0
dt RC
From the given circuit shown below,
Ve
it |
(D) RiS18Q
“l+
== Vc() R2§ 120
1F
10i(t)

Rl R2

or d q

e (1, 1), 100

“at "R, TR/ TR, At -
o dvey (R +R

e+ (FRve -

¢ WA TUAICIN- WAL
or
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(R1+R2)

dv R, R
AT IACRE
1——)-C

( R,

and from this differential equation we see that the coefficient of v is

1 _1_ _30/216 _30/216 _ 15x9 _ 135 _ 5 _ 5a10e
ReeC 1 (1—@)-1 8/18 ~ 4x108 432 16
18

and thus

Vc(t) _ Ae—0.3125t

and with the given initial condition v¢(07) = V, = A = 5 V we obtain

Vc(t) _ 5e—0.3125t
Then, using the relation
. dve
IC = C'at—
we find that for t>0
ic(t) = (1)(-0.3125 x 5e **%) = _1.5625¢ 03

and the minus (-) sign indicates that the i-(t) direction is opposite to that shown.

CVS 107™(6) Continuous

gt_; r -@ T i " vi—P [ 1] powergui
Step time: 0 10~(.6) —|_ r -

Initial value:0 —L_ VM Scope
Final value: 12 -~
I ™= vM=Voltage Measurement
CVS=Controlled Voltage Source L
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[ u Scope |ﬂ|ﬁ1
8 PAL ABEBAESR -

Titme offzet: O
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Appendix A

Introduction to MATLAB®

procedures for naming and saving the user generated files, comment lines, access to MAT-
LAB’s Editor / Debugger, finding the roots of a polynomial, and making plots. Several exam-
ples are provided with detailed explanations.

T his appendix serves as an introduction to the basic MATLAB commands and functions,

A.1 MATLAB® and Simulink®
MATLAB and Simulink are products of The MathWorks,™ Inc. These are two outstanding soft-

ware packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and
environmental applications. MATLAB enables us to solve many advanced numerical problems
rapidly and efficiently.

A.2 Command Window

To distinguish the screen displays from the user commands, important terms, and MATLAB
functions, we will use the following conventions:

Click: Click the left button of the mouse
Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>"
Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names

When we first start MATLAB, we see various help topics and other information. Initially, we are
interested in the command screen which can be selected from the Window drop menu. When the
command screen, we see the prompt >> or EDU>>. This prompt is displayed also after execution
of a command; MATLAB now waits for a new command from the user. It is highly recommended
that we use the Editor/Debugger to write our program, save it, and return to the command screen
to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M—-File. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter.

* EDU>> is the MATLAB prompt in the Student Version
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Important! MATLAB is case sensitive, that is, it distinguishes between upper— and lower—case let-
ters. Thus, t and T are two different letters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfileO1.m. It is a good prac-
tice to save the script in a file name that is descriptive of our script content. For instance, if the
script performs some matrix operations, we ought to name and save that file as matricesO1.m or
any other similar name. We should also use a floppy disk or an external drive to backup our files.

2. Once the script is written and saved as an m—file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the >> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired

directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLARB topics, we can type help followed by any topic from the displayed menu. For example,
to get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide con-
tains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu.
We can do this periodically to become familiar with them. Whenever we want to return to the
command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the command clear. This
command erases everything; it is like exiting MATLAB and starting it again. The command clc
clears the screen but MATLAB still remembers all values, variables and equations that we have
already used. In other words, if we want to clear all previously entered commands, leaving only
the >> prompt on the upper left of the screen, we use the clc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q) % performs multiplication of polynomials p and g
% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
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One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either i, or j to denote the imaginary part of a complex number, such as
3-4i or 3-4j. For example, the statement

2=3-4;
displays
z = 3.0000-4.00001

In the above example, a multiplication (*) sign between 4 and j was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function, or
variable such as cos(x), we must use the multiplication sign, that is, we must type cos(X)*j or
j*cos(x) for the imaginary part of the complex number.

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form [a, a, ; ... a, a; a,]. These

are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1
Find the roots of the polynomial

p(x) = x* — 10X’ +35x” — 50x + 24
Solution:

The roots are found with the following two statements where we have denoted the polynomial as
p1, and the roots as roots_ p1.

pl=[1 -10 35 -50 24] % Specify and display the coefficients of p1(x)

pl =
1 -10 35 -50 24

roots_ pl=roots(pl) % Find the roots of p1(x)

roots pl =
4._.0000
3.0000
2.0000
1.0000
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We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2
Find the roots of the polynomial

py(x) = X —7x" + 16X +25x + 52

Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with
the statements below, where we have defined the polynomial as p2, and the roots of this polyno-
mial as roots_ p2. The result indicates that this polynomial has three real roots, and two complex

. 3 * .
roots. Of course, complex roots always occur in complex conjugate  pairs.

p2=[1 -7 0 16 25 52]

p2 =
1 -7 0 16 25 52
roots_ p2=roots(p2)
roots p2 =
6.5014
2.7428
-1.5711

-0.3366 + 1.3202i
-0.3366 - 1.3202i

A.4 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) func-
tion where r is a row vector containing the roots.

Example A.3

[t is known that the roots of a polynomial are 1, 2,3, and 4. Compute the coefficients of this
polynomial.

* By definition, the conjugate of a complex number A = a+jb is A* = a—jb
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Solution:

We first define a row vector, say r3, with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1 2 3 4] % Specify the roots of the polynomial

r3 =
1 2 3 4

poly _r3=poly(r3) % Find the polynomial coefficients
poly r3 =
1 -10 35 -50 24
We observe that these are the coefficients of the polynomial p,(x) of Example A.1.

|
Example A.4

It is known that the roots of a polynomial are -1, -2, -3, 4 +j5, and 4 —j5. Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

rA=[-1 -2 -3 4+5] 4-5i]

r4 =
Columns 1 through 4
-1.0000 -2.0000 -3.0000 -4.0000+ 5.0000i
Column 5
-4._.0000- 5.0000i

poly_rd=poly(r4)

poly r4 =
1 14 100 340 499 246

Therefore, the polynomial is

pa(x) = x°+ 14x" + 100X’ + 340x” + 499x + 246
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial p(x) at some specified value of the indepen-
dent variable x.

Example A.5

Evaluate the polynomial

Ps(X) = X° = 3%+ 57— 4x% + 3%+ 2 (A.1)
at X = -3.
Solution:

p5=[1 -3 0 5 -4 3 2]; % These are the coefficients of the given polynomial

% The semicolon (;) after the right bracket suppresses the

% display of the row vector that contains the coefficients of p5.
%
val_minus3=polyval(p5, —-3) % Evaluate p5 at x=—3; no semicolon is used here

% because we want the answer to be displayed

val _minus3 =
1280

Other MATLAB functions used with polynomials are the following:
conv(a,b) — multiplies two polynomials a and b

[g,r]=deconv(c,d) —divides polynomial ¢ by polynomial d and displays the quotient q and
remainder r.

polyder(p) — produces the coefficients of the derivative of a polynomial p.
|
Example A.6
Let
p; = x> - 3x* + 57+ 7x + 9
and

p, = 2x° - 8x* + 4x% + 10x + 12

Compute the product p, - p, using the conv(a,b) function.
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Solution:

pl=[1 -3 057 9]; % The coefficients of p1

p2=[2 0 -8 0 4 10 12]; % The coefficients of p2

plp2=conv(pl,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2
plp2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108
Therefore,
Do, = 2x - 6x™ - 8x? + 34x® + 18x” - 24x°
_74x°-88x" + 78x° + 166X° + 174x + 108

I
Example A.7
Let

p; = X' —3x°+5x3+ 7x +9
and

P, = 2x° - 8x° +4x% + 10X + 12

Compute the quotient p;/p, using the [g,r]=deconv(c,d) function.

Solution:

% It is permissible to write two or more statements in one line separated by semicolons
p3=[1 0 -3 0 5 7 9], p4=[2 -8 0 0 4 10 12]; [g,r]=deconv(p3,p4)
q =
0.5000
r =
0 4 -3 0 3 2 3

Therefore,

Example A.8
Let
ps = 2x° - 8x" + 4x% + 10x + 12

Compute the derivativedix ps using the polyder(p) function.
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Solution:
p5=[2 0 -8 0 4 10 12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5
der_p5 =
12 0 -32 0 8 10
Therefore,
dixp5 = 12x°—32x° + 4x° + 8x + 10

A.6 Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

n n-1 n-2
Num(x) _ b X +b, ;X “+b, X “+..+bXx+b,

R(X) = Den(x)

T — (A.2)

m m-
apX +a, ;X +a, X +...+aX+a,

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if
we separate them by commas or semicolons. Commas will display the results whereas semicolons
will suppress the display.

|
Example A.9
Let

R(x) = Poum _ x°=3x" 455" + 7x+9
Pden  x®—4x®+2x°+5x+6

Express the numerator and denominator in factored form, using the roots(p) function.

Solution:

num=[1 -3 0 5 7 9];den=[1 0 -4 0 2 5 6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots
roots_num =

2.4186 + 1.07121 2.4186 - 1.0712i -1.1633
-0.3370 + 0.99611 -0.3370 - 0.99611

A-8  Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems ® Modeling
Copyright © Orchard Publications



Rational Polynomials

roots den =
1.6760 + 0.4922i 1.6760 - 0.4922i -1.9304
-0.2108 + 0.9870i -0.2108 - 0.9870i -1.0000

As expected, the complex roots occur in complex conjugate pairs.
For the numerator, we have the factored form

= (x-2.4186 — j1.0712)(x—2.4186 + j1.0712)(x + 1.1633)
(x +0.3370 — j0.9961)(x + 0.3370 + j0.9961)

pnum

and for the denominator, we have

Pgen = (x—1.6760 —j0.4922)(x—1.6760 + j0.4922)(x + 1.9304)
(X + 0.2108-j0.9870)(x + 0.2108 + j0.9870)(x + 1.0000)

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form x> +bx+c¢ = 0
whose roots are x; and X,, the negative sum of the roots is equal to the coefficient b of the x

term, that is, —(X; + X,) = b, while the product of the roots is equal to the constant term c, that
is, X, - X, = ¢. Accordingly, we form the coefficient b by addition of the complex conjugate roots

and this is done by inspection; then we multiply the complex conjugate roots to obtain the con-
stant term ¢ using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 —1.0712i)
ans = 6.9971

(-0.3370+ 0.9961i)*(-0.3370-0.9961i)
ans = 1.1058

(1.6760+ 0.4922i)*(1.6760-0.4922i)
ans = 3.0512

(-0.2108+ 0.9870i)*(—0.2108-0.9870i)
ans = 1.0186

Thus,

R(X) = Prum _ (X° — 4.8372x + 6.9971)(x” + 0.6740x + 1.1058)(X + 1.1633)
Pden  (X° = 3.3520x + 3.0512)(x* + 0.4216X + 1.0186)(x + 1.0000)(x + 1.9304)
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We can check this result of Example A.9 above with MATLAB’s Symbolic Math Toolbox which is
a collection of tools (functions) used in solving symbolic expressions. They are discussed in detail
in MATLAB’s Users Manual. For the present, our interest is in using the collect(s) function that
is used to multiply two or more symbolic expressions to obtain the result in polynomial form. We
must remember that the conv(p,q) function is used with numeric expressions only, that is, poly-
nomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following script:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial form
collect((x"2-4.8372*x+6.9971)*(x"2+0.6740*x+1.1058)*(x+1.1633))

ans =
x"5-29999/10000*x"M4-1323/3125000*x"3+7813277909/
1562500000*x"2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression
in polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x, where x is the horizontal axis (abscissa) and y is the ver-
tical axis (ordinate).

Example A.10

Consider the electric circuit of Figure A.1, where the radian frequency o (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant.

Ry
—O——
R,
@ C==
\V4 L

Figure A.1. Electric circuit for Example A.10
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The ammeter readings were then recorded for each frequency. The magnitude of the impedance
|Z| was computed as |Z| = |[V/A| and the data were tabulated on Table A.1.

TABLE A.1 Table for Example A.10

© (rads/s) |Z| Ohms || ® (rads/s) |Z| Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611
1000 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44.122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

Plot the magnitude of the impedance, that is, |Z| versus radian frequency o.
Solution:

We cannot type ® (omega) in the MATLAB Command prompt, so we will use the English letter
w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000};

%

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056....

1014.938 469.830 266.032 187.052 145.751 120.353 103.111....

90.603 81.088 73.588 67.513 62.481 58.240 54.611 51.468....

48.717 46.286 44.122 42.182 40.432 38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
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<enter>. To plot z (y—axis) versus W (x—axis), we use the plot(x,y) command. For this example,
we use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s
graph screen and MATLAB denotes this plot as Figure 1. This plot is shown in Figure A.2.

1200

1000 + B

800 - b

600 - b

400 b

200 - b

0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Figure A.2. Plot of impedance |z| versus frequency o for Example A.10

This plot is referred to as the magnitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we choose Figure 1.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The

command grid toggles them, that is, changes from off to on or vice versa. The default” is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.
xlabel(‘string’) and ylabel(‘string’) are used to label the x— and y—axis respectively.

The magnitude frequency response is usually represented with the x—axis in a logarithmic scale.
We can use the semilogx(x,y) command which is similar to the plot(x,y) command, except that
the x—axis is represented as a log scale, and the y-axis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the y—axis is represented as a

*  Adefault is a particular value for a variable that is assigned automatically by an operating system and remains

in effect unless canceled or overridden by the operator.
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log scale, and the x—axis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and In is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm
to the base 2 as log2(x).

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec"); ylabel(’|Z| in Ohms")

After execution of these commands, the plot is as shown in Figure A.3.

If the y—axis represents power, voltage or current, the x—axis of the frequency response is more
often shown in a logarithmic scale, and the y—axis in dB (decibels).

Magnitude of Impedance vs. Radian Frequency

1200

1000

800

600

|Z] in Ohms

400

200

w in rads/sec

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage v in a dB scale on the y—axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

. * . . . . .
The command gtext(‘string’) switches to the current Figure Window, and displays a cross—hair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Imped-
ance |Z| versus Frequency’), and this will place a cross—hair in the Figure window. Then, using

*  With the latest MATLAB Versions 6 and 7 (Student Editions 13 and 14), we can add text, lines and arrows directly into
the graph using the tools provided on the Figure Window. For advanced MATLAB graphics, please refer to The Math-
Works Using MATLAB Graphics documentation.
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the mouse, we can move the cross—hair to the position where we want our label to begin, and we
press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3—phase sinusoidal wave-
form.

