

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

v

Contents at a Glance

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments��� xv

Introduction��� xvii

Chapter 1: LEGO, Arduino, and The Ultimate Machine■■ ��1

Chapter 2: Using Sensors with the Android■■ ��27

Chapter 3: Twitter Pet■■ ���65

Chapter 4: RFID and the Crystal Ball■■ ��89

Chapter 5: Animating the TARDIS■■ ���111

Chapter 6: Controlling LEGO Trains with Arduino■■ ���149

Chapter 7: Building a Light-Sensitive Box■■ ��165

Appendix A: Parts List■■ ��183

Index��189

xvii

For 80 years, The LEGO Group has produced building toys for children to enjoy. As technology has advanced, they
have introduced some interactive components that were limited in different ways.

The Arduino is an open source microcontroller that allows interaction with all different forms of electronic
devices and sensors. It allows for many creative projects that can be controlled by a device that is a small,
low-powered computer.

By combining these two flexible systems, myriad projects can be built that can do almost anything—the only
limit is your imagination.

Introduction

1

Chapter 1

LEGO, Arduino, and The Ultimate
Machine

For years LEGO has produced their own computer based system known as Mindstorms. It gave a computer brain
to the plastic LEGO bricks that had been around for decades. While Mindstorms has advanced in the 15 years since
it was introduced, it was still limited based on the size of the LEGO Intelligent Brick and the available sensors and
motors. An alternative to using the LEGO Mindstorms is the Arduino microprocessor, a small computer that can make
use of any electrical components with some programming.

Introducing the Arduino
An Arduino (as seen in Figure 1-1) is an open source microcontroller that allows for programming and interaction;
it is programmed in C/C++ with an Arduino library to allow it to access the hardware. This allows for more flexible
programmability and the ability to use any electronics that can interface with the Arduino. Because the Arduino is
open source, the plans for the circuits are available online for free to anyone who wants to use and create their own
based on the schematics, as long as they share what they create. This allows for a lot of customizability in projects,
since people have built Arduinos of different sizes, shapes, and power levels to control their projects.

Figure 1-1.  The Arduino microcontroller

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

2

The main advantages of using the Arduino over LEGO’s own motor systems are the open source base, the
expandability, and the sizes. With LEGO’s system, the user is locked into the pieces LEGO created. This can be a
hindrance with smaller projects where the Mindstorms NXT Intelligent Brick can be too large to easily incorporate or
hide the intelligence behind the project. With the smaller Arduino circuit board, less clearance is required to hold the
circuit board, which means more flexibility in the design of the project. A comparison of the Arduino and the LEGO
NXT brick can be seen in Figure 1-2.

Figure 1-2.  The Arduino and the LEGO Mindstorms NXT Intelligent Brick

The Arduino itself may not be capable of fulfilling all the activities that you would like to carry out with it, but
there are circuit boards known as shields that snap on top of the Arduino circuit board to expand the usability of the
Arduino. Allowing the use of motors, adding Internet connectivity, making sounds with .wav files, and other activities
can be triggered through the use of these add-on boards, thus allowing the Arduino to be programmed to carry
out tasks it could not without them. As an example, Figure 1-3 shows an Ethernet shield that allows the Arduino to
connect to the Internet.

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

3

Your First Arduino Program
Most commonly, when someone tries out a new computer language, they make the words “Hello World” appear on
the screen. The Arduino version of this is to make a light-emitting diode (LED) blink. By plugging the LED into two of
the ports on the Arduino and writing a simple program, the Arduino can turn the light on and off.

The first step is to put the LED into the Arduino. LEDs are specific to the way they are used. The LED needs
to be plugged in so that the longer end goes into a numbered pin and the shorter pin into the ground pin, or
the LED will not light up. Figure 1-4 shows the longer side in the socket labeled 13 and the shorter side in
the ground.

Figure 1-3.  An Ethernet shield to allow the Arduino to talk to the Internet

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

4

Once the LED is firmly placed in the Arduino, the next step is to connect it to a computer via USB cable.
The computer must have the Arduino software installed in order to program the Arduino. The software can be
downloaded for free at arduino.cc in the download section for your computer operating system of choice. Once it is
downloaded and installed, open the Arduino software. The following program can be found in File ➤ Examples ➤
01.Basics ➤ Blink or it can be entered by hand, as shown in Listing 1-1.

Listing 1-1.  Basic Blink Program

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
  
 This example code is in the public domain.
 */
  
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
 
// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
 

Figure 1-4.  The LED plugged into the Ardunio

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

5

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}
 

The code in Listing 1-1 is the most basic program for an Arduino. It is read by the Arduino from the top down.
The first thing in the program is a global variable definition for the pin that has the LED. A global variable is defined
outside the setup() and loop() functions and can be accessed from anywhere in the program. The line int led=13;
defines the global variable named led to be an integer with the value of 13. Whenever the word led is used, the
program will interpret it as the number 13. Since the variable is defined before the words void setup(); it is what
is referred to as a global variable, which means any part of the program can access and make changes to it. If the
variable had been defined in the setup or loop sections (as defined below), it would only be a local variable that could
only be accessed by that section of code. It is worth noting that anything between the symbols /* and */ or on a line
after // are comments and will be ignored by the computer when it reads the program.
 
// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
 

Anything between the braces after setup() will be executed when the program first runs. Anything in there will
be run only once and never be looked at again. In this case, it using pinMode to tell the Arduino that it will be using
pin 13, where you defined led, to be used to send a signal out. It is notable that the pins can be used for either input or
output, but must be defined to do so.
 
// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}
 

Once the setup runs, it then executes whatever is between the braces after loop(). The difference is that once
the section in the loop() starts, it will start that code over again once it reaches the end. Pin 13 on the Arduino has
only two states, off and on. The digitalWrite function tells the light to turn on and off based on whether it is told to
be HIGH or LOW. Putting a delay between the digitalWrite statements provides the ability to see the light turn on
and off rather than just a strobe effect. The delay statement will wait as long as the number in the parentheses is, in
thousandths of a second.

With the code written, it needs to be uploaded to the Arduino. By connecting it with a standard USB cable, the
computer can talk to the Arduino. Clicking the arrow in the upper right hand corner will compile the code and upload it
to the Arduino. Once installed, it will begin to execute after several seconds and the LED will begin to blink on and off.

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

6

There is often considered a do-it-yourself (DIY) aspect to open source hardware, and sometimes manufactures will
sell products like shields with some assembly required. With some basic soldering knowledge, they are not too complex
to put together. The instructions on how to assemble it can be found at www.ladyada.net/make/mshield/solder.html.
Figure 1-6 shows the motor shield assembled.

Programming the Ultimate Machine
The Ultimate Machine, also known as The Useless Machine, is considered the most efficient machine ever made.
Its only task is to turn itself off when it is turned on. The original Ultimate Machine was created by Claude Shannon
when he was working at Bell Labs in 1952. The following sections explain the steps involved.

Assembling the Arduino and Motor
In order to build the Useless Machine, a motor is required. To drive the motor, a motor shield will need to be placed
on top of the Arduino. While there are a few different shields that would allow for a motor to connect to the Arduino,
we will be using the Adafruit Industries motor shield because we can use it to drive the different kinds of motors
you will be using in different projects in this book. Figure 1-5 shows the motor shield from Adafruit Industries in its
unassembled form.

Figure 1-5.  The unassembled motor shield

http://www.ladyada.net/make/mshield/solder.html

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

7

Once the motor shield is soldered together, it snaps in easily on top of the Arduino. Press them together firmly
but do not push too hard. Once they are together, it’s time to add the motor. The Adafruit motor shield supports DC
motors, servo motors, and stepper motors. For this project, you’ll be using a servo motor. The motor’s wires plug in on
the top left on the three pronged plugs (see Figure 1-7).

Figure 1-6.  The assembled motor shield

Figure 1-7.  The motor shield on top of the Arduino with the servo motor attached

Chapter 1 ■ LeGO, arduinO, and the uLtimate maChine

8

In the Blink example, you power the Arduino with the USB cable to the computer. Since this project will
eventually be independent of the computer, a battery pack or wall adapter will be required to power the project. If
the wall adapter is used, it plugs directly into the Arduino, and the LEGO casing will require a hole the width of one
LEGO stud. Some motors will require a second power source due to the power consumption of the motors, but for this
project, the single power source will be enough for the Arduino and servo motor.

With the Arduino and motor shield set up, there is one last piece of hardware to connect before programming
your project. The Ultimate Machine moves into action when a person flips a switch to turn the machine on. Since the
machine needs to be switched on, you need to add a switch. You will take a switch (the one in Figure 1-8 is from Radio
Shack), solder wires to it, and plug it into one of the digital ports on top of the motor shield so the machine will know
when to activate. Since you are using the shield rather than the Arduino itself, the wires will need to be soldered in
place to make a secure connection. One end will be soldered into the numbered pin, the other end will be soldered
into one of the ground ports, as shown in Figure 1-9.

Figure 1-8. The switch added to the Arduino, motor shield, and motor

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

9

Programming the Arduino
Once the hardware is completed, it is time to build the software. The program to run the motor is has a similar
layout to the program you wrote for the Blink program, but is a little more advanced. The first thing you need to do
is include the library for the motor shield. The library includes code that has already been written to drive the motor
shield, so you don’t have to start from scratch to address the hardware yourself. To install the library, go to
www.ladyada.net/make/mshield/use.html and follow the instructions to download and install the motor shield
library. Once it is installed and the Arduino software is restarted, copy the code in Listing 1-2.

Listing 1-2.  The Ultimate Machine Code

#include <Servo.h>
 
// DC hobby servo
Servo servo1;
 
// Switch connected to digital pin 2
int SwitchPin = 2;
 
void setup() {
 // turn on servo
 servo1.attach(9);
  
 // sets the digital pin 2 as input
 // and enables pullup resistor
 pinMode(SwitchPin, INPUT_PULLUP);
}
 

Figure 1-9.  Diagram of the motor and switch connection, as connected without the motor shield

http://www.ladyada.net/make/mshield/use.html

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

10

void loop() {
 // read the input pin
 int val = digitalRead(SwitchPin);
  
 // test if switch has been triggered
 if (val == LOW) {
 servo1.write(115);
 delay(250);
 servo1.write(0);
 }
 delay(100);
}
 

Again, the code is broken into three parts. The first part contains the global variable definitions. Here, you set
variables that you want accessible throughout the code. The two include statements at the top of the code include
the libraries to interact with the motor. The #include <AFMotor.h> tells the Arduino code that you are going to be
using the motor library and the #include <Servo.h> loads the necessary code to use a servo motor. After including
them both, you can initialize the servo motor with Servo servo1, which defines the motor and gives it the name servo,
which is how you will refer to it as in the rest of the code. Int SwitchPin = 2 sets a number value to SwitchPin, which
will be the pin that one end of the switch was soldered into.

In the setup() section, you set up the motor and switch so that you can use them in the loop().
Servo1.attach(9) turns on the servo and tells the code that the servo can be accessed through digital pin 9.
pinMode(SwitchPin, INPUT_PULLUP) sets the pin to an input mode to receive digital signals from an external device,
in this case a switch. It will be on the port you previously defined in the int statement, so when the switch is active on
that port, the code will be able to react.

The third and final part of the code is the loop(). The first thing you need to do is check the status of the switch,
so int val = digitalRead(SwitchPin) will put a value in the val variable based on whether the switch is open or
closed. The if statement checks the status of the val variable, and if it is LOW, it executes the code within the braces
of the if statement. The code will tell the servo motor to move forward 115 degrees with the servo1.write(115)
command, then waits 250 milliseconds in the delay(250)command before returning back into the box with
servo1.write(0). Once the motor is reset to its initial position, it continues the loop and waits for the switch to be
flipped again to turn itself off again.

A typical hobby servo motor can only move 180 degrees, but your motor does not need to move that far to trigger
the switch. When building the project, if the motor doesn’t move far enough or if it moves too far, adjusting the 115 in
the servo1.write() command will adjust how far the motor moves.

Building the Ultimate Machine
Once the Arduino, motor, and switch are set, it’s time to build the box to hold it all. The first principle of LEGO
building is to build sturdy. Just like in real life, you don’t just stack bricks on top of each other, otherwise your
buildings would not be sturdy. As seen in Figure 1-10, you stagger your LEGO bricks and cover the seams with bricks,
alternating the layout of the bricks in what you are building. This holds the building together and creates a more
sturdy framework. It’s this sturdiness that allows you to build projects that hold together tightly without needing any
glue or extra adhesives for strength.

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

11

Now that you have decided how you will build the base, you need to figure out the dimensions of the box.

Selecting the Dimensions
The box needs to be at least as wide as the Arduino, and you need to consider how you will fit in the other parts of your
build. The Arduino will sit beneath the switch and motor, so you need to figure out the layout of the parts in order to
know how big the box needs to be. For the servo to line up to the switch properly the box needs to be approximately
6.5" x 4" or 20 x 12 LEGO studs. In Figures 1-12 to 1-14, you can see how laying out the plates and then crossing over
the seams in opposite directions between layers provides a solid foundation that is one brick high.

The complete parts list for this project can be found in the appendix.
To give the box a solid foundation, you are going to build the bottom of the box. If you laid out bricks, it wouldn’t be

very strong and you would need to do a couple layers to give it the tensile strength required to pick up the box and not have
the bottom fall out. Instead, you will use plates. When stacking LEGO plates, three plates are the same height as a single
LEGO brick, so they can be alternated in your building to cover the seams and still keep the height down by using three
plates instead of three bricks. In Figure 1-11, you can see how three plates stack up to be the same height as one brick.

Figure 1-10.  On the left are LEGO bricks stacked one atop the other, while on the right are bricks in a staggered
formation. Notice how the bricks cover the seams above and below them, holding the bricks together

Figure 1-11.  LEGO plates laid out to create the base of your box

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

12

Figure 1-12.  LEGO plates are laid out to create the base of the box

Figure 1-13.  The second layer of LEGO plates covers the first layer, but criss-crosses the seams of the first layer to secure them

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

13

Building the Brick Walls
Now you can start laying down your bricks. For the first layer, rather than just putting a ring around the edge, you are
also bisecting the base to make two rectangles (see Figure 1-15). One rectangle is big enough to hold the Arduino and
the motor shield, so that when the box is moved around, the Arduino will not shift. The Arduino should fit in the larger
box on the base with only a little bit of extra room. In order to fit a cord to power the Arduino, you should leave a
one-brick-width hole in the side of the box. Alternatively, you could attach a 9-volt battery box to the project. If you
want to use a battery, you can make a box to hold it as well.

Figure 1-14.  The third layer is laid out the same way as the first, locking the plates together

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

14

Now you can begin to build up the box over the base you just made. As you lay down the bricks, notice how the
second layer covers the seams of the first layer. This will make the box strong enough to support the layers above it
and will not break when just picking it up. The next layer, shown in Figure 1-16, will build upon what you have built so
far, but cover the seams to strengthen the walls.

Figure 1-16.  A layer of bricks is added to begin building up the box

Figure 1-15.  The first layer of the box

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

15

Now add a third layer of bricks to clear the top of the Arduino and motor shield. It’s important to make sure that
the height of the box’s walls clears not only the top of the motor shield, but gives enough room on top for the motor’s
plug as well to avoid pressure on the shield connection. Again, you should alternate seams to give the box strength to
hold the motor and switch (see Figure 1-17).

Figure 1-17.  The first three layers of the box, including bricks turned in to create a shelf to hold the motor

Adding The Arduino
With the base of the box completed, it’s time to start adding the electronics. The first step is to add in the Arduino in
the bottom of the box, as seen in Figure 1-18.

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

16

Figure 1-18.  The Arduino is easily seated into the section you made for it

Figure 1-19.  The small LEGO box to hold the toggle switch with the wires fed through a Technic brick

You can now place a base of plates on top of the box to hold the motor and the switch. You can create a small
box to hold it in place. Make sure the small box holds the switch tight, since the motor will be pushing on the switch
with a firm amount of force. If the small box breaks or pushes the bricks apart, reinforce the top with plates to give
them a firmer grip on the bricks. It is also important to give the wires on the bottom of the switch a way to be fed out of
the box; either leave an opening in the first level of the small box or use a LEGO Technic brick and feed the wires out
through the hole in the brick, as seen in Figure 1-19.

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

17

A platform is then added to hold the toggle switch and servo motor. The switch and motor need to be lined up
when the machine is turned on. The motor is lined up with LEGO bricks to keep it in place while you build the rest of
the box. It will be made more secure as the walls are built higher, which can be seen in Figure 1-20.

Figure 1-20.  The servo motor and toggle switch are laid out on top of stacked LEGO plates and lined up using
LEGO bricks

Adding LEGO Arms and a Switch
With the motor and switch in place, the LEGO arms for the motor and switch need to be set up, since that is what will
be seen from outside the box. In Figures 1-21 through 1-25, a LEGO Technic beam is secured with a wire to a disc that
came with the servo motor, then LEGO Technic beams are added to the top of it, plus a Technic pin with two Technic
angle connectors on the ends to give it a wider reach when it comes up to hit the switch. Once that is done, Technic
axle joiners are connected by 2M pins to create a pole that the Technic beams can hit with the machine is on, which
will just slide over the top of the toggle switch.

Chapter 1 ■ LeGO, arduinO, and the uLtimate maChine

18

Figure 1-21. A curved Technic beam is wired to the servo motor’s disc

Figure 1-22. Angled Technic beams are added to the end of the secured Technic beam, and a 5M pin and two angle
connectors hold it in place

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

19

Figure 1-23.  Four axle joiners and three 2M pins extend the switch

Figure 1-24.  The finished attachment for the switch

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

20

Raising the Walls
With the motor arm and switch extension in place, the walls of the box need to be built higher. The walls should be
high enough to cover the switch and motor arm. LEGO bricks extend from the walls to cover the bricks holding the
motor in place, and another is extended over the motor itself to keep the motor from rising when the arm activates. If
there is too much space between the brick above the motor and the servo, fill the space with LEGO plates for a tighter
fit. Also note that there are two 2x2 bricks in the top row. These will hold the lid when it is closed to keep it from falling
into the box. See Figure 1-26.

Figure 1-25.  The motor arm and switch extension are added

Figure 1-26.  The box extends over the motor and switch

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

21

Building the Lid
Now that the box is prepared, you need to make the lid. Use Technic beams because the rounded ends will make it
easier for the box to open and close. Using two pins between each Technic beam will hold them securely and they will
not be able to move. Figures 1-27 and 1-28 show the parts and assembly of the lid.

Figure 1-27.  11M Technic beams and black friction Technic beams to hold them together. Two pins should connect
between each beam to hold them securely

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

22

Two Technic bricks with holes in the middle will go on the ends with gray pins to hinge the joint. Use the gray
pins there because they are frictionless and allow more movement than the black friction pins. Once the lid is added
to the box, a layer of bricks is added around the lid. See Figures 1-29 through 1-32.

Figure 1-28.  The Technic beams connected. There are 2 pins between each beam

4

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

23

Figure 1-29.  Frictionless pins will go into the 1 x 2 Technic bricks, which will in turn be put into the holes in the end of
the beams in the lid

Figure 1-30.  The Technic bricks are added to the beams via the frictionless pins

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

24

Figure 1-31.  The Technic bricks are put on top of the walls of the box

Figure 1-32.  A layer of bricks is added to border the lid

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

25

With the opening lid completed, all that is left is the cover for the switch. Again, you are going to use stacked
plates to cover this part of the box, but you can leave open a slit for the switch. The switch needs to be able to move
freely back and forth to turn it off and on. The stick’s extension moves easily within a one-stud width and a four-stud
length, as seen in Figure 1-33, with the switch shown. It’s important to secure the hinge of the box down, as shown in
Figure 1-34, so usage of the Ultimate Machine does not lift the lid off the box.

Figure 1-34.  The activated Ultimate Machine

Figure 1-33.  The completed box, ready to turn itself off and on

Chapter 1 ■ LEGO, Arduino, and The Ultimate Machine

26

With the switch covered, you have completed your first project. By flipping the switch towards the lid, the
machine will be activated and the motor arm will come to life, only to push the switch away from itself and return to
its dormant state until it is activated again.

Summary
You just completed an introduction to LEGO building and the Arduino. You learned the basic techniques for using an
Arduino, starting from the most basic of programs, making an LED blink, to a more complex one using Arduino shields.
You also learned the most basic LEGO building principle of build strong by using a strong base and alternating the
bricks to create walls that can support your building. Combining the two gives you the ability to make more interesting
projects and give them different levels of activity and interactivity, as you will explore in the following chapters.

27

Chapter 2

Using Sensors with the Android

In the last chapter, you made a machine that interacts with itself. A simple response to flipping a switch to turn itself
off is a good start, but for more interactive projects, you need to start working with analog sensors that do more than
just turn on and off. Sensors allow a machine to monitor the world around it and react accordingly. In this chapter,
you will create a project that will be able to react to its surroundings.

When Google introduced their mobile operating system known as Android, they created a mascot to represent
it. The little green robot became synonymous with the cell phones and tablets on which the operating system was
installed. You are going to create this Android mascot and make him react to his environment. He will be able to “see”
what is going on around him and turn to look when things get close within a 180 degree field of view.

A list of the parts in this chapter can be found in the appendix.

The Ultrasound Sensor
There are many different sensors that can be used to send data from the outside world to the Arduino; one such sensor is
the ultrasound sensor. An ultrasound sensor sends out a high frequency sound that will bounce off objects and return to the
sensor. The time it takes for the sound to go out and bounce back is then calculated to tell the distance of the object. With
a simple calculation, it can be converted into a more human relatable value of centimeters or inches. For this Android, you
are going to use the PING))) Ultrasonic Distance Sensor by Parallax, Inc., an Arduino-compatible ultrasound sensor.

As seen in Figure 2-1, the PING))) Ultrasonic Distance Sensor has three pins: 5V, GND, and SIG. The 5V and
GND pin on the sensor connect to pins on the Arduino, which will allow the circuit to complete and for power to
run through the ultrasonic sensor. The SIG or Signal pin can be connected to any of the digital Arduino pins; it’s how
the data is moved from the sensor to the Arduino itself.