The first line of the script below has the form
linspace(first_value, last_value, number_of values)

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last
and this specifies the increments between points but not the number of data points.
The script for the 3—phase plot is as follows:

x=linspace(0, 2*pi, 60); % piis a built—in function in MATLAB;

% we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;

y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);

plot(x,y,Xx,u,x,v); % The x—axis must be specified for each function

grid on, box on, % turn grid and axes box on

text(0.75, 0.65, 'sin(x)"); text(2.85, 0.65, 'sin(x+2*pi/3)"); text(4.95, 0.65, 'sin(x+4*pi/3)")

These three waveforms are shown on the same plot of Figure A.4.

1

Sin(x+4*pil3)

0.5

-0.5

Figure A.4. Three—phase waveforms
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In our previous examples, we did not specify line styles, markers, and colors for our plots. How-
ever, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a com-
bination of these, can be added with the plot(x,y,s) command, where s is a character string con-
taining one or more characters shown on the three columns of Table A.2. MATLAB has no
default color; it starts with blue and cycles through the first seven colors listed in Table A.2 for
each additional line in the plot. Also, there is no default marker; no markers are drawn unless
they are selected. The default line is the solid line. But with the latest MATLAB versions, we can
select the line color, line width, and other options directly from the Figure Window.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue . point - solid line
g green o circle : dotted line
T red X x—mark - dash—dot line
c cyan + plus — dashed line
m magenta * star
y yellow s square
k black d diamond
w white v triangle down

A triangle up
< triangle left
> triangle right
p pentagram
h hexagram

For example, plot(x,y,'m*:") plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs") plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs—'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two—dimensional, that is, they are drawn on two axes.
MATLAB has also a three-dimensional (three—axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the
elements of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(X1,Y1,21,51,X2,Y2,22,52,X3,Y3,Z3,S3,...) where X, ¥, and z, are vectors
or matrices, and s, are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two—dimensional plots.
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Example A.11
Plot the function

z=—2x3+x+3y2—1 (A.3)
Solution:

We arbitrarily choose the interval (length) shown on the script below.

x=-10: 0.5: 10; % Length of vector x
Y= X; % Length of vector y must be same as x
Z= -2 X N3+x+3. 7y .21, % Vector z is function of both x and y*

plot3(x,y,z); grid

The three—dimensional plot is shown in Figure A.5.

3000
2000

1000

-1000

-2000 -l
10

Figure A.5. Three dimensional plot for Example A.11

In a two—dimensional plot, we can set the limits of the x— and y—axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three—dimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The three-dimensional text(x,y,z,’string’) command will
place string beginning at the co—ordinate (x,y,z) on the plot.

For three—dimensional plots, grid on and box off are the default states.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication, division,
and exponential operators are preceded by a dot. These important operations will be explained in Section A.9.
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We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
length(x) = n and length(y) = m where [m, n] = size(Z). In this case, the vertices of the mesh
lines are the triples {X(j), y(i), Z(i, j) } . We observe that X corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say z = f (X, y) , we must first generate the
X and Y matrices that consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the
matrix X whose rows are copies of the vector X, and the matrix Y whose columns are copies of the
vector Y.

Example A.12

The volume V of a right circular cone of radius r and height h is given by

- %nrzh (A.4)

Plot the volume of the cone as r and h vary on the intervals 0<r<4 and 0<h <6 meters.

Solution:

The volume of the cone is a function of both the radius r and the height h, that is,
V = f(r,h)

The three—dimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, dot division, and dot expo-
nentiation. This will be explained in Section A.9.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h;...
V=(pi *R .~ 2 .*H)./3; mesh(R, H, V);...

xlabel('x—axis, radius r (meters)'); ylabel('y—axis, altitude h (meters)");...
zlabel('z—axis, volume (cubic meters)"); title("Volume of Right Circular Cone'); box on

The three—dimensional plot of Figure A.6 shows how the volume of the cone increases as the
radius and height are increased.

The plots of Figure A.5 and A.6 are rudimentary; MATLAB can generate very sophisticated
three-dimensional plots. The MATLAB User’s Manual and the Using MATLAB Graphics Man-

ual contain numerous examples.
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Volume of Right Circular Cone
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Figure A.6. Volume of a right circular cone.

A.8 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m x n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

111
Full Screen Default
211 221 | 222
122
212 223 | 224 121
221
221 | 222 211 12 o 322
212 223 | 224 223 124

Figure A.7. Possible subplot arrangements in MATLAB

A.9 Multiplication, Division, and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element-by—element multiplication,
division, and exponentiation. They are explained in the following paragraphs.
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In Section A.2, the arrays [a b ¢ ...], such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character (') to transpose a vector. Thus, a column vector can be written either as

b=[-1; 3; 6; 11]

or as
b=[-1 3 6 11]
As shown below, MATLAB produces the same display with either format.
b=[-1; 3; 6; 11]
b =
-1
3
6
11
b=[-1 3 6 11] % Observe the single quotation character (‘)
b =
-1
3
6
11

We will now define Matrix Multiplication and Element-by—Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)
Let
A=1la a a .. apl
and
B = [bl b2 b3 e bn]'

be two vectors. We observe that A is defined as a row vector whereas B is defined as a col-
umn vector, as indicated by the transpose operator (). Here, multiplication of the row vector
A by the column vector B, is performed with the matrix multiplication operator (*). Then,

A*B = [a;b; +3,b, +a3by + ... +a,b,] = single value (A.5)
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For example, if

A=1[1 2 3 4 5]
and

B=[-2 6 -3 8 7]

the matrix multiplication A*B produces the single value 68, that is,
A*B = 1x(<2)+2x6+3x(-3)+4x8+5x7 = 68
and this is verified with the MATLAB script
A=[1 2 3 4 5;B=[-2 6 -3 8 7];A*B % Observe transpose operator (‘) in B
ans =
68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row—by—
row multiplication with the following MATLAB statements.

A=[1 2 3 4 5];B=[-2 6 -3 8 7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (¥) in A*B, MATLAB expects
vector B to be a column vector, not a row vector. It recognizes that B is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator

(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. Element-by-Element Multiplication (multiplication of a row vector by another row vector)
Let
C=1c; ¢, ¢ ... ¢l
and

D = [dl d2 d3 d ]

n

be two row vectors. Here, multiplication of the row vector C by the row vector D is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

C*D = [Cldl Czdz C3d3 C d ] (A.6)

n-n
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This product is another row vector with the same number of elements, as the elements of C
and D.

As an example, let

C=1[1 2 3 4 5]
and

D=[-2 6 -3 8 7]

Dot multiplication of these two row vectors produce the following result.
C*D = 1x(-2) 2x6 3x(-3) 4x8 5x7=-2 12 -9 32 35
Check with MATLAB:

C=[1 2 3 45 % Vectors C and D must have
D=[-2 6 -3 8 7]; % same number of elements
C.*D % We observe that this is a dot multiplication

-2 12 -9 32 35

Similarly, the division (/) and exponentiation (* ) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.” ) are used for element—
by—element division and exponentiation, as illustrated in Examples A.11 and A.12 above.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators.

Note: A dot (.) is never required with the plus (4+) and minus (=) operators.

|

Example A.13

Write the MATLAB script that produces a simple plot for the waveform defined as
2

y = f(t) = 3e_4t0035t—2e_3tsin2t+t—£-1 (A.7)

in the 0 <t<5 seconds interval.

Solution:
The MATLAB script for this example is as follows:
t=0: 0.01: 5; % Define t—axis in 0.01 increments

y=3 .* exp(—4 .*t) .* cos(5 .*t)-2 * exp(-3 .*t) .*sin(2 .*t) +t A2 ./ (t+1);
plot(t,y); grid; xlabel('t"); ylabel('y=f(t)"); title('Plot for Example A.13")

The plot for this example is shown in Figure A.8.
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Plot for Example A.13

(t)

Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less
than -1, say as -3 <t< 3, MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero
when t = -1. To avoid division by zero, we use the special MATLAB function eps, which is a

number approximately equal to 2.2 x 107"® . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example A.14

Plot the functions
y = sin’, z = cos’X, W = sin® - cos’x, Vv = sin?x/cos’x

in the interval 0 <x < 2m using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.
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Solution:
The MATLAB script to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).” 2); z=(cos(x)." 2);

w=y.* z;

v=y./ (z+eps);% add eps to avoid division by zero
subplot(221);% upper left of four subplots

plot(x,y); axis([0 2*pi 0 1]);

title ('y=(sinx) * 2');

subplot(222); % upper right of four subplots
plot(x,z); axis([0 2*pi O 1]);

title ('z= (cosx) * 2');

subplot(223); % lower left of four subplots
plot(x,w); axis([0 2*pi 0 0.3]);

title('w= (sinx) © 2*(cosx) * 2');

subplot(224); % lower right of four subplots
plot(x,v); axis([0 2*pi 0 400]);

title('v=(sinx) * 2/(cosx) * 2);

These subplots are shown in Figure A.9.

y:(sinx)2 z:(cosx)2
1
0.5 0.5
0 0
0 2 4 6 0 2 4 6
v\p(sinx)z*(cosx)2 v:(sinx)zl(cosx)2
400
0.2
200
0.1
0 0
0 2 4 6 0 2 4 6

Figure A.9. Subplots for the functions of Example A.14

The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions that display the real and imaginary parts of the complex quan-
tity z = x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x + iy = r£0. We will also use the
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
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is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example A.15

Consider the electric circuit of Figure A.10.

10 Q
ao—MAN—
10 Q
Zp— =< 10 uF
0.1H

Figure A.10. Electric circuit for Example A.15
With the given values of resistance, inductance, and capacitance, the impedance Z,; as a func-
tion of the radian frequency ® can be computed from the following expression:
10° —j(10%/w)
10+j(0.lw-10"/w )

Z,=2=10+ (A.8)

a. Plot Re{Z} (the real part of the impedance Z) versus frequency o.

b. Plot Im{Z} (the imaginary part of the impedance Z) versus frequency .

c. Plot the impedance Z versus frequency  in polar coordinates.

Solution:
The MATLAB script below computes the real and imaginary parts of Z,, which, for simplicity,

are denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar
plot (part c).

w=0: 1: 2000; % Define interval with one radian interval;...
z=(10+(10 A4 —j .* 10 .~ 6 ./ (w+eps)) ./ (10 +j .* (0.1 .* w —10.%5./ (w+eps))));...
%

% The first five statements (next two lines) compute and plot Re{z}
real_part=real(z); plot(w,real_part);...

xlabel('radian frequency w"); ylabel('Real part of Z"); grid
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Figure A.11. Plot for the real part of the impedance in Example A.15

% The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z); plot(w,imag_part);...
xlabel('radian frequency w'); ylabel('Imaginary part of Z'); grid
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| | |
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Figure A.12. Plot for the imaginary part of the impedance in Example A.15

% The last six statements (next five lines) below produce the polar plot of z

mag=abs(z); % Computes |Z];...

rndz=round(abs(z)); % Rounds |Z| to read polar plot easier;...
theta=angle(z); % Computes the phase angle of impedance Z;...
polar(theta,rndz); % Angle is the first argument

ylabel('Polar Plot of Z'); grid
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Polar Plot of Z

Figure A.13. Polar plot of the impedance in Example A.15
Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m—files since both require the .m extension.

A script file consists of two or more built—in functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m—file with an editor such as the MAT-

LAB’s Editor/Debugger.

A function file is a user—defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x." 3 + c0s(3.* X)

is a function file and must be saved as myfunction.m
For the next example, we will use the following MATLAB functions:

fzero(f,x) — attempts to find a zero of a function of one variable, where f is a string containing the
name of a real-valued function of a single real variable. MATLAB searches for a value near a
point where the function f changes sign, and returns that value, or returns NaN if the search fails.
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Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fplot(fcn,lims) — plots the function specified by the string fcn between the x—axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y—axis limits.
The string fcn must be the name of an m—file function or a string with variable x.

NaN (Not-a—Number) is not a function; it is MATLAB’s response to an undefined expression
such as 0/0, o/, or inability to produce a result as described on the next paragraph. We can
avoid division by zero using the eps number, which we mentioned earlier.

|
Example A.16

Find the zeros, the minimum, and the maximum values of the function

f(x) = 1 - 1 ~10 (A.9)

(x-0.1)*+001 (x-1.2)%+0.04

in the interval -1.5<x<1.5
Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script.

x=-1.5: 0.01: 1.5;
y=1./ (x-0.1).» 2 + 0.01) -1./ ((x-1.2).~ 2 + 0.04) -10;
plot(x,y); grid

The plot is shown in Figure A.14.
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Figure A.14. Plot for Example A.16 using the plot command
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The roots (zeros) of this function appear to be in the neighborhood of x = -0.2 and x = 0.3. The

maximum occurs at approximately x = 0.1 where, approximately, = 90, and the minimum

ymax

occurs at approximately x = 1.2 where, approximately, = -34.

Ymin
Next, we define and save f(x) as the funczero01.m function m—file with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x—0.1)"2+0.01)-1/((x-1.2)"2+0.04)-10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot f(x) as follows:
fplot(‘funczero0l', [-1.5 1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14
which was obtained with the plot(x,y) command as shown in Figure A.14.

100

80f------

60~~~
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ok - N

-40
15

Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of f(x) in Equation (A.9) more precisely.
The MATLAB script below will accomplish this.

x1= fzero(‘funczero01l', —-0.2);

x2= fzero(‘funczero01', 0.3);

fprintf('The roots (zeros) of this function are r1= %3.4f", x1);
fprintf(' and r2= %3.4f \n', x2)
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MATLAB displays the following:
The roots (zeros) of this function are rl= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function f(x) or a maximum of f(x) since a maximum of
f(x) is equal to a minimum of —f(x). This can be visualized by flipping the plot of a function f(x)
upside—down. This function is no longer used in MATLAB and thus we will compute the maxima
and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function y = f(x) can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable x . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x-0.1)"2+0.01)-1/((x-1.2)"2+0.04)-10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)"2+1/100)"2*(2*%x-1/5)+1/ ((x-6/5)"2+1/25)"2*(2*x-12/5)

When the command
solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
0.6585 + 0.34371
ans =
0.6585 - 0.34371
ans =

1.2012

The real value 1.2012 above is the value of x at which the function y has its minimum value as
we observe also in the plot of Figure A.15.

To find the value of y corresponding to this value of x, we substitute it into f(x), that is,
x=1.2012; ymin=1 / (x-0.1) A 2 + 0.01) 1 / (x=1.2) A 2 + 0.04) —10

ymin = -34.1812

We can find the maximum value from —f(x) whose plot is produced with the script
x=-1.5:0.01:1.5; ymax=-1./((x-0.1).~2+0.01)+1./((x-1.2).~2+0.04)+10; plot(x,ymax); grid
and the plot is shown in Figure A.16.
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Figure A.16. Plot of —f(X) for Example A.16

Next we compute the first derivative of —f(x) and we solve for x to find the value where the max-
imum of ymax occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=—(1/((x—0.1)"2+0.01)-1/((x—1.2)*2+0.04)—-10); zmax=diff(ymax)

Zmax =
1/ ((x-1/10)"2+1/100)"2*(2*x-1/5) -1/ ((X-6/5)"2+1/25)"2* (2*x-12/5)

solve(zmax)
When the command
solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
0.6585 + 0.34371

ans =
0.6585 - 0.3437i

ans
.2012

I~ 1l

ans
0.0999

From the values above we choose x = 0.0999 which is consistent with the plots of Figures A.15
and A.16. Accordingly, we execute the following script to obtain the value of ymin.
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x=0.0999; % Using this value find the corresponding value of ymax
ymax=1/((x-0.1)~2 + 0.01) -1/ ((x-1.2) ~ 2 + 0.04) -10

ymax = 89.2000

A.11 Display Formats

MATLARB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available MATLAB formats can
be displayed with the help format command as follows:

help format

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display formats
as follows:

FORMAT Default. Same as SHORT.

FORMAT SHORT Scaled fixed point format with 5

FORMAT LONG Scaled fixed point format with 15

FORMAT SHORT E Floating point format with 5 digi

FORMAT LONG E Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point format with 5 digits.

FORMAT LONG G Best of fixed or floating point format with 15 digits.

FORMAT HEX Hexadecimal format.

FORMAT + The symbols +, - and blank are printed for positive, negative,
and zero elements.Imaginary parts are ighored.

FORMAT BANK Fixed format for dollars and cents.

FORMAT RAT Approximation by ratio of small integers.

digits.
digits.
ts.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short 33.3335 Four decimal digits (default)

format long 33.33333333333334 16 digits

format short e 3.3333e+01 Four decimal digits plus exponent
format short g 33.333 Better of format short or format short e
format bank 33.33 two decimal digits

format + only + or - or zero are printed
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format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the
text is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is
used, the values will be displayed and printed in fixed decimal format, and if %e is used, the val-
ues will be displayed and printed in scientific notation format. With this command only the real
part of each parameter is processed.

This appendix is just an introduction to MATLAB.” This outstanding software package consists

of many applications known as Toolboxes. The MATLAB Student Version contains just a few of
these Toolboxes. Others can be bought directly from The MathWorks,™ Inc., as add-ons.

* For more MATLAB applications, please refer to Numerical Analysis Using MATLAB and Excel, ISBN 978—
1-934404-03—4.
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Introduction to Simulink®

duce Simulink with a few examples. Some familiarity with MATLAB is essential in under-

standing Simulink, and for this purpose, Appendix A is included as an introduction to
MATLAB.

T his appendix is a brief introduction to Simulink. This author feels that we can best intro-

B.1 Simulink and its Relation to MATLAB

The MATLAB® and Simulink® environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We will introduce Simulink with a few illustrated examples.

Example B.1

For the circuit of Figure B.1, the initial conditions are i, (07) = 0, and v,(0") = 05V . We will

compute V(t).

— +

<

c()

C
_ -
H(t) 4/3F

Vs(t) = Up(1)

Figure B.1. Circuit for Example B.1

| <—

For this example,

o : dv
=i =ic= Cd—tC (B.1)
and by Kirchoff’s voltage law (KVL),

Substitution of (B.1) into (B.2) yields
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2
rede | cdVe
dt dt2

+ Ve = Ug(t) (B.3)

Substituting the values of the circuit constants and rearranging we obtain:

2
1d°ve  4dv
ol T RACREL
dVe , 4, 0Ve 5,y B4
2 T T3ve = 3l E4
d2VC dVC
—C4+4—"S43v. =3 t>0 (B.5)
dt2 dt

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method — Assumed Solution

Equation (B.5) is a second-order, non—-homogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

‘ . _at . .
However, decaying exponentials of the form ke™® where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

* . -s;t -S,t
It can be shown that if k;e — and k,e " where k, and k, are constants and s; and s, are the

roots of the characteristic equation of the homogeneous part of the given differential equation,

. —st st L
the natural response is the sum of the terms k,e ' and k,e 2" Therefore, the total solution will

be

V.(t) = natural response+ forced response = v ,(t) + v(t) = kle_slt+ kze_52t+vcf(t) (B.6)

The values of s; and s, are the roots of the characteristic equation

*  Please refer to Circuit Analysis 11 with MATLAB Applications, ISBN 0-9709511-5-9, Appendix B for a
thorough discussion.
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S+4s+3 =0 (B.7)

Solution of (B.7) yields of s, = -1 and s, = -3 and with these values (B.6) is written as

Vo(t) = ke + Ky o+ v(t) (B.8)
The forced component v(t) is found from (B.5), i.e.,
2

d
Ve, e, 3y 23 ts0 (B.9)
a2 dt

Since the right side of (B.9) is a constant, the forced response will also be a constant and we
denote it as Vs = K. By substitution into (B.9) we obtain

0+0+3ky =3

or

Substitution of this value into (B.8), yields the total solution as

The constants k; and k, will be evaluated from the initial conditions. First, using vo(0) = 05V

and evaluating (B.11) at t = 0, we obtain

ve(0) = ke’ +k,e®+1 = 05

Also, o dve dve i
W=le=CG0 W T e
and
dv i.(0) o
dt|,_, C C (B.13)

Next, we differentiate (B.11), we evaluate it at t = 0, and equate it with (B.13). Thus,

dve

= = ki3 (B.14)

t=0

By equating the right sides of (B.13) and (B.14) we obtain

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPowerSystems® Modeling ~ B-3
Copyright © Orchard Publications



Introduction to Simulink®

k,~3k, = 0 (B.15)

Simultaneous solution of (B.12) and (B.15), gives k; = —0.75 and k, = 0.25. By substitution into

(B.8), we obtain the total solution as

Ve(t) = (<0.75e " +0.25¢ " + 1)uy(t) (B.16)
Check with MATLARB:
syms t % Define symbolic variable t
y0=-0.75*exp(-t)+0.25*exp(—3*t)+1; % The total solution y(t), for our example, vc(t)
y1=diff(y0) % The first derivative of y(t)
yl =
3/4*exp(-t)-3/4*exp(-3*t)
y2=diff(y0,2) % The second derivative of y(t)
y2 =
-3/4*%exp(-t)+9/4*exp(-3*t)
y=y2+4*y1+3*y0 % Summation of y and its derivatives
y =
3

Thus, the solution has been verified by MATLAB. Using the expression for v(t) in (B.16), we
find the expression for the current as

. dve 403 ¢ 3 3t) -t -3t
i=i =ic = dt_3(4e 3¢ )_e—e A (B.17)

Second Method — Using the Laplace Transformation

The transformed circuit is shown in Figure B.2.

R L
IR +
1 0.25s C
= T
V(s) = 1/s CD 3/4s Ve(s)
1(5) (F)VeO l
0.5/s v

Figure B.2. Transformed Circuit for Example B.1
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. . . * .
By the voltage division expression,

Vs = 3/4s (1 o.5) 05 _ 15 05 055 +2s+3
o(s) = (2o B2 o Do DOS #2549
(1+0.255+3/4s) \s s S(SZ+4S+3) s(s+1)(s+3)
Using partial fraction expansion, we let
2 r r r
055 +2s+3 - _1+ 2 + 3 (B18)
S(s+1)(s+3) s (s+1) (s+3)
_055+2s+3]  _
Lo+ 1)(s+3)|_,
2
. 05s+_2s+3‘ - 075
s(s+3) "
055° + 25+ 3
g = S #2543 = 025
s(s+1) ce 3

and by substitution into (B.18)

05s°+2s+3 _ 1, 075, 025
sS(s+1)(s+3) s (s+1) (s+3)

Ve(s) =

Taking the Inverse Laplace transform* we find that
Ve(t) = 1-0.75e " +0.25¢ "
Third Method - Using State Variables
di,

. sksk

*  For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with

MATLAB Applications, ISBN 0-9709511-2—4.
T Partial fraction expansion is discussed in Chapter 3, this text.

¥ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer Chapters 2 and 3, this
text.

** Usually, in State—Space and State Variables Analysis, u(t) denotes any input. For distinction, we will denote
the Unit Step Function as uy(t) . For a detailed discussion on State—Space and State Variables Analysis, please
refer to Chapter 5, this text.
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By substitution of given values and rearranging, we obtain

1di _ g
adt - (-1, —ve+1
or
di, :
rri —4i —4v.+4 (B.19)

Next, we define the state variables x; = i, and x, = v¢. Then,

%, = % (B.20)
and
dv
X, = (B.21)
Also,
P oWve
- dt
and thus, dv 4
X1=i|_=cd_tC=CX2=§X2
or
X, = gxl (B.22)

Therefore, from (B.19), (B.20), and (B.22), we obtain the state equations
Xy = —4X —-4X,+4

3
X2= 2%

{xl} _ {_4 _4} {xl} + ﬂ Uo(t) (B.23)
X, 3/4 0]|x,| |0

and in matrix form,

Solution™ of (B.23) yields

*  The notation x (x dot) is often used to denote the first derivative of the function X, that is, x = dx/dt.
T The detailed solution of (B.23) is given in Chapter 5, Example 5.10, Page 5-23, this text.
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|:X:IZ| _ ol
X —t -3t
2 1-0.75e "+ 0.25e

X, =i, =e -e (B.24)

Then,

and
X, = Ve = 1- 0.75¢ ' + 0.25¢ > (B.25)
Modeling the Differential Equation of Example B.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the MATLAB Command prompt, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure B.3. It appears on the top bar on

MATLAB’s Command prompt.

Figure B.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks appear as shown in Fig-
ure B.4.

In Figure B.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example B.1 as
2

d
dVe _ 4% 3y, 4 3uy(t) (B.26)
dt? dt

A block diagram representing relation (B.26) above is shown in Figure B.5. We will use Simulink

to draw a similar block diagram.”

* Henceforth, all Simulink block diagrams will be referred to as models.
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¥

+

¥

Ug(t)

R simulink;

| Commonly Used Blocks

gﬂ Continuous
y Discontinuities
#| Discrete

1+ Logic and Bit Operations

#+ Lookup Tables

#+| Math Operations
#| Model Yerification
# Model-wide Utilities
| Ports & Subsystems
#+ signal Attributes
#| signal Routing

1 Sinks

gﬂ Sources

#+ User-Defined Funckions
+- 3] additional Math & Discrete

B8 Real-Time Workshop

E Signal Processing Blockset
E SimPower 3ystems

W simulink Extras

E;:_{r'r-:-] Commonly Used Blocks
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{ Dizcrete

2| Logic and Eit Operations
'r: Lookup Tables
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+E: b ath Operations

IE b odel Yerification
[J;+ we | Modeltwide Utilities

Farts & Subsystems
-| Signal Attributes
Signal Routing

[JE Sirks

| Sources

Izer-Defined Functions
Additional Math & Discrete

Figure B.4. The Simulink Library Browser

2

dt

dve

2

dve

@

Idt

dt J-dt Ve

-3

Figure B.5. Block diagram for equation (B.26)

To model the differential equation (B.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure B.6.
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51 untitled
File Edit Wiew Simulabion Format  Tools  Help
0D =S 100 |Momal

Ready 1100%: ndeds

Figure B.6. The Untitled model window in Simulink.

The window of Figure B.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure B.6 where we choose Save as and name the file as Equation_1_26. Simulink will add
the extension .mdl. The new model window will now be shown as Equation_1_ 26, and all
saved files will have this appearance. See Figure B.7.

B Equation_1_26

File Edit “iew Simulation  Format  Tools  Help
O = HS o I'IEI. ]Nl:nrmal -
Ready _llfllj°f.:: lode3

Figure B.7. Model window for Equation 1 26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function shown as Step. See Figure B.8. We select it, and we drag it into
the Equation_1_26 model window which now appears as shown in Figure B.8. We save file
Equation_1 26 using the File drop menu on the Equation_1_26 model window (right side of
Figure B.8).

3. With reference to block diagram of Figure B.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
B.8. If the Equation_1 26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two
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blocks.” We double—click on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure B.9.

ulinllq ~ |:| Constant

Commanty Used Blocks Counter Free-Running

':F"-'tin"f':""_s_ @ Counter Limnited -
Discontinuities [ ] Digital Clock O = E &
Discreke

Logic and Bit Operations FiamFle

Liokon Tablas From “Workspace . j}
Math Operations E Ground Step
Maodel Yerification Irit

Model-wide Litilities m Pulse Generator

Paorts & Subsystems Ramp

Signal Attributes R andom Mumber

Signal Routing Fiepeating Sequence

EEEEN

inks Repeating Sequence |nterpolated
Saurces . ;
: y Repeating 5equence Stair
IJser-Defined Functions
Additional Math & Discrete Slanl Bualder
oooo .
il-Time Workshop =ignal Generator

1al Processing Blockset Sine Wave

1 |

s

PowerSystems
tlink Fbras ol TTRT vk Biamdarm Mirmber =

Figure B.8. Dragging the unit step function into File Equation 1 26

i) Equation_1_26

File Edit Wiew Simulation Format Tools Help
O =z EE X2 b |'|EI. |N|:|rmal j
} >I>>
Step Eain
Ready 100% ' ' lode3

Figure B.9. File Equation 1 26 with added Step and Gain blocks

* An easy method to interconnect two Simulink blocks by clicking on the source block to select it, then hold down
the Ctrl key and left—click on the destination block.
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5. Next, we need to add a thee—input adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1 26 model window. We double click it, and on the Function Block Parameters
window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure B.10.

>

Step Fain 1

+
Add

Figure B.10. File Equation 1 26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-

ure B.11.
I I: . 1 » 1L

Stap Gainl £ T
+
o Integrator Integratorz

Figure B.11. File Equation 1 26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we double—click on these
gain blocks and on the Function Block Parameters window, we change the gains from to —4
and -3 as shown in Figure B.12.

J_%J' 1 1 C ]

" 1 1
Step Gain 1 * oz ® ™

Integratorz Soope

Gain3

Figure B.12. File Equation 1 26 complete block diagram
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_ dv _
8. The initial conditions i (07) = C—a-tg = 0, and v,(0) = 0.5V are entered by double
t=0
clicking the Integrator blocks and entering the values 0 for the first integrator, and 0.5 for the
second integrator. We also need to specify the simulation time. This is done by specifying the
simulation time to be 10 seconds on the Configuration Parameters from the Simulation drop
menu. We can start the simulation on Start from the Simulation drop menu or by clicking on

» .
the icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale L icon, we obtain the waveform shown in Figure B.13.