Figure 2-1.  The PING))) Ultrasonic Distance Sensor by Parallax, Inc

Chapter 2 ■ Using sensors with the android

28

To see how the ultrasonic sensor works with the Arduino, you are going to create a basic program to light an LED
light using the ultrasonic sensor. If an object is within a range of 6 inches or less, the LED will light up; otherwise the
light will be turned off. First, you need to wire up the sensor, LED, and Arduino, but you will use a breadboard to do
your prototyping.

On a breadboard, components that are plugged in on the same horizontal line are connected, so the jumper
wires next to the pins are connected to the sensor through the breadboard. On the edge of the breadboard are two
lines that run the length of the breadboard and they are connected, but they are meant for power and ground so the
different components can share power. A single wire is run from the + and – lines to the 5V and ground pins, which
will require less lines run from the parts to the Arduino (see Figure 2-2).

Figure 2-2. A diagram of the layout of the Arduino and sensor

As seen in Figure 2-3, the sensor is plugged into the breadboard and three wires are plugged in behind the
pins. The wire behind the 5V pin is connected to the column on the edge with the + next to it and the pin for the
Ground is connected to the column with the – next to it. The LED is plugged in to breadboard as well, with a wire
connected to the negative side (shorter pin) also leading from the LED to the – column, so the LED and sensor can
share the ground line.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2 ■ Using Sensors with the Android

29

To connect the breadboard to the Arduino, you need to start by running the power from the Arduino to the
breadboard. By running a wire from the + to the 5V pin and another wire from the – to the ground pin, power can be
run through the sensor. The signal pin from the sensor is placed in pin 7 and the positive lead from the LED needs to
be put in pin 10 on the Arduino. While the placement of the signal and LED pins is arbitrary among the numbered
digital pins, these are the pins used in Listing 2-1, which is based on the sample open source code by David A. Mellis
and Tom Igoe.

Listing 2-1.  PING))) Example Code

// sets the constants for the sensor and led signal pins:
const int pingPin = 2;
const int led = 10;
 
void setup() {
 // initialize serial communication:
 Serial.begin(9600);
  
 // sets the LED pin to an output mode
 pinMode(led, OUTPUT);
}
 
void loop() {
 // establish variables for duration of the ping,
 // and the distance result in inches:
 long duration, inches;
 

Figure 2-3.  The Arduino, ultrasonic sensor, and green LED connected to the breadboard

Chapter 2 ■ Using Sensors with the Android

30

 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin, LOW);
 
 // The same pin is used to read the signal from the PING))): a HIGH
 // pulse whose duration is the time (in microseconds) from the sending
 // of the ping to the reception of its echo off of an object.
 pinMode(pingPin, INPUT);
 duration = pulseIn(pingPin, HIGH);
 
 // convert the time into a distance
 inches = microsecondsToInches(duration);
  
 // turn on the led if object is within six inches
 if (inches < 6) {
 digitalWrite(led, HIGH);
 } else {
 digitalWrite(led, LOW);
 }
  
 // send the value in inches to the Serial Monitor
 Serial.print(inches);
 Serial.println(" inches");
  
 // short delay before starting over again
 delay(100);
}
 
long microsecondsToInches(long microseconds) {
 // According to Parallax's datasheet for the PING))), there are
 // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
 // second). This gives the distance travelled by the ping, outbound
 // and return, so we divide by 2 to get the distance of the obstacle.
 // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
 return microseconds / 74 / 2;
}
 

In this code, you start by defining the pingPin as the pin the ultrasonic sensor is plugged in to and led as the pin
that the LED is plugged in to (7 and 10, respectively). In the setup() function, you open a connection to the computer
with the Serial.begin(9600), so that the Arduino can communicate with the computer when it is plugged in via
USB cable. The 9600 defines the speed of the communication between the two; you are going to use it to monitor the
values passed back from the sensor. You also define the LED pin as output but you don’t define the sensor in the setup
because the pin connected to the ultrasonic sensor will switch between input and output for sending and receiving
the ultrasonic pulses.

In the loop() function, the first thing you want to do is define the variables used for reading data from the
sensor. The variable duration will be how many microseconds it takes for the sonar pulse to go out and return,

http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf

Chapter 2 ■ Using Sensors with the Android

31

while inches will be for converting those microseconds into distance values. Next, the sensor sends out a brief
signal by setting digitalWrite(pingPin, HIGH); then stops it with digitalWrite(pingPin, LOW);. The sensor
is then changed to an input sensor and calculates how long between sending and receiving the signal in the line
duration = pulseIn(pingPin, HIGH).

If the Arduino is connected to the computer, then messages are sent to be viewed on the computer from the
Arduino. When the program is uploaded and running, click on the Serial Monitor under the Tools menu in the
Ardunio software and a white screen will open. The Serial.print() and Serial.println() functions will allow
the code to display information in the Serial Monitor window. In the code, Serial.print(inches) prints the value
returned from the sensor and Serial.println(" inches") prints the word inches to the screen and the next text will
be on the following line. Putting the word in quotes puts the exact word on screen, while no quotes will put a
variable value.

To calculate the duration of time between the time the ultrasonic pulse is sent and when it is received and then
turn it into a distance that you can relate to, you need to use a custom function. Just like loop() and setup() are
functions, you are creating a new function microsecondsToInches(). The word “long” before the function name
in the code allows values to be returned by the functions to where they are called, and in this case they are of the
datatype long. A long is a 32-bit number, which also allows decimal places, so a number between −2,147,483,648 and
2,147,483,647 can be returned. The long microseconds in the parentheses allows a number to be passed and referred
to like a regular variable, but the value of the microseconds variable is passed in the call to the function, in this case
duration because it is between the parentheses.

Any processing done within the function is contained within that function. Any change to variables within the
function does not impact the rest of the program unless a value is returned. In the function microsecondsToInches(),
you are doing some fairly simple mathematics, so you are doing the math and returning the value on the same line.

You could do more complex processing and set the value to a variable, then have the code read return variable to
export the answer from the variable rather than directly from the line of code. In your function, you are dividing the
number of microseconds it takes sound to travel an inch and dividing by two, since the duration takes into account
the time it takes the pulse to travel to and from the object the sound waves are bouncing off of and returning that value
to the function call.

By testing the code and looking at the Serial Monitor, you can see that it takes about 1000 milliseconds to go
approximately 6 inches, which you can use to trigger the LED. You check if the duration is larger than 1000 with an
if statement, and if it is, you set the LED to turn off; otherwise the else statement means the object in front of the
ultrasonic sensor is 6 inches or less from the sensor and it will turn on.

Adding Additional Sensors
Now that you have an ultrasonic sensor that will turn on an LED light, you want to be able to add additional sensors,
since you want to make the project be able to react to more than just whether or not something is close by. To do this,
you need to wire up two additional sensors with LEDs to see how the program will work with three ultrasonic sensors.
Figure 2-4 shows how three ultrasonic sensors are wired up on a breadboard to connect to the Arduino, and the
finished product is shown in Figure 2-5.

Chapter 2 ■ Using Sensors with the Android

32

Figure 2-4.  Diagram of the wiring of the Arduino, sensors, and LEDs

Figure 2-5.  Three ultrasonic sensors connected to an Arduino on a breadboard

Chapter 2 ■ Using Sensors with the Android

33

The three ultrasonic sensors connect the same way as the single ultrasonic sensor. The 5V pins each have a
jumper wire into the 5V rail and the Ground pins all have jumper wires to the GND rail, as well as the shorter pins
on the LEDs. This will let the sensors and LEDs share a single 5V and a single Ground pin among all of them by
connecting the 5V and GND with the respective Arduino pins. The sensors plug the signal pins into 7, 8, and 9, while
the positive leads on the LEDs plug into pins 10, 11, and 12. Now that you have three sensors and LEDs, you can try
altering your code to access them (see Listing 2-2).

Listing 2-2.  Running Three Ultrasonic Sensors

// sets the constants for each of the sensor and led signal pins:
const int pingPin[] = {2, 3, 4};
const int led[] = {10, 11, 12};
 
// sets the increment counter for each sensor:
 int counter = 0;
 
void setup() {
 // initialize serial communication:
 Serial.begin(9600);
  
 // sets each LED pin to an output mode
 for (int i=0; i<3; i++) pinMode(led[i], OUTPUT);
}
 
void loop() {
 // establish variables for duration of the ping,
 // and the distance result in inches:
 long duration, inches;
  
 // resets counter if we run out of sensors
 if (counter == 3) counter = 0;
 
 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin[counter], OUTPUT);
 digitalWrite(pingPin[counter], LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin[counter], HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin[counter], LOW);
 
 // The same pin is used to read the signal from the PING))): a HIGH
 // pulse whose duration is the time (in microseconds) from the sending
 // of the ping to the reception of its echo off of an object.
 pinMode(pingPin[counter], INPUT);
 duration = pulseIn(pingPin[counter], HIGH);
 
 // convert the time into a distance
 inches = microsecondsToInches(duration);
  

Chapter 2 ■ Using Sensors with the Android

34

 // turn on the led if object is within six inches
 if (inches < 6) {
 digitalWrite(led[counter], HIGH);
 } else {
 digitalWrite(led[counter], LOW);
 }
  
 // send the value in inches to the Serial Monitor for each sensor
 Serial.print("Sensor ");
 Serial.print(counter);
 Serial.print(": ");
 Serial.print(inches);
 Serial.println(" inches");
  
 // increment counter for the next loop
 counter++;
  
 // short delay before starting over again
 delay(100);
}
 
long microsecondsToInches(long microseconds) {
 // According to Parallax's datasheet for the PING))), there are
 // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
 // second). This gives the distance travelled by the ping, outbound
 // and return, so we divide by 2 to get the distance of the obstacle.
 // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
 return microseconds / 74 / 2;
}
 

The code to run the three sensors is very similar to the single sensor code; the big difference is using arrays and
for loops. An array is a type of variable that can hold a list of values and can be addressed by calling the items in the
order they are held. As an example, pingPin is defined as an array in the code because it has the brackets after the
name and the values are set in a comma-delineated list between the braces. Since the first address in an array is zero,
to retrieve the value 7 from the pingPin array, it would be referred to as pingPin[0]. The zero can also be replaced
with a variable, allowing the code to go through the members of the array in order.

By replacing the led and pingPin variables with array variables, you can loop through in setup to define all three
LED pins as outputs and in the loop run the sensors in succession to see if there is anything in front of them. You don’t
want to run them simultaneously to cause interference between the different sensors, but they still run fast enough
that it is done in less than a second. Each iteration of the loop() will address a different sensor. By using the counter
variable, you can address the sensors in succession, and after the third sensor is checked, it returns to the first one.

You can now use the sensors to light individual LEDs, but that won’t make the Android move. Instead, you will
add a hobby servo motor and tell it which way to move based on the response from the ultrasound sensors. The
Android will turn to look at either side or the front based on stimulus from the sensors. You will use a motor shield
again, but this time the sensors signals will be in pins 14, 15, and 16 because the motor shield uses many of the digital
pins. While the Arduino itself does not show those pin numbers on it, the pins labeled analog can be defined as digital
pins, starting with 14 as analog pin 0. This means that the sensors will be in analog pins 0, 1, and 2. The ends of the 5V
and Ground wires can be soldered together and a fourth wire can then be soldered on to have a single wire run from
the 5V and Ground pins to the 5V and Ground pins on the motor shield. A diagram of how the sensors connect to the
Arduino can be seen in Figure 2-6, and the actual wiring of the sensors can be seen in Figure 2-7.

http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf

Chapter 2 ■ Using Sensors with the Android

35

Figure 2-6.  Diagram of the sensors connected to the Arduino

Figure 2-7.  The ultrasonic sensors soldered to the motor shield on the Arduino

Once the sensors are connected, the code to utilize them can be seen in Listing 2-3.

Chapter 2 ■ Using Sensors with the Android

36

Listing 2-3.  Running the Servo Motor Based on the Ultrasonic Sensors

// include the library for hobby servos
#include <Servo.h>
 
// DC hobby servo
Servo servo1;
 
// sets the constants for each of the sensor signal pins:
const int pingPin[] = {2, 3, 4};
 
// sets the increment counter for each sensor:
int counter = 0;
 
// sets the speed of the servo movement
int spd = 10;
 
// sets the left, right, and center positions of the servo
int left = 10;
int right = 170;
int center = (right - left) / 2;
 
// sets the variable to keep track of the servo angle
int angle = center;
  
void setup() {
 // initialize serial communication:
 Serial.begin(9600);
  
 // turn on servo and move to center
 servo1.attach(9);
 servo1.write(center);
}
 
void loop() {
 // establish variables for duration of the ping,
 // and the distance result in inches:
 long duration, inches;
  
 // resets counter if we run out of sensors
 if (counter == 3) counter = 0;
 
 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin[counter], OUTPUT);
 digitalWrite(pingPin[counter], LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin[counter], HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin[counter], LOW);
 

Chapter 2 ■ Using Sensors with the Android

37

 // The same pin is used to read the signal from the PING))): a HIGH
 // pulse whose duration is the time (in microseconds) from the sending
 // of the ping to the reception of its echo off of an object.
 pinMode(pingPin[counter], INPUT);
 duration = pulseIn(pingPin[counter], HIGH);
 
 // convert the time into a distance
 inches = microsecondsToInches(duration);
  
 // moves the servo to the left if left sensor is triggered
 if (inches < 6 && counter == 0) {
 if (angle != left) {
 for (int i=angle; i>left; i--) {
 servo1.write(i);
 delay(spd);
 }
 angle = left;
 }
  
 // moves to the center if center sensor is triggered
 } else if (inches < 6 && counter == 1) {
 // moves from left to center
 if (angle < center) {
 for (int i=angle; i<center; i++) {
 servo1.write(i);
 delay(spd);
 }
 // or moves from right to center
 } else {
 for (int i=angle; i>center; i--) {
 servo1.write(i);
 delay(spd);
 }
 }
 angle = center;
  
 // moves to the right if right sensor is triggered
 } else if (inches < 6 && counter == 2) {
 if (angle != right) {
 for (int i=angle; i<right; i++) {
 servo1.write(i);
 delay(spd);
 }
 angle = right;
 }
  
 // otherwise hold steady at the current position
 } else {
 servo1.write(angle);
 }
  

Chapter 2 ■ Using sensors with the android

38

 // send the value in inches to the Serial Monitor for each sensor
 Serial.print("Sensor ");
 Serial.print(counter);
 Serial.print(": ");
 Serial.print(inches);
 Serial.println(" inches");

 // increment counter for the next loop
 counter++;

 // short delay before starting over again
 delay(100);
}

long microsecondsToInches(long microseconds) {
 // According to Parallax's datasheet for the PING))), there are
 // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
 // second). This gives the distance travelled by the ping, outbound
 // and return, so we divide by 2 to get the distance of the obstacle.
 // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
 return microseconds / 74 / 2;
}

The code for running the servo motors based on the ultrasonic sensors starts the same way as the code used for
the Ultimate Machine. You include the libraries to run the motor and define the servo motor before defining the rest
of the variables. Instead of lighting the LEDs when the ultrasonic sensors see an object, you put a value in the array
defined as sensor. Arrays are defined by their name followed by square brackets, like variable[], and items in it can
be addressed with numbers in the brackets. You assign the value zero to all three of the sensor values, so the sensors
will start from a state where they have not yet seen anything. In the setup() function, you start the servo and then
center the motor so it is looking straight ahead.

For this project, the head will have three positions (left, right, and center). If either of the side sensors is triggered,
the motor will turn all the way to that respective side, but if the middle sensor is triggered, it needs to know which side
it is facing in order to know which way to turn. Using if else statements, you check the array to see which sensors
are triggered and then turn. When a sensor is triggered, it checks whether the last sensor triggered was the same one,
and if not, it turns and sets the position variable for the next iteration of the loop. In the code, you have Serial.print
statements so you can make sure it all works when connected to the computer before building the Android.

Building the Android
Once you have the code and have tested it, you can start building the Android. The Android’s body is made of
concentric circles that rest atop each other, with a dome for the head. The arms and legs are made of smaller circular
rings that are attached to the main body.

Start with the Foundation
Since the Android is round and LEGO bricks are not, you need to accommodate this by building into as round a shape
as you can with the bricks. This is done by having a four stud side and having a two brick spacing to create a step
pattern. You also have a brace four bricks wide running through the bottom of the Android to support the legs and the
Arduino when you install them (Figure 2-8).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf

Chapter 2 ■ Using Sensors with the Android

39

As when building the walls of the Ultimate Machine, you alternate the way the bricks are laid out in the rings for
the Android’s body. The center row will just have a row of 2 x 4 bricks over the center to lock in the brace. You will add
another layer in the step after the one seen in Figure 2-9 underneath the brace to lock it in.

Figure 2-8.  The first layer of the Android’s body

Figure 2-9.  The second layer of the Android’s body locks the first layer in place

Chapter 2 ■ Using Sensors with the Android

40

When looking at a picture of the Android, the bottom curves inward. You can approximate that look by having a
layer beneath the first layer that brings the ring one stud in. The center brace must be reinforced by using an alternate
layout that is four studs wide. Figure 2-10 shows what the ring looks like while Figure 2-11 shows what the ring looks
like when installed on the bottom of the first ring.

Figure 2-10.  The smaller ring goes beneath the first ring

Figure 2-11.  The smaller ring placed beneath the two rings that were previously assembled

The next level of the body will hold the Arduino in place.

Chapter 2 ■ Using Sensors with the Android

41

Building a Harness for the Arduino
A LEGO harness will be strong enough to hold the Arduino so that nothing else will be needed to hold it. While you
already soldered the sensors into the motor shield, they won’t be seen in the pictures until the steps in which you
begin to place them for clarity when looking at the building process (see Figures 2-12 and 2-13).

Figure 2-12.  The next level of the body creates a harness for the Arduino

Figure 2-13.  The Arduino is placed into the cradle that was created for it

Chapter 2 ■ Using Sensors with the Android

42

Adding a Level for the Power Plug
The next level of the Arduino body will create a space for the power plug connection. The side that has the connection
is the back of the Android, so everything else you build for the body will use it as a point of reference. The plug can be
seen in Figure 2-14.

Figure 2-14.  The power plug is given a hole in the back of the Android as the fourth layer is added

Figure 2-15.  The fifth layer, above the plug, locks it into place

Building the Body
In Figures 2-15 to 2-18, the Android’s body is built up. The bricks continue to be alternated to build up strength in the
walls as the Android grows taller. You lay more concentric rings atop each other, alternating the way they lie on top of
each other in order to build a strong body that will be able to support itself.

Chapter 2 ■ Using Sensors with the Android

43

Figure 2-16.  The sixth layer is built on top of the plug

Figure 2-17.  A third layer, the seventh, is built on top of the plug, continuing to alternate the bricks on top of each other

Chapter 2 ■ Using Sensors with the Android

44

With four layers built over the plug, the fifth layer adds a brick with a hole in the middle in order to add the
Android’s arms.

Adding Arms and Sensors
The 1 x 2 Technic bricks are placed on the two sides that run perpendicular to the side with the plug sticking out of it,
as seen in Figure 2-19.

Figure 2-18.  The eighth layer is built over the plug

Figure 2-19.  A layer is added with 1 x 2 Technic bricks to hold the arms

Chapter 2 ■ Using Sensors with the Android

45

Once the 1 x 2 Technic bricks are in place, two layers need to be added before you can add the ultrasonic sensors;
otherwise, the sensors will continually be triggered by the arms. Figures 2-20 and 2-21 show the two layers building up
the walls of the Android’s body.

Figure 2-20.  The first layer above the 1 x 2 Technic bricks is added

Figure 2-21.  The second layer is built above the Technic bricks

Chapter 2 ■ Using Sensors with the Android

46

Once the walls of the body are built high enough to clear the arms with the sensors, it is time to add the sensors.
In Figure 2-22, the placement of the ultrasonic sensors can be seen. In the picture, the sensor connected to pin 14 is
the furthest one seen in the picture, pin 15 is the one across from the plug, and pin 16 is the one closest in the picture.
A layer of bricks continues the walls and frames the sensors as well. The PING))) Ultrasonic Distance Sensors are two
bricks high, so you need add another layer, as shown in Figure 2-23.

Figure 2-23.  A second layer is added to frame the ultrasonic sensors

Figure 2-22.  The ultrasonic sensors are placed on the body of the Android

Chapter 2 ■ Using Sensors with the Android

47

Once the walls are built up around the sensors, you lock them in using a layer of bricks on top, as seen in Figure 2-24.
If there is too much pressure on the sensors when attempting to lock the bricks down on top of the sensors, remove
the 1 x 2 brick that is on the inside beneath the sensor to create a groove for the pins to sit in to make space for them.
Hanging behind the sensors in the picture is a 1 x 4 brick that helps hold the two 2 x 4 bricks together and keeps the
sensors from falling back into the Android. The level covering the sensors is one stud less wide above the sensors, but
this is fixed in the level above it, when 1 x 4 bricks are hung down to correct the body shape in this level.

Figure 2-24.  The layer above the ultrasonic sensors covers them

Separating the Body from the Head
In the Android, a white ring separates the head from the body, so the next level is white. The white level not only
rings the body like the previous levels but has bricks turned inwards for two purposes. The bricks turned inwards
cover the seams on the covers for the sensors, strengthening them, but they also create a frame to hold the servo
motor in place. Figure 2-25 shows the layout of the bricks and the servo motor, but it is not strong enough to hold
the motor in place yet.

Chapter 2 ■ Using sensors with the android

48

When LEGO bricks move on top of other bricks, they will get caught on the studs if not covered. For those
situations, there are LEGO tiles that are like LEGO plates—but have no studs on top—in order to create a smooth
surface that allows for smooth motion. A ring of tiles covers the white ring of the Android’s neck and will lock down
the bricks holding the servo motor into place (see Figure 2-26).

Figure 2-26. A layer of tiles is added to allow smooth movement of the head and to support the servo motor

Figure 2-25. A layer of white covers the green body to create the Android’s neck and holds the servo motor

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2 ■ Using Sensors with the Android

49

Building the Head
With the core body done, the next step is the head. Like the roundness of the body was approximated by stepping the
LEGO bricks, the head is a dome that is created using bricks. The first level of the head is similar to the first layer of the
Android body; the levels above it recede to give it a roundness. The base of the head does have a thicker ring than the
body to allow the narrowing rings to layer on top of it (see Figure 2-27).