Time offset: 0

Figure B.13. The waveform for the function v(t) for Example B.1

Another easier method to obtain and display the output v(t) for Example B.1, is to use State—
Space block from Continuous in the Simulink Library Browser, as shown in Figure B.14.

» ® = AxtBu |:|
= CxOu
Step State-Space Seope
simout
To Workspace

Figure B.14. Obtaining the function v(t) for Example B.1 with the State—Space block.
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The simout To Workspace block shown in Figure B.14 writes its input to the workspace. The
data and variables created in the MATLAB Command window, reside in the MATLAB Work-
space. This block writes its output to an array or structure that has the name specified by the
block's Variable name parameter. This gives us the ability to delete or modify selected variables.
We issue the command who to see those variables. From Equation B.23, Page B-6,

KRR n R

The output equation is

y = Cx+du
or
y = [0 1] H +[0]u
Xz

We double—click on the State—Space block, and in the Functions Block Parameters window we
enter the constants shown in Figure B.15.

=1 Function Block Parameters: State-Space [g|
State Space

State-zpace model:
dudt =t + Bu
y=Cn+Du

Farameters
A
[-4-4; 344 0] |
B:
407 |
C:
01] |
0
|0 |

[mitial conditiores:
[ w2] |

Ahbzalute tolerance:

iautu:u |

(] ” Cancel ] ’ Help Apply

Figure B.15. The Function block parameters for the State—Space block.
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The initials conditions [x1 x2]' are specified in MATLAB’s Command prompt as
x1=0; x2=0.5;

. . . . . |
As before, to start the simulation we click clicking on the icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale L icon, we
obtain the waveform shown in Figure B.16.

Time offset; 0O

Figure B.16. The waveform for the function v(t) for Example B.1 with the State-Space block.

The state—space block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example B.2
A fourth—order network is described by the differential equation

4 3 2
d d d
d—% + ag——%! + az—-l2 + ala¥ +a,y(t) = u(t) (B.27)
dt dt dt

where y(t) is the output representing the voltage or current of the network, and u(t) is any input,
and the initial conditions are y(0) = y'(0) = y"(0) = y"(0) = 0.

a. We will express (B.27) as a set of state equations
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b. It is known that the solution of the differential equation
dy &
Y22 byt = snt (B.28)
dt*  dt
subject to the initial conditions y(0) = y'(0) = y"(0) = y"(0) = 0, has the solution

y(t) = 0.125[(3-t%) - 3tcost] (B.29)

In our set of state equations, we will select appropriate values for the coefficients
as, &y, a;, and a, so that the new set of the state equations will represent the differential equa-

tion of (B.28), and using Simulink, we will display the waveform of the output y(t).

1. The differential equation of (B.28) is of fourth—order; therefore, we must define four state vari-
ables that will be used with the four first—order state equations.

We denote the state variables as X;, X,, X3, and X,, and we relate them to the terms of the
given differential equation as

d d’ d’
X1 = y(t) Xy = (_jY X3 = _ZY Xq = _3¥ (B.30)
t dt dt
We observe that
Xl = Xz
Xz = X3
X3 = Xy (B31)
4
d
—(-Zl—t% = Xy = —8X;—& Xy — 8X3—8X, + U()
and in matrix form
Xy 0 1 0 0% 0
Xol 2|0 0 101X 0]y (B.32)
x |0 0 0 1||x{ |0
X4 —3 —a; -3 -] |x,| |1
In compact form, (B.32) is written as
X = AX+ bu (B.33)
Also, the output i
50, the output is y = Cx+du (B.34)

where
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Xy 0O 1 0 O X1 0
x=|%, aA=]0 O 1 01X p_|0  andu=uw (B.35)
X3 00 0 1 X3 0
X4 —8 —a —& & X4 1
and since the output is defined as
y(t) = x;
relation (B.34) is expressed as
X
y = [1 00 0]-[*2 +[0Ju) (B.36)
X3
Xy

2. By inspection, the differential equation of (B.27) will be reduced to the differential equation of
(B.28) if we let

a3 =0 a =2 a =0 a=1 u(t) = sint

and thus the differential equation of (B.28) can be expressed in state—space form as

Xy 0 1 0 O|Xs 0
Xo = |00 1 0HXa, 10/gng (B.37)
X3 0 0 0 1||x, 0
2 |~w0-20x| 1
where
Xy 0100 X1 0
=%, A=[0010 _1*X  H_[0  andu = snt (B.38)
X 0001 X5 0
%, 2, 0-2 0 Xq 1
Since the output is defined as
y(t) = X,

in matrix form it is expressed as
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Xy

y=[1000] iz +[0]sint (B.39)
3

X4

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1 2 model window, we click
and drag the State-Space block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
B.17.

[ g e ]
Signal Sthate-Space Scope

Generator
Display

Figure B.17. Block diagram for Example B.2

We now double—click on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time
Amplitude: 1

Frequency: 2

Units: Hertz

Next, we double—click on the state—space block and we enter the following parameter values
in the Function Block Parameters:

A:[0100;0010,000 1;,-a0 —al -a2 -a3]
B:[0 0 0 1]

C:[1 00 Q]

D: [0]

Initial conditions: x0
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Absolute tolerance: auto
Now, we switch to the MATLAB Command prompt and we type the following:
>> a0=1; al=0; a2=2; a3=0; x0=[0 0 0 Of;

We change the Simulation Stop time to 25, and we start the simulation by clicking on the *
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale #h icon, we obtain the waveform shown in Figure B.18.

Figure B.18. Waveform for Example B.2

The Display block in Figure B.17 shows the value at the end of the simulation stop time.

Examples B.1 and B.2 have clearly illustrated that the State—Space is indeed a powerful block. We
could have obtained the solution of Example B.2 using four Integrator blocks by this approach
would have been more time consuming.

1
Example B.3

Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns z,, z,, and z; in the system of the equations

yz+agZ,+agZ3+k, = 0 (B.40)

a2+ 82, +agZ3+ ky = 0
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The model is shown in Figure B.19.

E53in
zt >|a1 I
-
|

Hmne

= : k1
Constant 1

Sahve =
M o 2 E

Algebraic Congstaint 1 Dizplay 1

+ + + +

b

dd 1

. A
£
+++T

Salue =
-t
= fm=0 =
Dizplay 2

Algebraic Constaint 2

I
[wh
o
(5]

+
-
¥

+ + +

I
[ N e e = [ E—-
28 =)= :
|—' i Algebraic Constraint 3 Dizplay 3
Add =

2]
'—D{ag
Constant 3

Figure B.19. Model for Example B.3

Next, we go to MATLAB’s Command prompt and we enter the following values:

al=2; a2=-3; a3=-1; a4=1; ab=5; a6=4; a7=-6; a8=1; a9=2;...
k1=-8; k2=-7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as z; = 2,

z, = -3, and z; = 5.These values are shown in the Display blocks of Figure B.19.

The Algebraic Constraint block constrains the input signal f(z) to zero and outputs an algebraic

state z. The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We
can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.
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An outstanding feature in Simulink is the representation of a large model consisting of many

blocks and lines, to be shown as a single Subsystem block.” For instance, we can group all blocks
and lines in the model of Figure B.19 except the display blocks, we choose Create Subsystem

from the Edit menu, and this model will be shown as in Figure B.20" where in MATLAB'’s Com-
mand prompt we have entered:

al=5; a2=-1; a3=4; a4=11; a5=6; a6=9; a7=-8; a8=4; a9=15;...
k1=14; k2=-6; k3=9;

out
Display 1
outz
Display 2

outs -1.976
Display 3

Subsystem
Figure B.20. The model of Figure B.19 represented as a subsystem

The Display blocks in Figure B.20 show the values of z;, z,, and z; for the values specified in
MATLAB’s Command prompt.

B.2 Simulink Demos

At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. It is highly recommended that the reader becomes familiar with the block
libraries found in the Simulink Library Browser. Then, the reader can follow the steps delineated
in The MathWorks Simulink User’s Manual to run the Demo Models beginning with the thermo
model. This model can be seen by typing

thermo
at the MATLAB Command prompt.

* The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 2—2, Introduction to Simulink with
Engineering Applications, 978—1-934404—09-6.

1 The contents of the Subsystem block are not lost. We can double—click on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 2—2, Introduction to Simulink with Engineering Applica-
tions, ISBN 978—1-934404-09-6.
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Introduction to SimPowerSystems®

I his appendix is a brief introduction to SimPowerSystems® blockset that operates in the

Simulink® environment. An introduction to Simulink is presented in Appendix B. For
additional help with Simulink, please refer to the Simulink documentation.

C.1 Simulation of Electric Circuits with SimPowerSystems

As stated in Appendix B, the MATLAB® and Simulink® environments are integrated into one
entity, and thus we can analyze, simulate, and revise our models in either environment at any
point. We can invoke Simulink from within MATLAB or by typing simulink at the MATLAB
command prompt, and we can invoke SimPowerSystems from within Simulink or by typing pow-
erlib at the MATLAB command prompt. We will introduce SimPowerSystems with two illus-
trated examples, a DC electric circuit, and an AC electric circuit

Example C.1
For the simple resistive circuit in Figure C.1, vg = 12v, R; = 7Q, and R, = 5Q. From the volt-

age division expression, Vg, = R, xVg/(R; +R,) = 5x12/12 = 5v and from Ohm’s law,
i = vg/(R,+R,) = 1A.

M
Rl

Figure C.1. Circuit for Example C.1
To model the circuit in Figure C.1, we enter the following command at the MATLAB prompt.
powerlib
and upon execution of this command, the powerlib window shown in Figure C.2 is displayed.

From the File menu in Figure C.2, we open a new window and we name it Sim_Fig_C3 as shown
in Figure C.3.
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"B Library:powerlib o=l
File Edit View Format Help

| SimPowerSystems 5.1

Copyright 1997-2009 Hydro-Quebec and The MathWorks, Inc.

1u_l_- C 3 f @l V\I\ 4@' Extras powargui

Electrical Elements Power Machines Measurements Application Extra powergui
Sources Electronics Libraries Library

Figure C.2. Library blocks for SimPowerSystems

B Sim Fig ©3 r

File  Edit: Yiew Simulation Format Tools Help

O eHE&| & 2RB|(E= 4|52 » 100 [Noma Ral

.

[Ready 100% | | loded5 7

Figure C.3. New window for modeling the circuit shown in Figure C.1

The powergui block in Figure C.2 is referred to as the Environmental block for SimPowerSys-
tems models and it must be included in every model containing SimPowerSystems blocks.
Accordingly, we begin our model by adding this block as shown in Figure C.4.

We observe that in Figure C.4, the powergui block is named Continuous. This is the default
method of solving an electric circuit and uses a variable step Simulink solver. Other methods are
the Discrete method used when the discretization of the system at fixed time steps is desired, and
the Phasors method which performs phasor simulation at the frequency specified by the Phasor
frequency parameter. These methods are described in detail in the SimPowerSystems documen-
tation.
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[ B Sim Fia C3 I E=EI™)

File Edit Wiew Simulation Format Tools Help

D eEHS 2R | &G 4|20 |'|D.E' |Nu:urrna| j

Continuous

powergui

|Ready 100% \oded5

e Ld al

Figure C.4. Window with the addition of the powergui block

Next, we need to the components of the electric circuit shown in Figure C.1. From the Electrical
Sources library in Figure C.2 we select the DC Voltage Source block and drag it into the model,
from the Elements library we select and drag the Series RLC Branch block and the Ground
block, from the Measurements library we select the Current Measurement and the Voltage
Measurement blocks, and from the Simulink Sinks library we select and drag the Display block.
The model now appears as shown in Figure C.5.

-]
Continuous ﬂ-l-_ DC Voltage Source o W o -+

o Series RLC Branch

powergui

nzh i A 1

Current Measurement Voltage Measurement Display

Figure C.5. The circuit components for our model

From the Series RLC Branch block we only need the resistor, and to eliminate the inductor and
the capacitor, we double click it and from the Block Parameters window we select the R compo-

nent with value set at 7 Q as shown in Figure C.6.
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E Block Parameters: Series RLC Branch &J

Series RLC Branch {mask) (link)

Implements a series branch of RLC elements.
Use the 'Branch type' parameter to add or remove elements from the branch.

Parameters

Branch type: [F‘. -

Resistance (Ohms):

7

Measurements [Nune - ]

l Ok ] l Cancel | | Help | | Apply |

[ -

Figure C.6. The Block Parameters window for the Series RLC Branch

We need two resistors for our model and thus we copy and paste the resistor into the model, using
the Block Parameters window we change its value to 5 Q, and from the Format drop window we
click the Rotate block option and we rotate it clockwise. We also need two Display blocks, one
for the current measurement and the second for the voltage measurement and thus we copy and
paste the Display block into the model. We also copy and paste twice the Ground block and the
model is now as shown in Figure C.7 where we also have renamed the blocks to shorter names.

| L L 1
a
Continuous ﬂ-l-_"u"S:lz v =N —n — - =
powergui i R1=7 Ohms R2=5 Ohms
P G 1Kl | ,
CM WM Current (@amps) Voltage (volis)

Figure C.7. Model with blocks renamed

From Figure C.7 above, we observe that both terminals of the voltage source and the resistors are
shown with small square ( ) ports, the left ports of the CM (Current Measurement), and VM
(Voltage Measurement) are also shown with ports, but the terminals on the right are shown with
the Simulink output ports as >. The rules for the SimPowerSystems electrical terminal ports
and connection lines are as follows:
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1. We can connect Simulink ports (>) only to other Simulink ports.

2. We can connect SimPowerSystems ports ( ) only to other SimPowerSystems ports.*

3. If it is necessary to connect Simulink ports (>) to SimPowerSystems ports ( ), we can use
SimPowerSystems blocks that contain both Simulink and SimPowerSystems ports such as the
Current Measurement (CM) block and the Voltage Measurement (VM) block shown in Fig-
ure C.7.

The model for the electric circuit in Figure C.1 is shown in Figure C.8.

i pi T
+
Continuous | ol " Current (amps)

1 . R1=7 Ohms v 5]
powergui -l- Ve | VM Voltage (volts)
I R2=5 Ohms —_l—

L
!
L

r ot

Figure C.8. The final form of the SimPowerSystems model for the electric circuit in Figure C.1

For the model in Figure C.8 we used the DC Voltage Source block. The SimPowerSystems doc-
umentation states that we can also use the AC Voltage Source block as a DC Voltage Source
block provided that we set the frequency at 0 Hz and the phase at 90 degrees in the Block
Parameters window as shown in Figure C.9.