Figure 2-27.  The base ring for the Android head

The second ring of the head shrinks slightly and exposes the corners of the level beneath it. By repeatedly
showing the corners on the lower levels beneath them and receding the center of each side, the lower levels begin to
get a sense of roundness. Figures 2-28 and 2-29 show how adding two layers starts to give the head a more sphere-like
appearance.

Chapter 2 ■ Using Sensors with the Android

50

Figure 2-29.  The third layer exposes the corners of the second layer and recedes the edges

Figure 2-28.  The second layer of the head exposes the corners of the first layer

Chapter 2 ■ Using Sensors with the Android

51

With the fourth layer (Figure 2-30), the edges narrow to studs and expose the corners again. In Figure 2-31, the fifth
layer exposes a border of exposed studs and white 1 x 1 bricks to give the Android his eyes, The final level of the head is
seen in Figure 2-32 and uses 2 x 4 bricks to cover the hole and 1 x 2 bricks to keep the shape seen in the previous layers.

Figure 2-30.  The edges narrow to two studs as the corners are exposed one more time

Figure 2-31.  The second-to-last layer leaves a border uncovered from the level beneath it and adds two 1 x 1 white
bricks for the eyes

Chapter 2 ■ Using Sensors with the Android

52

With the head done, you need a way to turn the head. A Technic rod will be used, so a brick needs to be added in
order to turn the head.

Turning the Head
To turn the head, use a 2 x 2 round brick with a cross hole in the middle of it that a Technic pin can fit into. To support
it, a 2 x 4 plate with holes in it will help lock it into place and allow the pin to fit through. This process can be seen in
Figures 2-33 to 2-35.

Figure 2-32.  The final level of the head covers the hole on the top of the head with 2 x 4 bricks and adds four 1 x 2 bricks
to keep the shape of the lower levels

t

Chapter 2 ■ Using Sensors with the Android

53

Figure 2-33.  The bottom of the Android’s head

Figure 2-34.  The round 2 x 2 brick with the Technic hole is placed in the middle. The spaces around it are filled in
with 1 x 2 bricks

Chapter 2 ■ Using Sensors with the Android

54

With the head finished, something needs to be added to hold the head up and make it move.

Supporting the Head
A Technic wheel holding a 5M Technic pin can support the head, but it needs to be attached to the motor. The
Technic wheel is wired to an attachment that can connect to the servo motor in order for the motor to be able to turn
the wheel.

The Technic pin can then be placed in the wheel construct. Push the attachment, wheel, and pin configuration
on the servo, and then turn the servo as far left as it will go to figure out which is the forward face side of the pin.
Slide the Technic pin into the hole in the top of the Android’s head and the motor will be able to control the head
(see Figures 2-36 through 2-39).

Figure 2-35.  A 2 x 4 plate with holes in it is added to support the round 2 x 2 brick

Chapter 2 ■ Using Sensors with the Android

55

Figure 2-36.  The 5M Technic pin, Technic wheel, and servo motor attachment

Figure 2-37.  The wheel and the servo motor attachment are wired together and the 5M pin is insterted into the hole

Chapter 2 ■ Using Sensors with the Android

56

Figure 2-38.  The attachment is put on the motor. Check which direction the motor is pointing to know which direction
the head will face

Figure 2-39.  The head is placed on top of the Technic pin

With the head and the body of the Android completed, it needs legs to stand on. The legs will be created like the
body was, but on a smaller scale.

Chapter 2 ■ Using Sensors with the Android

57

Creating the Legs
While the Android will need two legs, Figures 2-40 to 2-46 show how to build a single leg. Repeat the process a second
time for the other leg.

Figure 2-40.  The first layer of the Android’s leg

Figure 2-41.  The second layer of the Android’s leg

i

Chapter 2 ■ Using sensors with the android

58

Figure 2-43. The fourth layer of the Android’s leg

Figure 2-42. The third layer of the Android’s leg

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2 ■ Using Sensors with the Android

59

Figure 2-45.  The Android’s completed legs

Figure 2-44.  To complete the Android’s leg, flip it over and place two 2 x 4 green bricks across the middle of the leg to
give it a rounded look

Chapter 2 ■ Using Sensors with the Android

60

With the head, body and legs done, the next step is the arms.

Building the Arms
Building the arms is identical to building the legs, but just taller. While the legs are four bricks high, not counting the
2 x 4 bricks, the arms are eight bricks high. The arms also have 2 x 4 bricks on the top and bottom and a Technic 1 x 2 brick
with a hole in it so the arms can connect to the body with a Technic pin. The arms use a black Technic pin because the
friction pin will hold the arms in place better than a gray frictionless pin, but the weight of the arms will prohibit them
from staying up in certain positions (see Figures 2-47 and 2-48).

Figure 2-46.  The Android stands on its new legs. The outer edge of the legs should line up with the outer edge of the
lowest level of the Android’s body

Chapter 2 ■ Using Sensors with the Android

61

Figure 2-48.  The Android with the arms attached

Figure 2-47.  The Android’s arms, built like the Android’s legs, but with a Technic brick and bricks on top

With the arms completed, there is only the Android’s antenna left.

Chapter 2 ■ Using Sensors with the Android

62

Building the Antenna
The Android’s antenna is five 1 x 2 bricks high and requires a hinge. You are using green minifigure legs because they
give more height and hold their position better than the LEGO hinges, but they can be replaced with a 1 x 2 brick and
a 1 x 2 hinge instead of the legs (see Figures 2-49 and 2-50).

Figure 2-49.  The Android’s antenna. To the left are the parts required to build the antenna and to the right is the
completed antenna

Figure 2-50.  The completed Android

Chapter 2 ■ Using Sensors with the Android

63

Summary
With the Android, you saw how to make the Arduino react to a stimulus more complex than a flipping switch. The
three sensors monitor their environment and react accordingly. You also saw how square and rectangular LEGO
bricks can be made to emulate a round shape and a dome by their placement near each other.

Now that you have built a reactionary robot, can you improve upon it? You made the Android react to each sensor
separately, but what happens if two are triggered at once? Can you make the robot look between the sensors and see
things that are not at 90 degree angles?

65

Chapter 3

Twitter Pet

We are entering an era of the “Internet of Things” where everyday objects can connect to the Internet. Is your toast
ready? Are your clothes dry? Do your plants need watering? They could each contact you on Twitter or e-mail and
send you updates in the near future, if not now.

There are also devices that will monitor the Internet for you, like the Karotz. The Karotz is a rabbit-shaped device
that sits on one’s desk and moves or flashes lights depending on different online stimulus by connecting to a server or
by proximity to a keychain with a radio-frequency identification (RFID) chip, which the Karotz can read and react to.
The Arduino can also connect to the Internet and interact, which inspires the next project, a DIY Internet pet inspired
by the Karotz.

By using an Arduino, you can allow your LEGO creation to talk to the Internet. Since you will not be setting up
a server, you need to make use of an existing server like Twitter. Your LEGO creation could check for searches for
hashtags or mentions of a Twitter username, but that requires using a more complex method of connecting to Twitter
over a more complex system known as OAuth authorization over the Twitter API. It is simpler to just monitor a Twitter
account and check when it tweets, at which point your sculpture will react.

A list of the parts in this chapter can be found in the appendix.

Connecting the Arduino to the Internet
The first thing you need is a way to interact with the Internet from your Arduino. There are two ways to do this: with
a shield or with an integrated Ethernet built in to an Arduino. In Figure 3-1, the Ethernet Arduino has an on-board
Ethernet port allowing it to talk to the Internet, but no USB on the Arduino, so an external programmer would need to
be plugged in to the pins on the top right.

Chapter 3 ■ Twitter Pet

66

Like the motor shield you used previously, the Ethernet shield plugs in directly on top of the Arduino board and
can interact and be programmed directly from the Arduino through the pins. The Ethernet shield in Figure 3-2 is the
one used in this project and has the same features as the Ethernet Arduino. There are other companies that make
similar boards, like Adafruit and Seeed, but they do not have the SD card slot to share and serve files (a feature you
will not be using for this project).

Figure 3-1.  The Ethernet Arduino. The port on the top left is an Ethernet port rather than USB

Figure 3-2.  The Arduino Ethernet Shield

Chapter 3 ■ Twitter Pet

67

Ethernet makes use of pins 10 to 13 on the Arduino (plus pin 4 if you were to make use of the SD card slot),
but you are free to use any of the other pins on the Arduino for your project. Your project will flash LED lights
whenever a certain account tweets, so you will put your LEDs on pins 2 and 3 on the Arduino, but you could add
more functionality on other pins that are not being used. Listing 3-1 contains the code to access the Internet and
communicate with Twitter.

Listing 3-1.  Connecting to Twitter and Checking for New Tweets

#include <SPI.h>
#include <Ethernet.h>
 
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };
IPAddress ip(192,168,1,20);
 
// initialize the library instance:
EthernetClient client;
 
const unsigned long requestInterval = 60000; // delay between requests
 
char serverName[] = "api.twitter.com"; // twitter URL
 
boolean requested; // whether you've made a request since connecting
unsigned long lastAttemptTime = 0; // last time you connected to the server, in
milliseconds
 
String currentLine = ""; // string to hold the text from server
String tweet = ""; // string to hold the tweet
String previousTweet = "";
boolean readingTweet = false; // if you're currently reading the tweet

int ledPin = 2;
int ledPin2 = 3;
 
void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin2, OUTPUT);
  
 // reserve space for the strings:
 currentLine.reserve(256);
 tweet.reserve(150);
 
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo only
 }
 

http://api.twitter.com

Chapter 3 ■ Twitter Pet

68

 // attempt a DHCP connection:
 Serial.println("Attempting to get an IP address using DHCP:");
 if (!Ethernet.begin(mac)) {
 // if DHCP fails, start with a hard-coded address:
 Serial.println("failed to get an IP address using DHCP, trying manually");
 Ethernet.begin(mac, ip);
 }
 Serial.print("My address:");
 Serial.println(Ethernet.localIP());
 // connect to Twitter:
 connectToServer();
 
}
 
void loop() {
 if (client.connected()) {
 if (client.available()) {
 // read incoming bytes:
 char inChar = client.read();
 
 // add incoming byte to end of line:
 currentLine += inChar;
 
 // if you get a newline, clear the line:
 if (inChar == '\n') {
 currentLine = "";
 }
 // if the current line ends with <text>, it will
 // be followed by the tweet:
 if (currentLine.endsWith("<text>")) {
 // tweet is beginning. Clear the tweet string:
 readingTweet = true;
 tweet = "";
 }
 // if you're currently reading the bytes of a tweet,
 // add them to the tweet String:
 if (readingTweet) {
 if (inChar != '<') {
 tweet += inChar;
 } else {
 // if you got a "<" character,
 // you've reached the end of the tweet:
 readingTweet = false;
 if (tweet != previousTweet)
 {
 Serial.println(tweet);
 previousTweet = tweet;
 // blink LEDs when there is a new tweet
 for (int i=0; i<50; i++) {
 digitalWrite(ledPin, HIGH);
 delay(100);

Chapter 3 ■ twitter pet

69

 digitalWrite(ledPin, LOW);
 delay(100);
 digitalWrite(ledPin2, HIGH);
 delay(100);
 digitalWrite(ledPin2, LOW);
 delay(100);
 }
 }
 // close the connection to the server:
 client.stop();
 }
 }
 }
 } else if (millis() - lastAttemptTime > requestInterval) {
 // if you're not connected, and two minutes have passed since
 // your last connection, then attempt to connect again:
 connectToServer();
 }
}

void connectToServer() {
 // attempt to connect, and wait a millisecond:
 Serial.println("connecting to server...");
 if (client.connect(serverName, 80)) {
 Serial.println("making HTTP request...");
 // make HTTP GET request to twitter:
 client.println("GET /1/statuses/user_timeline.xml?screen_name=justjon&count=1 HTTP/1.1");
 client.println("HOST: api.twitter.com");
 client.println();
 Serial.println("done");
 }
 // note the time of this connect attempt:
 lastAttemptTime = millis();
}

The code in Listing 3-1 is based on the sample code for using the Arduino Ethernet by Tom Igoe. Before the
setup() function, you include the libraries to be able to control devices and connect to the Ethernet. The MAC
address is a unique identifier that defines a machine when it is connected to the Internet and the IP address is an
address used by the Internet so that it knows where to find the machine online. An IP address that starts with 198
means it is connected to a local network. The EthernetClient variable is how the code communicates with the
Internet to the server defined in the serverName variable, in this case twitter’s API server. The rest of the variables are
used for holding data and defining the pins that are connected to the LEDs.