* As in Simulink, we can autoconnect two SimPowerSystems blocks by selecting the source block, then holding

down the Ctrl key, and left-clicking the destination block.
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W Block Parameters: AC Voltage Source | = |

AC Violtage Source (mask) {Tink)
Ideal sinusoidal AC Voltage source,
Parameters

Peak amplitude (V):

12

Phase (deq):

]
Frequency (Hz):
0

Sample time:

a

Measurements | Voltage e

l Ok ] | Cancel | I Help | Apply

Figure C.9. Block parameter settings when using an AC Voltage Source block as a DC Voltage Source

Continuous | w7
+
i - Current (amps)
powergui I
AN M ri=7onms —| e lC—
AC Volt Source -
Frequency =0Hz WM Voltage (volts)
Phase =90 deg { R2=5 Ohms L

Figure C.10. Model with AC Voltage Source used as DC Voltage Source

A third option is to use a Controlled Voltage Source block with a Constant block set to the
numerical value of the DC voltage Source as shown in the model of Figure C.11.
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Continuous i > I:-|

powergui 1_. T Current (amps)

s BT o r—' e

wmo v WM Voltage (vaolts)

_T R2=5 Ohms —
12 l
Constant =
CWE =Controlled Voltage Source L

Figure C.11. Model with Controlled Voltage Source block
|

Example C.2

Consider the AC electric circuit in Figure C.12

Vs 1Q 02H

LB e

60 Hz
Figure C.12. Electric circuit for Example C.2

The current I and the voltage V¢ across the capacitor are computed with MATLAB as follows:

Vs=120; f=60; R=1; L=0.2; C=10"(-3); XL=2*pi*f*L; XC=1/(2*pi*f*C);...
Z=sqrt(R"2+(XL-XC)"2); I=Vs/Z, Vc=XC*|
| =
1.6494
Vc =
4.3752

The SimPowerSystems model and the waveforms for the current I and the voltage V¢ are shown
in Figures C.13 and C.14 respectively.
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Simulation stop time: 0055

Continuous N i j:l_. L1
powergui 1 ) v v Scope

Mu
ZM R=1 Ohm L=0.2H

AC Volts
120v

@
60Hz i

WM

CM= CurrentMeasurement C=10"(-3) F = VM=Voltage Measurement

Figure C.13. SimPowerSystems model for the electric circuit in Figure C.12

n.m 0.0z 0.03 .04 0.05

Figure C.14. Waveforms for the current [ and voltage Vc across the capacitor in Figure C.12

The same results are obtained if we replace the applied AC voltage source block in the model of
Figure C.13 with a Controlled Voltage Source (CVS) block as shown in Figure C.15.

Simulation stop time: 0055

Continuous N i j:l_> L]
powergui ) v Mux Scope

cve @ M R=1 Ohm L=02H

VM
120v G60Hz | »" | CM= CurrentMeasurement -
: Ti C=10"~(-3) F —  WM=Voltage Measurement
ﬁU — CVS =Controlled Voltage Source
Sine Wave

Figure C.15. The model in Figure C.13 with the AC Voltage Source block replaced with a CVS block
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Appendix D

A Review of Complex Numbers

his appendix is a review of the algebra of complex numbers. The basic operations are
defined and illustrated by several examples. Applications using Euler’s identities are pre-
sented, and the exponential and polar forms are discussed and illustrated with examples.

D.1 Definition of a Complex Number

In the language of mathematics, the square root of minus one is denoted as i, thatis, i = J/-1.
In the electrical engineering field, we denote i as | to avoid confusion with current i. Essentially,
j is an operator that produces a 90-degree counterclockwise rotation to any vector to which it is
applied as a multiplying factor. Thus, if it is given that a vector A has the direction along the
right side of the x—axis as shown in Figure D.1, multiplication of this vector by the operator j will
result in a new vector jJA whose magnitude remains the same, but it has been rotated counter-
clockwise by 90°.

JA

i(GA) = JPA = -A A

X

j-iA) = °A = A

i-A) = J°A = A
Figure D.1. The j operator

Also, another multiplication of the new vector jA by j will produce another 90° counterclock-
wise direction. In this case, the vector A has rotated 180° and its new value now is —A. When
this vector is rotated by another 90° for a total of 270°, its value becomes j(-A) = —JA. A
fourth 90° rotation returns the vector to its original position, and thus its value is again A.

Therefore, we conclude that j2 = -1, j3 = —j, and j4 =1.
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Note: In our subsequent discussion, we will denote the x—axis (abscissa) as the real axis, and the
y—axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as

. . . . . . . . *
“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.

An imaginary number is the product of a real number, say r, by the operator j. Thus, r is a real

number and jr is an imaginary number.

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number A = a+ jb where a and b are both real numbers, is a complex number.
Then, a = Re{A} and b = Im{A} where Re{A} denotes real part of A, and b = Im{A}
the imaginary part of A.

By definition, two complex numbers A and B where A = a+jb and B = ¢+ jd, are equal if
and only if their real parts are equal, and also their imaginary parts are equal. Thus, A = B if and
onlyifa = cand b = d.

D.2 Addition and Subtraction of Complex Numbers

The sum of two complex numbers has a real component equal to the sum of the real components,
and an imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

A=a+jbandB =c+jd
then

A+B = (a+c)+j(b+d)
and

A-B = (a-c)+j(b-d)
1
Example D.1
[tis given that A = 3+j4,and B = 4—j2.Find A+B and A-B

Solution:

A+B=(3+j4)+(4—j2) = (3+4)+](4-2) = T+]2
and

A-B=(3+j4)-(4-j2) = 3-4)+](4+2) = —1+]6

* We may think the real axis as the cosine axis and the imaginary axis as the sine axis.
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D.3 Multiplication of Complex Numbers

Complex numbers are multiplied using the rules of elementary algebra, and making use of the
fact that j2 = -1. Thus, if

A=a+jbandB = c+jd
then . . ) ) .
A-B = (a+jb)-(c+jd) = ac+jad +jbc +j?bd
and since j2 = -1, it follows that

A-B = ac+jad + jbc-bd

(ac—-bd) +j(ad + bc)

(D.1)

Example D.2
Itis giventhat A = 3+j4 and B = 4—j2.Find A-B
Solution:
A-B = (3+j4)-(4—j2) = 12-j6+]16—-j28 = 20 +10
|

The conjugate of a complex number, denoted as A*, is another complex number with the same
real component, and with an imaginary component of opposite sign. Thus, if A = a+ jb, then
A* = a-jb.

Example D.3
[t is given that A = 3 +j5. Find A*
Solution:

The conjugate of the complex number A has the same real component, but the imaginary com-

ponent has opposite sign. Then, A* = 3-j5
O
If a complex number A is multiplied by its conjugate, the result is a real number. Thus, if

A = a+jb, then

A-A* = (a+jb)(@-jb) = a’jab+jab—j*b* = a*+ b’

Circuit Analysis I with MATLAB ® Computing and Simulink / SimPower Systems® Modeling ~ D-3
Copyright © Orchard Publications



A Review of Complex Numbers

Example D.4
[t is given that A = 3+ j5. Find A - A*
Solution:

A-A* = (3+]5)(3-j5) = 3°+5° = 9+25=34

D.4 Division of Complex Numbers

When performing division of complex numbers, it is desirable to obtain the quotient separated
into a real part and an imaginary part. This procedure is called rationalization of the quotient, and it
is done by multiplying the denominator by its conjugate. Thus, if A = a+jb and B = ¢ +jd,
then,

A _a+jb _ (a+jb)(c—jd) _ A B* _ (ac+hbd)+j(bc—ad)
B c+jd (c+jd)(c—jd) B B* ¢?+d’
(D.2)
_ (ac+bd)+j(bC—ad)
¢’ +d? ¢’ +d’

In (D.2), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we see
that the quotient is easily separated into a real and an imaginary part.

Example D.5
It is given that A = 3+ j4,and B = 4+ 3. Find A/B
Solution:

Using the procedure of (D.2), we obtain

A _ 3+j4 _ B+jH(4-]3) _ 12-J9+j16 +12 _ 24 + 7 _24
B 4+j3 (4+]3)(4-j3) 443 25 2D

+j-2—75 = 0.96 +j0.28

D.5 Exponential and Polar Forms of Complex Numbers

The relations

eJe = C0SO + jsin® (D.3)

D-4  Circuit Analysis I with MATLAB ® Computing and Simulink / SimPower Systems® Modeling
Copyright © Orchard Publications



Exponential and Polar Forms of Complex Numbers

and

e )0 c0SO—jsinod (D.4)

are known as the Euler’s identities.

Multiplying (D.3) by the real positive constant C we obtain:

CeJe = CCcos0 + jCsino (D.5)

This expression represents a complex number, say a + jb, and thus

cel® = a+ijb (D.6)
where the left side of (D.6) is the exponential form, and the right side is the rectangular form.
Equating real and imaginary parts in (D.5) and (D.6), we obtain

a=Ccoso and b = Csin6 (D.7)

Squaring and adding the expressions in (D.7), we obtain

a’+b’ = (Ccos(9)2+(Csin€))2 = Cz(c0529+sin29) = ¢c?

Then, , ,
C°=a+b

or

C = Ja?+Db? (D.8)
Also, from (D.7) b .

b _ Csine _ g

a Ccos@
or

o= tan‘l(g) (D.9)

To convert a complex number from rectangular to exponential form, we use the expression

) > > j(tan_lgj
a+jb = Ja"+be (D.10)

To convert a complex number from exponential to rectangular form, we use the expressions

ce!® = ccoso +jCsino
_io (D.11)

Ce = CCc0s6-jCsind
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The polar form is essentially the same as the exponential form but the notation is different, that
is,

Ce’ = CL6 (D.12)

where the left side of (D.12) is the exponential form, and the right side is the polar form.

We must remember that the phase angle 0 is always measured with respect to the positive real
axis, and rotates in the counterclockwise direction.

Example D.6

Convert the following complex numbers to exponential and polar forms:
a.3+]4

b.-1+j2

c.—2—]

d 4-j3

Solution:

a. The real and imaginary components of this complex number are shown in Figure D.2.

Figure D.2. The components of 3 + j4

Then,
j(tan_1 4) 15310
344 = J32+4l e 3/ = 5e!®1 _ 585310
Check with MATLARB:
x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi; disp(magx); disp(thetax)
)
53.1301
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Check with the Simulink Complex to Magnitude-Angle block™ shown in the Simulink
model of Figure D.3.

— g Magnitude
Display 1

1]

B+di P,

Constant Camplexta
Magnitude-Angle —— 1504pi 6313 Phase [degrees)

amin Display 2

Figure D.3. Simulink model for Example D.6a

b. The real and imaginary components of this complex number are shown in Figure D.4.

Figure D.4. The components of — 1 + |2

Then, o4y
_14j2 = A/12+22ej(tan —_1) = J5e 087 L B 11660
Check with MATLAB:
y=—1+j*2; magy=abs(y); thetay=angle(y)*180/pi; disp(magy); disp(thetay)
2.2361
116.5651

c. The real and imaginary components of this complex number are shown in Figure D.5.
Im

—‘2 /_\ \  Re

o
. &126'4/ 7\—153.4°(Measured
&~ N9 1 Clockwise)

Figure D.5. The components of —2 — |

* For a detailed description and examples with this and other related transformation blocks, please refer to Intro-
duction to Simulink with Engineering Applications, ISBN 978—1-934404—09-6.
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Then,

j(tan_1 -_-1)

2-j1= J22+1%e 2

Check with MATLAR:

_ 5e)?088% | & ong60 = JElI93MT | B 15340

v=—2-j*1; magv=abs(v); thetav=angle(v)*180/pi; disp(magv); disp(thetav)

2.2361
-153.4349

d. The real and imaginary components of this complex number are shown in Figure D.6.

Figure D.6. The components of 4 — |3

Then,
j(tan_l _—3) i323.1° i36.9°
4-j3 = Ja*+3% e 4) —5e13831 _ 5 39310 = 5¢71%% _ 5, 3590
Check with MATLAB:
w=4-*3; magw=abs(w); thetaw=angle(w)*180/pi; disp(magw); disp(thetaw)
)
-36.8699

Example D.7
Express the complex number —2./30° in exponential and in rectangular forms.

Solution:

We recall that -1 = j?. Since each j rotates a vector by 90° counterclockwise, then —2./30° is
the same as 2.230° rotated counterclockwise by 180°. Therefore,

—2/30° = 2/(30° + 180°) = 2£210° = 2.£-150°

The components of this complex number are shown in Figure D.7.
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210°
-1.73 Re
' ~150°(Measured
Clockwise)

Figure D.7. The components of 2./-150°
Then,

-j150°

2./-150° = 2e = 2(c0s150° — jsin150°) = 2(- 0.866 —j0.5) = — 1.73—j

Note: The rectangular form is most useful when we add or subtract complex numbers; however,
the exponential and polar forms are most convenient when we multiply or divide complex
numbers.

To multiply two complex numbers in exponential (or polar) form, we multiply the magnitudes
and we add the phase angles, that is, if

A=MZ06 and B =NZLo
then,

i(6+0)

AB = MN(0+0) = MeI?Nel® = MNe (D.13)

Example D.8
Multiply A = 10/53.1° by B = 5/-36.9°
Solution:

Multiplication in polar form yields
AB = (10x5)/[53.1° + (-36.9°)] = 50./16.2°

and multiplication in exponential form yields

j53.1° -j36.9° 1°-36.9°) _

) = 50e % = 50¢ 1107

AB = (10e )(5e

To divide one complex number by another when both are expressed in exponential or polar
form, we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract
the phase angle of the divisor from the phase angle of the dividend, that is, if

A=Ms6 and B=NZo
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then,

>

M Me!® M _jo-0)

B~ NSO-0) = D.14
N nelo N (B4

vy)
|
D

Example D.9

Divide A = 10£53.1° by B = 5/-36.9°
Solution:

Division in polar form yields

A _ 10£53.1°
= = —/——— = 2/[53.1°-(-36.9°)] = 2£90°
B 54£-36.9° [ ( )

Division in exponential form yields

j53.1° . .
53.1°_ j36.9°
=108 el 0%697 g

o i%0°
-j36.9°
5e

wi>
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Appendix E

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s

rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not

applicable to the material presented in this text, but are included for subject continuity,
and academic interest. They are discussed in detail in matrix theory textbooks. These are
denoted with a dagger (f) and may be skipped.

E.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

) 3 7 131
1-15 o -2 1-5
4-7 6

In general form, a matrix A is denoted as

Ay A 3 ...
Ay Gy 83 ...

A= lay agp ag ... &, E-1)

8m1 qm2 Gm3 -+ G|
The numbers a j are the elements of the matrix where the index i indicates the row, and j indi-
cates the column in which each element is positioned. For instance, a,; indicates the element
positioned in the fourth row and third column.

A matrix of m rows and n columns is said to be of mx n order matrix.

If m = n, the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five
rows and five columns, it is said to be a square matrix of order 5.
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In a square matrix, the elements a;, @y, @3, ..., a,, are called the main diagonal elements.
Alternately, we say that the matrix elements a;;, @y, a3, ..., @,,, are located on the main
diagonal.

T The sum of the diagonal elements of a square matrix A is called the trace” of A.

1 A matrix in which every element is zero, is called a zero matrix.

E.2 Matrix Operations

Two matrices A = [ai J and B = [b} are equal, thatis, A = B, if and only if

ij
a” = blJ | = 1, 2,3,...,m J = 1, 2, 3,...,n (E.Z)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
mxn.

If A = [a]J and B = [b”] are conformable for addition (subtraction), their sum (difference) will

be another matrix C with the same order as A and B, where each element of C is the sum (dif-
ference) of the corresponding elements of A and B, that is,

C=ALB = [ah] (E.3)

|
Example E.1
Compute A + B and A — B given that

Solution:

A+B = 1+2 2+3 3+0 _ 3
0-1 1+2 4+5

and

* Henceforth, all paragraphs and topics preceded by a dagger ( T ) may be skipped. These are discussed in matrix
theory textbooks.
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Check with MATLAB:
A=[1 2 3; 01 4]; B=[2 3 0;-1 2 5]; % Define matrices A and B
A+B, A-B % Add A and B, then Subtract B from A
ans =
3 5 3
-1 3 9
ans =
-1 -1 3
1 -1 -1

Check with Simulink:

A ]

_l - 3 5 3 Note: )
Constant 1 [ ote: The elements of matrices
1 3 9 A and B are specified in
> MATLAB's Command prompt
B TT Sum 1 Display 1 (A+B)
Constant 2
—> 4l 1 3
L 5 1 Al Al
Sum 2 Display 2 (A-B)

If k is any scalar (a positive or negative number), and not [k] which is a 1 x 1 matrix, then mul-
tiplication of a matrix A by the scalar k is the multiplication of every element of A by k.

Example E.2
Multiply the matrix

by

Il
&)

a. k;
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Solution:
a.
k. .A =5x|1-2 - |5%x1 5x(-2)| _ |5 -10
! 2 3 |[5x2 5x3 10 15
b.
Ky A = (-3+]2) 1-2) _ |[(-3+j2)x1 (-3+j2)x(-2)| _ |-3+j2 6-j4
2 3 (-3+j2)x2 (-3+j2)x3 -6+j4 -9+]j6
Check with MATLAB:
k1=5; k2=(-3 + 2%); % Define scalars k; and ky
A=[1-2;2 3], % Define matrix A
K1*A, k2*A % Multiply matrix A by scalars k; and ky
ans =
5 -10
10 15
ans =

-3.0000+ 2.0000i 6.0000- 4.00001
-6.0000+ 4.00001 -9.0000+ 6.00001

Two matrices A and B are said to be conformable for multiplication A - B in that order, only
when the number of columns of matrix A is equal to the number of rows of matrix B . That is, the
product A - B (but not B - A) is conformable for multiplication only if A is an mx p matrix and
matrix B is an px n matrix. The product A - B will then be an mx n matrix. A convenient way

to determine if two matrices are conformable for multiplication is to write the dimensions of the
two matrices side—by—side as shown below.

Shows that A and B are conformable for multiplication

/
Al 1B

mxp pxn

! f

Indicates the dimension of the product A - B

For the product B - A we have:
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Here, B and A are not conformable for multiplication

.
Bl la

pXn mxp

For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B, we
multiply each element of a row of A by the corresponding element of a column of B; then, we
add these products.

|
Example E.3

Matrices C and D are defined as

C = [234] andD = |_1

Compute the products C-D and D - C
Solution:

The dimensions of matrices C and D are respectively 1x 3 3x 1; therefore the product C- D is
feasible, and will result in a 1 x 1, that is,

1
C-D = [234 _1| = [(2).(1)+(3)-(—l)+(4)~(2)] - [7]
2

The dimensions for D and C are respectively 3x 1 1x 3 and therefore, the product D - C is
also feasible. Multiplication of these will produce a 3 x 3 matrix as follows:

1 DH-2 O3 D@4 2 3 4
D-C= 1234 = |0 @ 1@ 1@ =|2-3-4
2 (2)-(2) 2-3) (24 4 6 8
Check with MATLAB:
C=[2 3 4]; D=[1 -1 2]; % Define matrices C and D. Observe that D is a column vector
C*D, D*C % Multiply C by D, then multiply D by C
ans =
7
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ans =
2 3 4
2 -3 -4
4 6 8

Division of one matrix by another, is not defined. However, an analogous operation exists, and it
will become apparent later in this chapter when we discuss the inverse of a matrix.

E.3 Special Forms of Matrices

T A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix A of (E.4) is an upper triangular matrix. In an upper triangular matrix, not
all elements above the diagonal need to be non—zero.

81 8yp A3 -+ A

0 By, 8y ... &,
A=10 0 Ju.. ... (E.4)

T A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix B of (E.5) is a lower triangular matrix. In a lower triangular matrix, not all
elements below the diagonal need to be non—zero.

ay 0 0 .. 0]
6121 \8.2& 0 0
B=|.. ..~ 00 (E.5)
...\.\..\ 0
3m1 3mp 8mg -+ |

T A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix C of (E.6) is a diagonal matrix.
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1
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T A diagonal matrix is called a scalar matrix, if a;; = @y, = a3 = ... = a,, = k where k is a

scalar. The matrix D of (E.7) is a scalar matrix with k = 4.

4 000
0400
0040
0004

(E.7)

A scalar matrix with k = 1, is called an identity matrix 1. Shown below are 2x 2, 3x 3, and

4 x 4 identity matrices.

1
10 100 010008
010 (E.8)
01 001 0010
0001

The MATLAB eye(n) function displays an nx n identity matrix. For example,
eye(4) % Display a 4 by 4 identity matrix

ans =

[oNoNek
OORrOoO
Or OO
R OOO

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
A . For example, let matrix A be defined as

A=[1 3 1;-2 1-5;4 -7 6] % Define matrix A

A =
1 3 1
-2 1 -5
4 -7 6
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Then,
eye(size(A))
displays
ans =
1 0 0
0 1 0
0 0 1

1+ The transpose of a matrix A, denoted as A", is the matrix that is obtained when the rows and
columns of matrix A are interchangeE. For example, if

1 4
A= {1 2 3} then AT= |5 5 (E.9)
456
3 6

In MATLAB, we use the apostrophe (*) symbol to denote and obtain the transpose of a matrix.
Thus, for the above example,

A=[1 2 3; 4 5 6] % Define matrix A

A =

1 2 3

4 5 6
A % Display the transpose of A
ans =

1 4

2 5

3 6

T A symmetric matrix A is a matrix such that AT = A, that s, the transpose of a matrix A is the
same as A . An example of a symmetric matrix is shown below.

1 2 3 1 2 3
A=12 45 Al=12 4.5 =A (E.10)
3-5 6 3-5 6

T If amatrix A has complex numbers as elements, the matrix obtained from A by replacing each

element by its conjugate, is called the conjugate of A, and it is denoted as A*, for example,
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A= [1+I2 ] ax = |1-02 ]
3 2-j3 3 243
MATLAB has two built—in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,

conj(A), computes the conjugate of a matrix A . Using MATLAB with the matrix A defined
as above, we obtain

A=[1+2) j; 3 2-3j] % Define and display matrix A

A =
1.0000 + 2.0000i 0O + 1.0000i1
3.0000 2.0000 - 3.00001%
conj_A=conj(A) % Compute and display the conjugate of A
conj A =
1.0000 - 2.0000i 0O - 1.00001#
3.0000 2.0000 + 3.0000+%

T A square matrix A such that AT = —A is called skew-symmetric. For example,

02-3 | 0-23
A=120-4 A=|2 0 4/=-A
340 -3 -4 0

Therefore, matrix A above is skew symmetric.

T A square matrix A such that A™" = A is called Hermitian. For example,

114 2] 1 1+ 2 1 1+j 2
A=l1+) 3 jlA =l1-j 3 | A =l1-j 3 |=A
2 4 0 2 j o 2 i 0

Therefore, matrix A above is Hermitian.

T A square matrix A such that A™ = _A is called skew—Hermitian. For example,

j 1-j 2 . io-1-i -2 4 -1+ -2
A=l-1-j 3 j|A =) 3 A S+ 8 | FA
-2 j 0 2 j 0 2 - 0

Therefore, matrix A above is skew—Hermitian.
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E.4 Determinants

Let matrix A be defined as the square matrix

ajq A Qg3 ... Ay
Ay Ay Ay ... Gy
83 A g ... 8y, (E.11)

then, the determinant of A, denoted as detA, is defined as

detA = a;185,8z3... 3, + Q483334. .- By + Q384855 By + - (E.12)
_a.r]l...a22a13-.._ar12...a23a14_ a.r]3...a24a15 T e

The determinant of a square matrix of order n is referred to as determinant of order n.

Let A be a determinant of order 2, that is,

A= {aﬂ aﬂ} (E.13)
a1 8
Then,
detA = a;,8,, — 3,8, (E.14)
Example E.4

Matrices A and B are defined as

Compute detA and detB.

Solution:
detA =1-4-3-2=4-6=-2
detB =2-0-2-(-1) =0-(-2) =2
Check with MATLAB:
A=[1 2;3 4];B=[2 -1;2 0]; % Define matrices A and B
det(A), det(B) % Compute the determinants of A and B
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ans

I
N I

ans

N

Let A be a matrix of order 3, that is,

a1 8o A3
A = lay ay, axy (E.15)
831 83y 833
then, detA is found from
detA = ay18,,853 + 81739385 + 113853 (E.16)

—81185,833 — 81185833 — 8118833

A convenient method to evaluate the determinant of order 3, is to write the first two columns to

the right of the 3x 3 matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (E.16) above.

Q1 8p &3 @11 App B
ax a><a ><:a 4
b1 & 23)<‘ 2 2
aﬁ a3§<a33 a3 Az +

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example E.5

Compute detA and detB if matrices A and B are defined as

and B =

>
I
N RPN
=
o - 0
o r N

o1 O W
|
O N b
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Solution:
2 2.3
detA = 1\§><f><3\0
2 1>< 2 1
of detA= 2x0x0)+(3x1x1)+(5x1x1)
_(2%x0x5)—(1x1%x2)~(0x1x3)=11-2=9
Likewise,
2-3-4 .,2-3
detB = 1\0><_:2<<]<_2
O—5>S6 2.6
or

detB= [2Xx 0x (=6)] + [(=3) X (=2) X 0] + [(~4) X 1 X (5)]
“[0X 0% (=4)] - [(=5) x (=2) x 2] — [(-6) x 1 x (-3)] = 20~ 38 = —18

Check with MATLAB:
A=[2 3 5 1 0 1; 2 1 O0]; det(A) % Define matrix A and compute detA

ans =
9

B=[2 -3 -4; 1 0 -2; 0 -5 -6];det(B) % Define matrix B and compute detB

ans =
-18

E.5 Minors and Cofactors

Let matrix A be defined as the square matrix of order n as shown below.

A Ay A3 ... Gy

A= |ag ag ag - ay E17)

181 @n2 @ng -+ np

If we remove the elements of its ith row, and jth column, the remaining n— 1 square matrix is

called the minor of A, and it is denoted as [M iJ .
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The signed minor (- 1)i +] [M i ]] is called the cofactor of &, j and it is denoted as o i

Example E.6

Matrix A is defined as

ap1 81 A3
A = |ay 8y axy (E.18)
1831 857 8g3
Compute the minors [M 11} , [M 12} , :M 13:| and the cofactors o, oy, and o5.
Solution:
COR e = e I S
and
SRTIRTS [N Y RRIRTLL i S VS Y VS (RS ¥

The remaining minors

Mol Mg [M] M- (M) [m

and cofactors
Olpg, Olyps Oloz, Olgy, Oap, AN 0Lz

are defined similarly.

|
Example E.7

Compute the cofactors of matrix A defined as

3
2 (E.19)
6

Solution:

Gy = (—1)“1{‘4 2} =20 ap,-= (-1)“2{2 2} - 10 (E.20)
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o5 = (-1)“3{_21 ‘j =0 oy= (—1)2+1B :j -6 (E.21)

Olpy = (—1)“2[_11 :j -9 Olyg = (_1)“3[_11 ﬂ -4 (E.22)

Olgy = (—1)3+1L24 —ﬂ =8  Ogy= (_1)3”[; ‘j -8 (E.23)
Olgg = (—1)3+3& _ﬂ - -8 (E.24)

It is useful to remember that the signs of the cofactors follow the pattern below

o+ 4+ _
+ -+ -+

that is, the cofactors on the diagonals have the same sign as their minors.

Let A be a square matrix of any size; the value of the determinant of A is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example E.8

Matrix A is defined as

1 2 -3
A=|2-4 2 (E.25)
-1 2 -6

Compute the determinant of A using the elements of the first row.

Solution:

detA =14 2|_2| 2 2|_3| 24 = 1x20-2x(-10)-3x0 = 40
2.6 |-1-6 |-1 2
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Minors and Cofactors

Check with MATLAB:
A=[1 2 -3;2 -4 2;-1 2 —6]; det(A) % Define matrix A and compute detA
ans =

40

We must use the above procedure to find the determinant of a matrix A of order 4 or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

A1 Ao A3 Ay

o 4. a. a 8y, 83 Ay Q1o 813 Ay
_ |821 8 3 Ayl _ _
A = = Q41 |ag, g3 84| 1|83, A3 Bgy (E.26)
831 3y 33 Az
Qyp By3 Yy Qyp Sy3 Ayy
81 g2 43 Ay
Q1o 813 Ay o 43 Ay

+8g1 | ayy By3 By ~ 1|8 B3 Ay

Qyp QY3 Ayy 83y 833 A3y

Determinants of order five or higher can be evaluated similarly.

|
Example E.9

Compute the value of the determinant of the matrix A defined as

2-1 0 -3
A=t 10 - (E.27)
403 -2
300 1

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

1 0-1 -1 0-3 -1 0-3 -1 0-3
A=210 32| -(-D|o 3-2 +41 0-1 (3|1 0-1
001 0 01 0 01 0 3 -2

[a] [b] [c] [d]
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Next, using the procedure of Example E.5 or Example E.8, we find

and thus

[al =6, [b] =-3, [c] =0, [d] =-36

detA = [a] +[b]+[c]+[d] = 6-3+0-36 = -33

We can verify our answer with MATLAB as follows:

As[2 -1 0
delta
-33

~3;-110-1;4 0 3 -2; -3 0 0 1]; delta = det(A)

Some useful properties of determinants are given below.