In the setup() function, you define the LED pins as output pins and set space for the currentLine and tweet
variables. currentLine will hold each line of text as the code reads it in, and tweet will hold the text of the individual
tweet from Twitter when it is found in the text received from Twitter. Since they are both strings, they are a series
of alphanumeric characters. The line of text you are receiving cannot exceed 256 bytes and a tweet is limited to 140
characters, but you define additional characters to include the XML tag that defines it as a tweet. The Arduino then
attempts to get an IP address from the local router or modem that it is connected to, and if it cannot get one, it defaults
to using the one defined in the variable definition. Once it has an address, it calls the connectToServer() function to
open an initial connection to Twitter’s servers.

The connectToServer() function does what the name implies; it attempts to make a connection to the external
server defined in the serverName variable, in this case api.twitter.com on port 80. Different services on a computer

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.twitter.com
http://api.twitter.com/

Chapter 3 ■ Twitter Pet

70

server have different meanings, and port 80 is means that it is trying to connect to a web server. Client.println is
how the code sends commands to the external server, so the HOST is the server it is trying to get data from and the
GET is the command that says what information it wants to receive back. The line GET /1/statuses/user_timeline.
xml?screen_name=justjon&count=1 HTTP/1.1 tells the Twitter server that it wants to get a status from the defined
user’s timeline in XML format using the variables screen_name and count, and it wants to receive them back in the
Web’s 1.1 transfer protocol. The screen_name is defined as justjon, which is my Twitter handle, but it can be changed
to any account that you want to monitor. The count variable is set to how many tweets to be returned, but since
you want to check for new tweets, you set it to 1 so you are only looking at the most recent tweet. Before ending the
function, you track the time of the most recent attempt to connect to the server.

The loop() function first checks to see if it has a current connection to the server with client.connected(), then
checks if the data is available with client.available(). If both are found to be true, it begins to read in the response
from the Twitter server with the char inChar = client.read(); statement. The code reads in the response from the
server one character at a time into the inChar variable. Each of the inChar variables are added to the currentLine
variable. If the inChar character is a new line, which is referred to in the code as “\n”, then you are done with that line
of code and it will reset the currentLine code to be clear for the next line.

The tweet that you are looking for will start with <text> and end with </text>, so a tweet in XML would look
like <text>This is a tweet!</text>, and you are checking the line with each new character, so if the currentLine is
set to <text>, the code knows that the following characters will be the tweet you are looking for. The readingTweet
variable is set to true, so the code knows it is reading the tweet and stores the text in the tweet variable as well as
the currentLine. Once it hits the < character, it knows it is hitting the closing </text> tag and that it has grabbed the
entire tweet.

Once the entire tweet is read in, the statement if (tweet != previousTweet) compares what is in the tweet
variable with the last tweet that was processed, which is blank if it is the first tweet. If the contents of the two variables
are not the same, then the previous tweet is set to the current tweet with previousTweet = tweet; and the LED lights
are flashed in an alternating pattern 50 times each with the digitalWrite statements before closing the connection to
the server to start the process again.

If the server was not connected either due to no previous connection or being closed after reading the tweet
previously, then it checks how long it has been since the last connection to the server and subtracts it from the current
time, which is also defined in milliseconds. If number of milliseconds between current time and previous connection
is greater than the number of milliseconds in the requestInterval, which is defined as 60000 or one minute, then
it connects to the server again to read in the latest tweet and repeats the process within the structure of your Twitter
animal. Let’s build it now.

Building The Twitter Pet
The following sections cover how to build your Twitter Pet.

Building the Base
Your Twitter Pet will not be big enough for the Arduino and Ethernet shield to fit into, so there needs to be a base to
hold them in. As with the Ultimate Machine, the base is three layers of overlapping plates forming a solid bottom
to hold the Arduino. And like the Android, the body is built from concentric rings of LEGO bricks, but unlike the
Android, the rings are of different sizes. Figures 3-3 to 3-5 show the construction of the bottom.

Chapter 3 ■ Twitter Pet

71

Figure 3-3.  The plates are laid out for the bottom of the box

Figure 3-4.  The second layer overlaps the layers of the first, covering the seams

Chapter 3 ■ Twitter Pet

72

With the bottom created, the Arduino needs to be placed.

Setting the Arduino in Place
The Arduino and Ethernet shield are held in place by the LEGO, so a partial wall goes through the middle of the box,
but the center is left free to allow the wires to pass up through from the box to the sculpture on top. The first level of
the walls are shown in Figure 3-6.

Figure 3-6.  The walls of the box are built around the Arduino and hold it in place. Holes are left on the back to allow
access to the power and USB plugs

Figure 3-5.  The third layer lays the same way as the first layer to lock the plates in place

Chapter 3 ■ Twitter Pet

73

The box is then built to be high enough to cover the Arduino and the shield. Make the box four bricks high, and
alternate the bricks to lock them in and build a solid base. The exception is between the USB and power plugs, where
1 × 2 bricks are stacked atop each other but are locked into place when the bricks are placed on top of it. Figures 3-7
through 3-9 show the construction of the box around the Arduino and the shield.

Figure 3-7.  The second layer covers the first, shifting the bricks to cover the seams

Figure 3-8.  In the third layer, there is a 1 × 4 brick connecting the 1 × 2 bricks between the plugs to the wall to the left.
While the rest of the walls are 2 studs thick, the shield blocks the second row of studs and will be covered in the next step

Chapter 3 ■ Twitter Pet

74

Figure 3-9.  The box is built up to solidly hold the Arduino and shield in place. The hole for the Ethernet port will be
covered by the lid

Figure 3-10.  LEGO plates are laid out over the top of the box. While they do not cover the enitre top yet, they cover
enough to support the next layer

Covering the Arduino
With the box built, it needs to be covered to support the creation on top. The lid of the box is built similarly to the bottom,
but has a hole in the middle to run wires through to make the pet interactive. The hole starts wide in Figure 3-10 and is
closed tighter in Figure 3-11 before being secured in Figures 3-12 and 3-13. Note that while the wires are not shown in
the figures for the lid or during much of the building of the sculpture to make it easier to see the construction, it is much
easier to plug the LEDs in now and build around them rather than later once all the LEGO bricks are in place.

Chapter 3 ■ Twitter Pet

75

Figure 3-11.  The second layer of plates covers the first layer and tightens the hole to the size of a 4 × 4 plate. The
sculpture on top of it will cover the hole when you begin building

Figure 3-12.  The third layer covers the second and locks the lid into place

Chapter 3 ■ Twitter Pet

76

Adding Rings
The Twitter Pet is made of concentric rings that rest on top of the box. There are five sets of rings that stack atop each
other to build the Twitter Pet’s body. There is a single ring with a larger ring that is two bricks high atop it, followed by
the widest ring that is four bricks high before bringing it back in to a smaller ring that is three bricks high, then finally
the head, which is four bricks high.

The First Ring
The first ring is the smallest one, covering the hole and simulating roundness with a diamond pattern that will be built
upon with the rings that stack on top of it. The first ring can be seen in Figure 3-14.

Figure 3-13.  The back of the box shows how the Ethernet, USB, and power ports are easily accessible

Chapter 3 ■ Twitter Pet

77

The Second Ring—Two Bricks High
The second ring expands on the first, creating two layers that form the next level of the sculpture. The expanding
layers give it a slightly rounded look as it grows upwards. The two studs at the edges go out two studs and there is a
border that goes around the diamond, as shown in Figure 3-15.

Figure 3-14.  The smallest, diamond-shaped ring

Figure 3-15.  The second level expands out from the first

Chapter 3 ■ Twitter Pet

78

The Third Ring—Four Bricks High
Figure 3-16 shows the second level of the same width that gives it height and secures it in place.

Figure 3-16.  The third level alternates from the second to lock it into place

With the completion of the third level, you now build the widest part of your creation, the fourth ring.

The Fourth Ring—Four Bricks High
The fourth ring expands the edges out one stud and creates a border around the previous ring, except where the
edges push out. In Figure 3-17, there are bricks from the following level in place. These hold up the pieces that have
no support underneath them. They are locked in as the levels above it are built. Figures 3-18 through 3-20 show the
stacking of the widest part of the sculpture. Notice how 1 × 2 bricks from the level above the current one being built
hold the pieces in place. Since LEGO bricks cannot float in space, they are put there to hold the bricks in place during
the building of that level and are secured when the level above it is added.

Chapter 3 ■ twitter pet

79

Figure 3-17. The fourth layer starts the widest part of the pet

Figure 3-18. The fifth layer is filled in to support the layer beneath it

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 3 ■ Twitter Pet

80

Figure 3-20.  Fourth and final of the widest rings

Figure 3-19.  A third layer of the widest ring is laid down

Chapter 3 ■ Twitter Pet

81

The Fifth Ring—Three Bricks High
With four levels done, you start to bring in the rings inwards to give it a somewhat egg shape. The next set of rings
matches the two rows of rings below the widest set of rings, but are stacked three high instead of two to make the top
of your creation taller than the bottom. As in Figure 3-17, Figure 3-21 shows the level above it being used to hold the
bricks in place until they are secured by the level above them. Figures 3-22 and 3-23 show the building of the set of
rings on top of the widest set of rings.

Figure 3-21.  A smaller ring is brought in to make the body less wide at this point. 1 × 2 bricks are used to hold the bricks
in place until they are secured in the next step

Figure 3-22.  The second level of this width is filled in

Chapter 3 ■ Twitter Pet

82

Adding the Eyes and Nose
The next level of the Twitter Pet is the same width as the original diamond shape on the lowest ring above the box, but
on top it will be four levels high and will give your pet some personality. In Figure 3-24, you prepare the eyes and nose.
Using 1 × 2 Technic bricks with a single hole in the middle, you can push LEDs through two of them and a 1 × 1 round
into the third as a nose. Although a standard LED should fit into the hole, if it does not, the wires can be run through
the hole and the LED can stick out on one side.