Property 1:

Property 2:

Property 3:

If all elements of one row or one column are zero, the determinant is zero. An exam-
ple of this is the determinant of the cofactor [c] above.

If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero. For example, if

2 4 1
A=13 6 1 (E.28)
1 2 1
then,
2 4 1|2 4
detA =|3 6 1|3 6 =12+4+46-6-4-12=0 (E.29)
1 2 1|1 2

Here, detA is zero because the second column in A is 2 times the first column.
Check with MATLAB:
A=[2 4 1,3 6 1;1 2 1]; det(A)

ans =
0

If two rows or two columns of a matrix are identical, the determinant is zero. This
follows from Property 2 with m = 1.

E.6 Cramer’s Rule

Let us consider the systems of the three equations below:
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X +apy+az = A
anX+ayy+ayz =B (E.30)
Q31X + AgoY + AgaZ =
and let
apy app a3 A ay; ag a;; A a3 ay ap A
A = Ay 89 o3 D=1 B ay ay D=1 ay B ay Ds=]aya,B
g1 8gp g3 C ag a3 a3 C ag a3 ag C
Cramer’s rule states that the unknowns x, y, and z can be found from the relations
X:E—1 y:-D-g 2:93‘ (E.31)
A A A

provided that the determinant A (delta) is not zero.

We observe that the numerators of (E.31) are determinants that are formed from A by the substi-
tution of the known values A, B, and C, for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

z = 0 also.

If (E.30) is a homogeneous set of equations, that is, if A

are all zero as we found in Property 1 above. Then, x =y

1
Example E.10

Use Cramer’s rule to find v, v,, and v, if
v V2 3

2v,—5-V,+ 3V,

—2v3-3v,—4v,; = (E.32)
Vo+3V;—4-v; =
and verify your answers with MATLAB.
Solution:
Rearranging the unknowns v, and transferring known values to the right side, we obtain
2V, -V,+3Vy = 5
—4v,-3v,-2v; = 8 (E.33)

By Cramer’s rule,
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2 -1 3| 2 -1
A=|_4 3 _2|_4 3 =6+6-12+27+4+4 =35
3 1-1|] 3 1
5-1 3|5 -1
D=8 -3 2|8 -3 =15+8+24+36+10-8 =85
4 1 -1(4 1
2 5 3] 2 5
D,=|_4 8 2| 4 g =-16-30-48-72+16-20 = ~170
3 4 -1 3 4
2 -1 5] 2 -1
D;=|_4 3 8| -4 -3 =-24-24-20+45-16-16 = -55
3 1 4|, 3 1
Using relation (E.31) we obtain
D D D
x, = 2=8_1L1 x, = -2 = 0 _ 34 xg = -2 =2 U (E.34)
A 35 7 A 35 7 A 35 7

We will verify with MATLAB as follows:

% The following script will compute and display the values of v4, v, and vs.

format rat

B=[2 -1 3; -4 -3 -2; 3 1-1];
delta=det(B);

di=[5 -1 3; 8 -3 -2; 4 1 -1];
detd1=det(d1);

d2=[2 5 3; -4 8 -2; 3 4 -1];

detd2=det(d2);

d3=[2 -1 5;-4 -3 8; 3 1 4],

detd3=det(d3);

vl=detd1/delta;

v2=detd2/delta;

v3=detd3/delta;

disp('v1=");disp(vl);
disp('v2=");disp(v2);
disp('v3=");disp(v3);

% Express answers in ratio form

% The elements of the determinant D of matrix B
% Compute the determinant D of matrix B

% The elements of D,

% Compute the determinant of D
% The elements of D,

% Compute the determinant of D,
% The elements of D3

% Compute he determinant of D3
% Compute the value of v

% Compute the value of v,

% Compute the value of v3

%

% Display the value of v,

% Display the value of v,

% Display the value of v
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vl=
17/7

v2=
-34/7

v3=
-11/7

These are the same values as in (E.34)

E.7 Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can be
done by multiplying the terms of any of the equations of the system by a number such that we
can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we
can find the second unknown. Subsequently, substitution of the two values found can be made
into an equation with three unknowns from which we can find the value of the third unknown.
This procedure is repeated until all unknowns are found. This method is best illustrated with the
following example which consists of the same equations as the previous example.

Example E.11

Use the Gaussian elimination method to find v,, v,, and v; of the system of equations

2V, —V,+ 3V,

—4v, - 3v,—2v, (E.35)

3V, +V,— Vs
Solution:

As a first step, we add the first equation of (E.35) with the third to eliminate the unknown v, and

we obtain the equation
5v;+2vy =9 (E.36)

Next, we multiply the third equation of (E.35) by 3, and we add it with the second to eliminate
V,, and we obtain the equation

5v,-5vy = 20 (E.37)
Subtraction of (E.37) from (E.36) yields
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7vg = -11 or vy = —171 (E.38)

Now, we can find the unknown v, from either (E.36) or (E.37). By substitution of (D.38) into
(E.36) we obtain

5v1+2-(—171) =9 orv,= 177 (E.39)

Finally, we can find the last unknown v, from any of the three equations of (E.35). By substitu-

tion into the first equation we obtain

V, = 2V, +3v3-5 = 3—74_373_3—75=_3—74 (E.40)

These are the same values as those we found in Example E.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example E.11. However, it becomes impractical if the coefficients are large or fractional
numbers.

E.8 The Adjoint of a Matrix
Let us assume that A is an n square matrix and o, j s the cofactor of & i Then the adjoint of A,
denoted as adjA, is defined as the n square matrix below.

Olyg Olpp Olzg --- Oy

Ogp Olpp Olzp .- Oy

adjA = (E.41)

Oly3 Oz Olgg .- Olpyg

Oty Olpp Olgp -+

We observe that the cofactors of the elements of the ith row (column) of A are the elements of
the ith column (row) of adjA.

|
Example E.12
Compute adjA if Matrix A is defined as
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Singular and Non—Singular Matrices

1 2 3
A=11 3 4 (E42)
1 4 3
Solution:
3 4 [2 3 {2 3}
4 3 |4 3 3 4
- o 7 6 -1
adjiA = [_|1 4} 13 {2 3}= 10 -1
13 |1 3] 3 4 10 1
1 3} 12 {1 2}
1 4 |1 4] 13

E.9 Singular and Non-Singular Matrices

An n square matrix A is called singular if detA = 0; if detA #0, A is called non—singular.

Example E.13

Matrix A is defined as

(E.43)

>

Il
W N
a w N
N P ow

Determine whether this matrix is singular or non-singular.

Solution:

1 23|12
detA = |2 3 4|23 =21+24+30-27-20-28 = 0
3 5 7

35

Therefore, matrix A is singular.
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E.10 The Inverse of a Matrix

If A and B are n square matrices such that AB = BA = |, where | is the identity matrix, B is
called the inverse of A, denoted as B = A™", and likewise, A is called the inverse of B, that is,

A=B"

. . . . . -1 .
If a matrix A is non-singular, we can compute its inverse A~ from the relation

-1 1 .
AT = d—-———etAade (E.44)
1 ——
Example E.14
Matrix A is defined as
1 2 3
A=11 3 4 (E.45)
1 4 3
Compute its inverse, that is, find A™
Solution:
Here, detA = 9+8+12-9-16-6 = -2, and since this is a non-zero value, it is possible to com-
pute the inverse of A using (E.44).
From Example E.12,
-7 6 -1
adjA =1 0 -1
1 -2 1
Then,
L 761 [35-3 05
A= gaddiA=—=11 0-1=|-05 0 05 (E.46)
1-21 -05 1-05
Check with MATLAB:

A=[1 2 3; 1 3 4; 1 4 3], invA=inv(A) % Define matrix A and compute its inverse
A =

1 2 3
1 3 4
1 4 3
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INnvVA =

3.5000 -3.0000 0.5000
-0.5000 0 0.5000
-0.5000 1.0000 -0.5000

Multiplication of a matrix A by its inverse A~ produces the identity matrix I, that is,

AA =1 or ATA = (E.47)
1 ——

Example E.15
Prove the validity of (E.47) for the Matrix A defined as

o

Proof:
detA = 8-6 = 2 and adjA = { 2‘3}
-2 4
Then,
SRS S P Ry
and

AA L= [4 3|1 -3/2 _|4-3 -6+6 _ |1 -
2 2/|-1 2 2-2 -3+4 0 1

E.11 Solution of Simultaneous Equations with Matrices

Consider the relation
AX = B (E.48)

where A and B are matrices whose elements are known, and X is a matrix (a column vector)
whose elements are the unknowns. We assume that A and X are conformable for multiplica-
tion.

Multiplication of both sides of (E.48) by A™" yields:

A'AX =ATB=1X=A"B (E.49)
or
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X=A"'B (E.50)

Therefore, we can use (E.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

|
Example E.16

For the system of the equations

2X +3X,+X3 = 9
33X, + X+ 2X3 = 8
compute the unknowns X,, X,, and X5 using the inverse matrix method.
Solution:
In matrix form, the given set of equations is AX = B where
2 31 X1 9
A=11 2 3|, X=|x,/» B=16 (E.52)
31 2 X3 8
Then, .
X =A"B (E.53)
or
-1
X1 2 3 1 |9
X, =1 2 3| |6 (E.54)
X3 3 1 2| |8

Next, we find the determinant detA , and the adjoint adjA .

1-57
detA =18 and adjA=|7 1 _5
-5 71

Therefore,
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. 157
AT qan A =157 1-5
5 7 1

and with relation (E.53) we obtain the solution as follows:

X1 1 -5 7/[9 35| |35/18) 194
1 1
X =% =1g|7 1-5/|6] = 13|29 = |29/18) = |1.61 (E.55)
Xq -5 7 1]|8 5 5/18| |0.28

To verify our results, we could use the MATLAB'’s inv(A) function, and then multiply A™ by B.

However, it is easier to use the matrix left division operation X = A \B; this is MATLAB’s solu-

tion of A™'B for the matrix equation A - X = B, where matrix X is the same size as matrix B.
For this example,
A=[2 3 1;1 2 3;3 1 2];B=[9 6 8]'; X=A\B

X =
1.9444
1.6111
0.2778

Example E.17

For the electric circuit of Figure E.1,

20 20
MA AN
Cf) §9Q §9Q §4Q
V=100v I, I

Figure E.1. Electric circuit for Example E.17

the loop equations are

91,+201,-91,= 0 (E.56)
9,415, = 0
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Use the inverse matrix method to compute the values of the currents I,, I, and I
Solution:

For this example, the matrix equation is Rl = V or | = RV, where

10-9 0 100 hy
R=|_920-9, V=| o and I=/],
0 -915 0 I

The next step is to find R™. It is found from the relation

R = = 1tR adjR (E.57)

Therefore, we must find the determinant and the adjoint of R. For this example, we find that

219 135 81
detR = 975, adjR = 135 150 90 (E.58)
81 90 119
Then, ~
219 135 81
R = ——adiR = ===|135 150 90
detR 975
81 90 119
and
l4 1 219 135 81 ||100 100 219 22.46
I= |1, = 575|135 150 90|| ©f = g7g|135 = |13.85
I3 81 90 119 0| 81 8.31
Check with MATLAR:

R=[10 -9 0; -9 20 -9; 0 -9 15]; V=[100 0O O]; I=R\V; fprintf(' \n');...
forintf(11 = %4.2f \t', 1(1)); fprintf('12 = %4.2f \t', 1(2)); fprintf(13 = %4.2f \t', 1(3)); fprintf( \n')

11 = 22.46 12 = 13.85 I3 = 8.31

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
MATLARB script above could also have been written as:

R(1,1)=10; R(1,2)=—9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0O]’; I=R\V; fprintf(' \n");...
fprintf('11 = %4.2f \t', 1(1)); fprintf('12 = %4.2f \t', 1(2)); fprintf('13 = %4.2f \t', 1(3)); fprintf(' \n")
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11 = 22.46 12 = 13.85 I3 = 8.31

Spreadsheets also have the capability of solving simultaneous equations with real coefficients
using the inverse matrix method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix
Inversion) and MMULT (Matrix Multiplication) functions, to obtain the values of the three cur-
rents in Example E.17.

The procedure is as follows:

1. We begin with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure D.2. Then, we enter the elements of matrix V in G3:G5.

2. Next, we compute and display the inverse of R, that is, R™". We choose B7:D9 for the ele-
ments of this inverted matrix. We format this block for number display with three decimal

places. With this range highlighted and making sure that the cell marker is in B7, we type the
formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that R™ appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current |. As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of | then appear in G7:G9.

A | B | c|] bp|] E [F|] G H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 10 -9 0 100
4 R= -9 20 -9 V= 0
5 0 -9 15 0
6

7 0.225| 0.138| 0.083 22.462
8 R'=| 0.138| 0.154| 0.092 I=] 13.846
9 0.083| 0.092| 0.122 8.3077
10

Figure E.2. Solution of Example E.17 with a spreadsheet

Example E.18
For the phasor circuit of Figure E.18
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ssg§ R,  Cr < —100Q

170£0° | +
Ix

@ Vi —VWA—1 V,
R, =100 Q

Vo~
j2OOQ%L Rz§ 50Q

Figure E.3. Circuit for Example E.18

the current I can be found from the relation

V,-V
ly = 22 (E.59)
Rs
and the voltages V,; and V, can be computed from the nodal equations

V,-170£0° V,-V, V,-0
1 +—L 24 1 =0 (E.60)

85 100 ' j200

and V,-170£0° V,-V; V,-0
2 21,2 ~_0 (E.61)

- +
100 100 50

Compute, and express the current |, in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as YV = I, where
Y = Admittance, V = Voltage, and | = Current

Solution:

The Y matrix elements are the coefficients of V, and V,. Simplifying and rearranging the nodal
equations of (E.60) and (E.61), we obtain

(0.0218-j0.005)V, - 0.01V, = 2 (E.62)
~0.01V, + (0.03+j0.01)V, = j1.7 '
Next, we write (E.62) in matrix form as
0.0218-j0.005  -0.01 vV, 2
~001  003+j0.01] |V, = |j17 (E.63)
H_J

Y \V/ I
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where the matrices Y, V, and | are as indicated.

We will use MATLAB to compute the voltages V; and V,, and to do all other computations.
The script is shown below.