Figure 3-23.  The third and final layer is locked in on top of the previous two layers of this width

Figure 3-24.  Three 1 × 2 Technic bricks with LEDs for the eyes and a 1 × 1 round for the nose

Chapter 3 ■ Twitter Pet

83

With the eyes and nose prepared, you can start building the head.

Adding the Head
Although the head will be four rows high, you can adjust it for the eyes, nose, and ears. The first two levels are done
like the previous rings, although, smaller; the two that follow are modified to give your pet some personality, as shown
in Figures 3-25 and 3-26.

Figure 3-25.  This ring is identical to the one at the bottom of the pet

Figure 3-26.  This ring overlaps the one in front of it, but the front edge has the 1 × 2 Technic brick with the 1 × 1 round in it

Chapter 3 ■ Twitter Pet

84

In the next level, you make space for the ears and put in the eyes. The two studs that are the sides are left open to
put the ears in. Additionally, the front two studs that fill out the diamond are left out to show the four stud width of the
two Technic bricks that have the eyes. This can be seen in Figure 3-27.

Figure 3-27.  The next level puts the eyes in place and leaves open holes for the ears

Figure 3-28.  Two 7M beams, a 3M beam, and two black friction pins make up the ears

Your pet’s ears are made from Technic beams. Two 7M beams make up the ears and they’re held together with
a 3M beam and two black Technic pins. Using black Technic pins allow the ears to be posed once they are in your pet’s
head and they hold their place. Figure 3-28 shows the pieces for the ears and Figure 3-29 shows how it is assembled.

Chapter 3 ■ Twitter Pet

85

The next level of the pet’s head have the corners placed, but leave a two-stud opening coming in from all sides
so that the ears can extend from the head and can be locked in with 2 × 4 bricks (see Figures 3-30 and 3-31). The
ears slide down into the hollow head, but if the wires impede the ability to slide it in, push the wires down out of the
way—but make sure that none of the exposed parts of the wires come in contact with each other or the electricity will
seek out the path of least resistance and the LEDs will not light up.

Figure 3-29.  The assembled ears

Figure 3-30.  The corners are built up one level and the ears are lowered into the open head

Chapter 3 ■ Twitter Pet

86

The final step is to place two 2 × 4 bricks side by side on top. This locks the bricks in place and gives a rounded
look to the top of your pet’s head. The final step can be seen in Figure 3-32.

Figure 3-31.  Two 2 × 4 bricks are placed on top to lock the ears into place

Figure 3-32.  Two 2 × 4 bricks are placed on top of your pet, completing it

Chapter 3 ■ Twitter Pet

87

Summary
The Internet is a fount of information, and with an Arduino and an Ethernet shield or on-board Ethernet, your pet can
interact with the world around it, from Twitter to e-mail to anything else with any API or RSS feed. Your basic robot is
able to tell when a person tweets and responds by flashing its LED eyes.

What else can you make the Twitter Pet do? Can you make it respond to certain hashtags or mentions of a Twitter
account? Can you have it alert you when you have new e-mail? Can you have it let you know when your favorite web
site is updated? Can you make it do additional things? The possibilities are as limitless as the amount of information
on the Internet.

89

Chapter 4

RFID and the Crystal Ball

Many objects these days are tagged electronically. When leaving a store, it’s possible that an alarm will go off if you
leave with an item that still has a tag on it. A purchase can be made by waving a tag over a credit card machine. These
technologies use radio-frequency identification (RFID) to tag and track items based on a chip placed on an item and
a device that can read it. You can use this technology to trigger reactions in your LEGO creations, like the crystal ball
you are going to build in this chapter.

The RFID chip contains a radio-frequency electromagnetic field coil that modulates a magnetic field that can
transfer a unique identification code to a reading device. The RFID chip itself does not require any power and can
be embedded into a box, a piece of plastic, or even a person. When the RFID tag is placed in proximity to the RFID
reader, the tag powers up and sends its unique identification number back to the reader, which in this case will be
processed by the Arduino. You will use RFID to trigger the crystal ball and you will even make sure that only your
wand will trigger it—and not those of evil wizards.

Arduino and RFID
Figure 4-1 shows two RFID chips; they can be purchased from SparkFun and used by an RFID receiver. The 125khz
tags are two different sizes and shapes and can be used for different projects. The one on the right is about the size of
a grain of rice and is the one used in this project. The advantage of the button RFID tag on the left is that it is able to be
read from a larger distance of 32mm, compared to 10mm, due to its larger size and the size of the antenna within it.

Figure 4-1.  SparkFun button and glass capsule RFID tags

Chapter 4 ■ rFID anD the Crystal Ball

90

Figure 4-3 is a diagram of how the RFID reader is connected to the Arduino, and Figure 4-4 shows the ID-12 RFID
reader connected to an Arduino via a breadboard. Five pins are used by the Arduino on the RFID reader. Pins 1 and 7
connect to the Ground connection on the Arduino, pin 11 connects to the 5V pin, pin 2 on the RFID reader connects
to pin 13 on the Arduino, and pin 9 on the RFID reader connects to pin 0. There is also an LED connected to pin 3 for
testing purposes.

The RFID reader you will be using is the ID Innovations RFID Reader ID-12, which is available from SparkFun.
It is compatible with the Arduino and can read RFID tags up to 100mm away from the reader. The ID-12 has a unique
pin spacing of 2mm between pins, which is narrower than the 0.1" used by breadboards, and has thinner pins.
Because of this, it is best to solder the ID-12 to a breakout board that will adjust the spacing and make it easier to work
with the RFID reader. Figure 4-2 shows the ID-12 and its breakout board.

Figure 4-2. On the right is the Sparkfun ID-12 RFID reader and on the left is the breakout board that will make it easier
to work with the Arduino and a breadboard

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4 ■ RFID and the Crystal Ball

91

Figure 4-3.  A diagram of how the RFID reader connects to the Arduino

Figure 4-4.  The RFID reader is connected to the Arduino via a breadboard

Chapter 4 ■ RFID and the Crystal Ball

92

While the RFID reader communicates with the Arduino using pin 0, so does the computer when uploading
a program. Since they both utilize the same pin, when uploading the sketch to the Arduino, the wire must be removed
or the computer will give an error.

The RFID reader and the Arduino are connected on a breadboard in Figure 4-3 in order to test out the wiring
and the program in Listing 4-1. When you actually install the hardware into the LEGO, you will be doing it without
the breadboard.

Now that the basic wiring has been laid out, you need to program your Arduino. Since every RFID tag has a
unique identifier, I cannot program for particular RFID tags, but the code supplied here does print the tag’s unique
identifier to the serial monitor when connected to the computer. Adjusting the code to accept only particular RFID
tags or to react differently to different RFID tags just requires some if statements.

Note■■   I won’t delve into the process of getting the codes off the RFID; the seeds are planted in the code and you can
extrapolate it out.

Generating Magic with Code
Once the Arduino and the RFID are wired together, it will require code to drive the crystal ball and have it interact
with the magic wand. Listing 4-1 shows how to program the Arduino to allow them to interact. Special thanks to Brian
Evans for assistance with this code.

Listing 4-1.  Crystal Ball

#include <SoftwareSerial.h>
 
SoftwareSerial rfid(2,3);
 
int ledpin[] = {3, 5, 6, 9, 10, 11};
int ledcount = 6;
 
char tag01[] = "4500B8F08489";
char tag02[] = "4500B8D36947";
 
char tagString[13];
 
void setup() {
 Serial.begin(9600);
 rfid.begin(9600);
}
 
void loop() {
 if (rfid.available()) {
 if (getTag()) {
 printTag();
 for (int numval=0; numval < 4; numval++) {
 for(int value = 255; value >=100; value=value-5) { // fade out (from max to min)
 for (int i=0; i<ledcount; i++) {
 analogWrite(ledpin[i], value); // sets the value (range from 0 to 255)
 }

Chapter 4 ■ RFID and the Crystal Ball

93

 delay(30);
 }
 delay(500);
 for(int value = 100 ; value <= 255; value=value+5) { // fade in (from min to max)
 for (int i=0; i<ledcount; i++) {
 analogWrite(ledpin[i], value); // sets the value (range from 0 to 255)
 }
 delay(30); // waits for 30 milli seconds to see the dimming effect
 }
 delay(500);
 }
  
 for(int value = 255; value >=0; value=value-3) { // fade out (from max to min)
 for (int i=0; i<ledcount; i++) {
 analogWrite(ledpin[i], value); // sets the value (range from 0 to 255)
 }
 delay(30);
 }
  
 for (int i=0; i<ledcount; i++) {
 analogWrite(ledpin[i], 0); // sets the value (range from 0 to 255)
 }
 
 }
 }
}
 
boolean getTag() {
 char startByte = rfid.read();
 delay(20);
  
 if (startByte == 2) {
 int index = 0;
 while (index < 12) {
 char incomingByte = rfid.read();
 
 tagString[index] = incomingByte;
 index++;
 }
 }
 rfid.flush();
 return true;
}
 
void printTag() {
 for (int i=0; i<12; i++) Serial.print(tagString[i]);
 Serial.println(compareTags());
}
 

Chapter 4 ■ RFID and the Crystal Ball

94

const char* compareTags() {
 if (strncmp(tag01, tagString, 12) == 0) return " Tag 1";
 else if (strncmp(tag02, tagString, 12) == 0) return " Tag 2";
 else return " Not recognized.";
}
 

Before you create the setup() function, you set up some variables, most notably the LED array. Pins 3, 5, 6, 9, 10,
and 11 are marked on the Arduino Uno as PWM and have a ~ next to their numbers. This denotes them as the analog
out pins. Unlike the other pins, which are either high or low, the PWM pins can have a value between 0 and 255. This
gives them a lot more flexibility in what they can do and how they can be used. In this program, you will use them to
dim LEDs in response to the RFID tags.

There isn’t much that needs to be prepared in the setup() function for this program. You are opening a serial
connection to the computer so that you can monitor the code on the Arduino compiler’s serial monitor and you are
opening a connection from the Arduino to the RFID reader, but otherwise there is nothing to execute prior to the
loop() function.

The loop() function starts by checking for incoming data with the rfid.available() function call. If there
is data, it calls the getTag() function, which reads in the data byte by byte and stores each character in a string.
If it is not empty, then it calls the printTag() function, which reads in the tag in front of the RF-ID reader then calls
compareTags() to see if it is one of our predefined tags then returns to the calling function and printing to the serial
monitor the results.

Once the data is shared on the screen, the LEDs for the crystal ball are lit up. Since it’s using the analog out pins,
the lights will gradually light up and fade four times before completely fading out again and resetting the number of
bytes read from the tag to restart the process. The loop is then restarted to read the next RFID tag.

Since you display the tag value to the serial monitor, it is easy to adjust the code to other tag values than the ones
defined in Listing 4-1. After testing the code, change the values in tag01[] and tag02[] to the values from other tags
to make it interact with those tags. Any tags that are not defined in the code will not trigger the crystal ball, which
mean that other wizards will not be able to use their wands on it.