Y=[0.0218-0.005j -0.01; —0.01 0.03+0.01j]; I=[2; 1.7j]; V=Y\I; % Define Y, I, and find V

fprintf(\n"); % Insert a line
disp('V1 ="); disp(V(1)); disp('V2 ="); disp(V(2)); % Display values of V1 and V2
V1l =
1.0490e+002 + 4.9448e+0011
V2 =

53.4162 + 55.3439i

Next, we find Iy from

R3=100; IX=(V(1)-V(2))/R3 % Compute the value of Iy

IX =
0.5149 - 0.05901

This is the rectangular form of 1, . For the polar form we use the MATLAB script

maglX=abs(IX), thetalX=angle(IX)*180/pi % Compute the magnitude and the angle in
degrees

maglX =
0.5183

thetalX =
-6.5326

Therefore, in polar form,
Iy = 0.518./-6.53°

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements as in Example E.18.
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E.12 Exercises

For Exercises 1, 2, and 3 below, the matrices A, B, C, and D are defined as:

1-1-4 5 9-3 4 6 L2 3
A=15 720 B=|28 2 C=_3 8 D=LGJ
356 7-4 6 5_2 - B

1. Perform the following computations, if possible. Verify your answers with MATLAB.
a.A+B b.A+C c¢.B+D dC+D
eeA-B f.A-C gB-D hC-D

2. Perform the following computations, if possible. Verify your answers with MATLAB.
a. A-B b.A-C ¢ B-D d.C-D
eeB-A fC-A g¢gD-A hD-C

3. Perform the following computations, if possible. Verify your answers with MATLAB.
a.detA  b. detB c. detC d. detD e. det(A-B) f. det(A - C)

4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MAT-
LAB.

X1 — 2%y + X3

a. —2Xq+3X,+X
LT 3X,-3X, + 2X5 + 4%, = 19

3X4 + 4X, — 5X
! 2 : 44X, +2X, +5Xg3+ X4 = 27

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers

with MATLAB.

1
1 3 4| X1 -3
. — b _| 10
a3 1-2|" (X, -2 14
23 5 X3 0 7
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% (percent) symbol in MATLAB A-2
3-dB down 4-4

A

abs(z) MATLAB function A-23
admittance 6-17
ampere 1-2, 1-19
ampere capacity of wires 2-30
amplifier 4-1, 4-32

buffer 4-20

unity gain 4-13, 4-20
analog-to-digital converter 8-28, 8-33
angle(z) MATLAB function A-23
attenuation 4-13, 4-33
attenuator 4-1
average value 8-2, 8-31
axis MATLAB command A-16

B

bandwidth 4-4
box MATLAB command A-12
branch 2-5

C

capacitance 5-1, 5-17
capacitance combinations 5-24
capacitor(s) 1-11, 1-20, 5-16
in parallel 5-25
in series 5-24
chemical processes 1-17, 1-20
circuit(s)
defined 1-13, 1-20
analysis with loop equations 3-8
analysis with mesh equations 3-8
analysis with nodal equations 3-1
with non-linear devices 3-42
clc MATLAB command A-2
clear MATLAB command A-2
combined mesh 3-17
combined node 3-6
command screen in MATLAB A-1
command window in MATLAB A-1
commas in MATLAB A-8
comment line in MATLAB A-2
comparators 8-29
complementary function 9-1
complete response 10-16
complex conjugate A-4, B-3

complex excitation function 6-3, 6-23
complex number(s)

addition B-2

conjugate A-3, B-3

defined A-3, B-2

division B-4

exponential form B-5

multiplication B-3

polar form B-5

rectangular form B-5

subtraction B-2
complex power 8-16
conductance 2-2
conj(A) MATLAB function C-8
conjugate of a complex number B-3
conv(a,b) MATLAB function A-6
conversion factors 1-16
conductor sizes for interior wiring 2-33
coulomb 1-1, 1-19
Cramer’s rule 3-2, C-16, C-17
critical frequency 4-13, 4-33
current 1-1
current division expressions 2-25
current flow

conventional 1-2

electron 1-2
current gain 4-2
current limiting devices 2-2
current ratings for

electronic equipment 2-30
current source

combinations 2-14

ideal 1-11

independent 1-11

practical 3-21
cutoff frequency

band-elimination filter 4-15

band-pass filter 4-15

high-pass filter 4-14

low-pass filter 4-13

lower 4-4

upper 4-4

D

data points in MATLAB A-14

DC (Direct Current) 1-4

decibel 4-2, A-13

deconv(c,d) MATLAB function A-6, A-7
default color in MATLAB A-15

default in MATLAB A-12

default line in MATLAB A-15

default marker in MATLAB A-15

delta function
defined 10-7
sampling property 10-8
sifting property 10-9
demos in MATLAB A-2
dependent source(s)
current 1-11, 3-38
voltage 1-11, 3-38
determinant C-9
device(s)
active 1-11, 1-20
passive 1-11, 1-20
dielectric 5-16, 5-29
differential input amplifier 4-5
digital filter 7-21
diode(s) 1-12
Dirac function 10-9
direct current 1-4
discontinuous function 10-1
disp(A) MATLAB function 7-19, A-32
display formats in MATLAB A-31
division in MATLAB A-18
dot multiplication operator in MATLAB A-2(C
driving functions 6-1
duality 6-18, 6-25

E

editor window in MATLAB A-1
editor/debugger in MATLAB A-1
effective (RMS) value of sinusoids 8-5
effective values 8-4

efficiency 3-44

eight-to-three line encoder 8-29
electric field 5-16, 5-17, 5-29

electric filters - see filters

energy dissipated in a resistor 2-4
energy stored in a capacitor 5-21
energy stored in an inductor 5-12

eps in MATLAB A-22

Euler’s identities B-4

excitations 6-1

exit MATLAB command A-2
exponential form of complex numbers B-5
exponentiation in MATLAB A-18
eye(n) in MATLAB C-7

eye(size(A)) in MATLAB C-7

F
Farad 5-17, 5-29

Faraday's law of
electromagnetic induction 5-2
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feedback 4-4

negative 4-5

positive 4-5
figure window in MATLAB A-13
filter

active 4-13

all-pass 7-22

analog 7-23

band-elimination 4-15, 4-33, 7-22

band-pass 4-14, 4-33, 7-22

band-rejection 4-15, 4-33, 7-22

band-stop 4-15, 4-33, 7-22

high-pass 4-14, 4-33, 7-22

low-pass 4-13, 4-33, 7-22

passive 4-13, 7-23

phase shift 7-22

RC high-pass 7-25

RC low-pass 7-23

stop-band 4-15, 4-33, 7-22
flash converter 8-28
flux linkage 5-2, 5-29
fmax(f,x1,x2) MATLAB function A-29
fmin(f,x1,x2) MATLAB function A-29
forced response 6-4, 10-16, 10-22
format command in MATLAB A-31
format in MATLAB A-31
fplot MATLAB command A-27
fplot(fcn,lims)

MATLAB command A-27
fprintf(format,array)

MATLAB command 7-19, A-32
frequency response A-12
frequency-domain to time-domain

transformation 6-6, 6-23
full-wave rectification
function file in MATLAB A-26
fzero(f,x) MATLAB function A-26

G

Gaussian elimination method C-19
grid MATLAB command A-12
ground

defined 2-1, 2-14

virtual 4-17
gtext(‘string’) MATLAB function A-13

H

half-power points 4-4
half-wave rectification 8-3
Heavyside function 10-9
Henry 5-3, 5-29

|

imag(z) MATLAB function A-23
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imaginary
axis B-2
number B-2
impedance 6-14
inductance 5-2
inductive
reactance 6-15, 6-23
susceptance 6-18, 6-23
inductor(s)
defined 1-11, 1-20, 5-2
in parallel 5-15
in series 5-14
initial condition 5-3
initial rate of decay 9-3, 9-11
instantaneous values 2-1
int(f,a,b) MATLAB function 1-7
International System of Units 1-14

J
j operator B-1
K

KCL 2-6
Kirchhoff's Current Law 2-6
Kirchhoff's Voltage Law 2-7
KVL 2-7

L

left-hand rule 5-1
lims = MATLAB function A-27
linear

circuit 3-38

devices 1-11

factor A-9

inductor 5-2

passive element 3-37
linearity 3-37
lines of magnetic flux 5-1, 5-29

linspace(values) MATLAB command A-14

In (natural log) A-13
load

capacitive 8-15, 8-32

inductive 8-15, 8-32

lighting 2-33

resistive 8-11
log (common log) A-13
log(x) MATLAB function A-13
log10(x) MATLAB function A-13
log2(x) MATLAB function A-13
loglog(x,y) MATLAB function A-13
loop

defined 2-5

equations 3-1, 3-13

circuits with single 2-10

M

magnetic field 5-1, 5-16, 5-29
magnetic flux 5-2, 5-29
matrix, matrices
adjoint C-20
cofactor of C-12
conformable for addition C-2
conformable for multiplication C-4
congugate of C-8
defined C-1
diagonal of C-1, C-6
Hermitian C-9
identity C-6
inverse of C-21
left division in MATLAB C-24
lower triangular C-6
minor of C-12
multiplication using MATLAB A-20
non-singular C-21
singular C-21
scalar C-6
skew-Hermitian C-9
skew-symmetric C-9
square C-1
symmetric C-8
theory 3-2
trace of C-2
transpose C-7
upper triangular C-5
zero C-2
maximum power
transfer theorem 3-35, 7-35
mechanical forms of energy 1-17, 1-20
mesh
combined 3-18
defined 2-6
equations 2-10, 3-1, 5-25, 7-5
generalized 3-17
mesh(x,y,z) MATLAB function A-18
meshgrid(x,y) MATLAB function A-18
metric system 1-14, 1-20
m-file in MATLAB A-1, A-26
mho 2-2
Military Standards 2-27
MINVERSE in Excel C-26
MMULT in Excel C-26, C-27
multiplication of complex numbers B-3
multiplication in MATLAB A-18
multirange ammeter/milliammeter 8-24

N

NaN in MATLAB A-26
National Electric Code (NEC) 2-30
natural response

9-1, 9-9, 10-16, 10-22



NEC 2-30
negative charge 5-16
network
active 1-13, 1-20
passive 1-13, 1-20
topology 3-1
newton 1-1, 1-19
nodal analysis 2-14, 3-1, 7-1
node
combined 3-6
defined 2-5
generalized 3-6
equations 2-14, 3-2, 5-25, 7-1
non-reference 3-1
reference 3-1
non-linear devices 1-11
Norton’s theorem 3-33, 7-10
nuclear energy 1-17, 1-20

(o]

Ohm 2-1
Ohm'’s law 2-1
Ohm'’s law for AC circuits 6-14
Ohmmeter 8-26
parallel type 8-26
series type 8-26
shunt type 8-26
op amp 4-5
inverting mode 4-6
non-inverting mode 4-9
open circuit 2-2
operational amplifier - see op amp

P

parallel connection 2-8, 2-17, 2-18
particular solution 6-4
passive sign convention 1-9, 1-19
periodic functions of time 8-1
phasor analysis in amplifier circuits 7-14
phasor diagram 7-17
plot(x,y) MATLAB command A-10, A-12
plot3(x,y,z) MATLAB command A-15
polar plot in MATLAB A-24
polar(theta,r) MATLAB function A-23
poly(r) MATLAB function A-4
polyder(p) MATLAB function A-6
polynomial construction from
known roots in MATLAB A-4
polyval(p,x) MATLAB function A-6
potential difference 1-4
power
absorbed 1-8, 1-19
average 8-9, 8-14
in capacitive loads 8-11
in inductive loads 8-11
in a resistive loads 8-11

complex 8-16, 8-17
gain 4-2
in a capacitor 5-22
in an inductor 5-11
in a resistor 2-3, 2-4, 2-28
instantaneous 8-4
power factor 8-10
defined 8-10
lagging 8-15
leading 8-15
power factor correction 8-18
power triangle 8-16
prefixes 1-15, 1-16
principle of superposition 3-41

Q

quad MATLAB function 1-8
quad(‘f’,a,b,tol) MATLAB function 1-8
quad8 MATLAB function 1-8
quadratic factors A-9

quit MATLAB command A-2

R

rational polynomials A-8
reactance
capacitive 6-15, 6-24
inductive 6-15, 6-24
real
axis B-2
number B-2
real(z) MATLAB function A-23
regulation 3-45
resistance 2-1
input 4-28
negative 2-3
output 4-28
resistive network 8-29
resistors 1-11, 2-2
color code 2-27
failure rate 2-27
shunt (parallel) 8-22
tolerance 2-27
response 6-1, 6-23
right-hand rule 5-1
RMS value of sinusoids 8-5
RMS values of sinusoids with
different frequencies 8-7
roots(p) MATLAB function A-3, A-8
round(n) MATLAB function A-24

S

script file in MATLAB A-26

semicolons in MATLAB A-8
semilogx(x,y) MATLAB command A-12
semilogy(x,y) MATLAB command A-12

series connection 2-8, 2-16, 2-17
short circuit 2-2
S| Derived Units 1-17
siemens 2-2
signal 4-1, 4-32
single ended output amplifier 4-5
single node-pair parallel circuit 2-14
slope converter 8-28
solar energy 1-17, 1-20
sources of energy 1-17, 1-20
standard prefixes 1-15
Standards for Electrical and
Electronic Devices 2-26
steady-state conditions 5-12
string in MATLAB A-18
subplot(m,n,p) MATLAB command A-18
substitution method of solving a system
of simultaneous equations 3-2
supermesh 3-17
supernode 3-6
superposition principle 3-38, 7-6
susceptance
capacitive 6-18, 6-25
inductive 6-18, 6-25

T

temperature scales equivalents 1-16

text(x,y,’string’) MATLAB function A-14

text(x,y,z,’string’) MATLAB function A-16

Thevenin’s theorem 3-23, 7-10

time constant 9-3, 9-11, 10-18, 10-24

time-domain to frequency-domain
transformation 6-5, 6-23

time-window converter 8-28

title(‘string’) MATLAB command A-12

total response 10-1, 10-14

tracking converter 8-28

transient response 9-1

transistors 1-11

trivial solution 9-2

two-terminal device 1-4, 1-19

U

unit impulse function 10-7
unit ramp function 10-6
unit step function 10-1

\

virtual ground 4-17
volt 1-5, 1-19
voltage
defined 1-4
dividers 2-2
division expressions 2-22
drop 1-5
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follower 4-20
gain 4-2
instantaneous 1-6
rise 1-5
voltage source
combinations 2-14
ideal 1-11
independent 1-11
practical 3-20
voltmeter 8-24

W

watt 1-8

watt-hour meter 8-28
wattage 2-4, 2-29
wattmeter 8-28
weber 5-1, 5-29

Wheatstone bridge 8-27, 8-32

X

xlabel(‘string’) MATLAB command A-12

Y

ylabel(‘string’) MATLAB command A-12

z

zero potential 2-14
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