Building the Crystal Ball
With the code done, it is time to build the crystal ball. The sphere you are going to build to be your crystal ball will be
slightly bigger than a softball, but it will require a base to hold the Arduino and the RFID reader so it is more secure
and doesn’t roll around.

Note■■   For a complete list of required parts, refer to Appendix A.

Building the Base
The base you will be creating is similar to the one you built for the Twitter Pet, but with some variations. In Figure 4-5,
three layers of plates create the bottom of the base and a layer of bricks holds the Arduino in place. The 2 x 2 brick
behind the RFID reader has two studs open for the reader to sit in but is loose so there is no pressure on the reader’s
pins. There are also red bricks in front of the reader to mark the location of the reader, and while it will be a simple red
cross, it can be done more ornately.

Chapter 4 ■ RFID and the Crystal Ball

95

The second layer of the box builds up the first layer and locks it in while securing the first layer by covering the
seams, as shown in Figure 4-6. The second layer of the 2 x 2 brick behind the RFID reader is covered with a 2 x 3 brick
to lock it into place without putting any pressure on the pins, since the two studs will fit neatly between the pins on
the sides going to the Arduino and the pins on the top and bottom that are soldered from the RFID reader into the
breakout board.

Figure 4-5.  The lowest levels of the base to hold the Arduino and RFID reader in place

r

Chapter 4 ■ RFID and the Crystal Ball

96

A third layer is needed, since the second layer is not tall enough to cover the RFID reader. The column behind the
RFID reader is covered by a 2 x 2 brick so it does not put any pressure on the top pins. This column is secured in place
when the lid is built on top of the base. Figure 4-7 shows the third layer.

Figure 4-6.  The second layer of the base secures the first layer and locks the RFID reader into place

Chapter 4 ■ RFID and the Crystal Ball

97

Building the Lid
Also like the Twitter Pet, the lid has a hole in the top to allow the LEDs to run from the Arduino in to the cube. The
LEDs aren’t shown in Figures 4-8 through 4-10 for clarity in seeing how the plates are laid out to leave the middle
open. In the first layer, in Figure 4-8, the plates do not cover the column holding the RFID reader in place. This is fixed
in the second layer. A 2 x 2 plate is placed on top of the 2 x 2 brick so that it will be even with the first layer and will be
secured as the layers are built up.

Figure 4-7.  The third and final layer of the base

Chapter 4 ■ RFID and the Crystal Ball

98

Figure 4-8.  The first layer of the lid leaves a wide hole that does not secure the column behind the RFID reader

Figure 4-9.  The second layer is able to lock in the first layer and the column with a plate on top of the 2 × 2 brick

Chapter 4 ■ RFID and the Crystal Ball

99

With the base finished and stable enough to support the crystal ball on top of it, you’re going to put the lowest
level on the base.

Normally the base of a sphere of this size would have a surface of 4 x 4 brick, most commonly done with two 2 x 4
bricks, but since you want to be able to run wires into the sphere, you will create a border of bricks that is four studs on
each side and run the wires through it, as shown in Figure 4-11.

Figure 4-11.  The base of the sphere is a ring that encircles the opening of the base; the LED wires are run through it

Figure 4-10.  The third layer of the lid secures it in place while leaving a hole in the middle for wires

Chapter 4 ■ rFID anD the Crystal Ball

100

Note  It’s important that the bricks of the sphere are all translucent. In the figures, the sphere is made of translucent
blue bricks and the leDs are ultrabright red leDs, which can be found at sparkFun. If the bricks are not translucent,
no light will be able to escape from within the sphere. It’s also recommended to use ultrabright leDs because the light
will be diffused by the bricks and you want as much light as possible to be seen when the crystal ball is activated.

Building the Sphere
Now you need to build the sphere. It is easier to build a sphere starting with the middle and working the way down to
create the lower half of the sphere, rather than building upwards from the base. So start with the bottom half of the
sphere and then complete the top half.

Assembling the Bottom Half of the Sphere
In Figure 4-12, the center of the sphere is laid out in a ring of 2 x 2 translucent blue bricks. The bricks are stud side
down since the studs will point to the top of the sphere.

Figure 4-12. The center ring of the sphere with bricks studs down

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4 ■ RFID and the Crystal Ball

101

The third ring pulls the four stud edges in by one stud to shrink the diameter of that layer. The four corners on
each of the sides expose a stud hole from the layer above it. Figure 4-14 shows how the layer should look on top of the
second layer.

Figure 4-14.  The third layer pulls the diameter in one stud and exposes the four corner studs on each edge

The next ring is the same diameter as the center ring but pulls in the corners. There are three exposed stud holes
on each edge where the corners of the 2 x 2 bricks stick out from the ring you are currently building. The four stud sides
stay in the same place but are alternated to cover the seams and make the layers stronger, as shown in Figure 4-13.

Figure 4-13.  The second ring for the bottom half of the sphere

Chapter 4 ■ RFID and the Crystal Ball

102

In Figure 4-15, the fourth layer keeps the diameter of the third layer but reduces the width of the side edges from
four studs to two. There are now five exposed stud holes on the corners of the bricks, including the ones next to the
two stud edges.

Figure 4-16.  The fifth layer of the sphere begins to give it a rounder shape

Figure 4-15.  The fourth ring of the sphere

The fifth ring of the bottom half of the sphere brings the diameter of the ring in one more stud and creates a
diamond pattern that overlays the fourth ring. A zigzag pattern is visible in the fourth ring around the diamond
pattern. The fifth ring can be seen in Figure 4-16.

Chapter 4 ■ RFID and the Crystal Ball

103

When you flip over what you have built so far, you have what looks like a translucent LEGO bowl with a hole in
the bottom. Insert 1 x 2 bricks to fill to cover the seams and strengthen the integrity of your bowl. The flipped-over half
sphere can be seen in Figure 4-18.

The sixth layer is a smaller diamond than the one above it, and the last layer for the bottom of the sphere. The
outer edges come in two studs and the second row is four studs wide. Two parallel sides have a width of one stud and
the two sides that are perpendicular to those sides are a width of two studs. This can be seen in Figure 4-17.

Figure 4-17.  The last ring of the bottom of the sphere

Figure 4-18.  The flipped-over half sphere

Chapter 4 ■ RFID and the Crystal Ball

104

Completing the Top Half of the Sphere
Now that the bottom half of the sphere is secured to the base, it’s time to copy everything you did on the bottom half to
the top. Just like the ring below the center ring, the ring above the second ring will have the same diameter as the ring
below it and keep the four stud edge, but will expose the corner studs on each diagonal between the outer edges,
as shown in Figure 4-20.

Adding the Bottom of the Sphere to the Base
With the bottom half of the sphere done, it’s time to put it on the base. The wires and LEDs should be pulled through
the hole and the seams should be lined up over the ring of bricks that were placed on top of the base so that the
seams do not line up, in order to strengthen the sphere. Figure 4-19 shows the bottom half of the sphere on top of the
base with the LEDs in place. Notice that the wires are of different lengths to shine the lights on different areas of the
spheres, and the 22 gauge wires are thick enough to both plug directly into the Arduino and hold the LEDs in place.

Figure 4-19.  The bottom half of the sphere is secured to the base and the LEDs are arranged

Chapter 4 ■ RFID and the Crystal Ball

105

Figure 4-20.  A ring is added above the center ring

Figure 4-21.  The second layer above the center ring

The next ring brings the diameter of the ring in one stud while keeping a four stud width on the edges. Four
corner studs will be showing on each edge from the ring below it, as shown in Figure 4-21.

Chapter 4 ■ RFID and the Crystal Ball

106

The fourth layer above the center ring brings the diameter in another stud and begins to create the round shape
on top. Figure 4-23 shows a zigzag pattern that is left visible from the layer beneath it. The center hole is also brought
in tighter to support the level above it.

Keeping the same diameter as the ring below it, the edge shrinks from four studs to two. Below this ring, five studs
are now exposed by the shrinking ring. Figure 4-22 shows the sphere slowly closing up and the LEDs shifted into place
to glow when the sphere is done.

Figure 4-22.  The third layer above the center ring

Figure 4-23.  The fourth layer above the center ring, and the first diamond

Chapter 4 ■ RFID and the Crystal Ball

107

Figure 4-24.  The second-to-last layer of the sphere

The second-to-last layer is a smaller diamond that has a diameter two studs shorter than the diamond beneath it.
A full ring of studs ring the diamond pattern and the hole in the middle is tightened up to be able to be covered in the
final layer, which is 4 x 4 studs, similar to the bottom of the sphere, but without the hole to run the wires through. The
final two layers of the sphere are shown in Figures 4-24 and 4-25, and the completed crystal ball is shown in Figure 4-26.

Figure 4-25.  The sphere is completed with a 4 × 4 stud layer

Chapter 4 ■ RFID and the Crystal Ball

108

With the crystal ball completed, you need something to trigger the RFID reader.

Building the Magic Wand
The glass capsule RFID tag is the size of a grain of rice and can fit into most LEGO openings. To go with the crystal ball,
you will build a magic wand. The wand will consist of a 32M Technic Axle, round 2 x 2 bricks with cross axle holes in
the middle, and a round 2 x 2 tile to hold the RFID tag in (see Figure 4-27).

Figure 4-27.  The parts used to make the LEGO RFID wand

Figure 4-26.  The completed crystal ball

Chapter 4 ■ RFID and the Crystal Ball

109

Summary
RFID is a technology that is becoming quite ubiquitous; it can be found in everyday life. Now you can utilize it to make
your Arduino LEGO sculptures come to life. The tags can be used to trigger all sorts of actions and effects, and they
can vary based on the different RFID tags that are waved in front of the RFID reader.

What else can you do with the RFID reader? What different effects can you make the RFID reader do based on
different tags? Can you create different light patterns or colors based on RFID? Or can you add in some other features
that different tags can trigger in it?

Figure 4-28.  The completed wand

The best way to start the wand is to put a couple of the 2 x 2 round bricks together and cap the top with the 2 x 2
round tile. Then slide the Technic axle in so the RFID tag is secured tightly and does not rattle around when the wand
is waved. Once the RFID tag is hidden in the LEGO bricks, the other round 2 x 2 bricks can be slid up the axle and
firmly pushed together to create the wand. Once it is finished, like in Figure 4-28, it can be waved in front of the base
to bring the crystal ball to life.

111

Chapter 5

Animating the TARDIS

For 50 years now, the British Broadcasting Company has been airing Doctor Who. Since it relaunched in 2005, Doctor
Who fandom has been steadily growing. The most iconic image of the program is the blue box that the Doctor travels
in, known as the TARDIS, which stands for Time And Relative Dimension In Space. The TARDIS can take the Doctor
to any time or place in the past, present, or future. You will take it into the realm of LEGO.

The TARDIS you will build cannot travel through space or time, nor is it larger on the inside. It will, however,
be able to light up like the TARDIS does on the show, and it will be able to make the iconic TARDIS sounds. The look is
based on the TARDIS of the tenth Doctor, played by David Tennant. There are minor variations between the different
looks of the TARDIS for the different Doctors, but with minor adjustments it can be made to look like the TARDIS of
other Doctors.

The TARDIS will be built using Studs Not On Top techniques, so that it doesn’t look like it is built from LEGO bricks
(in other words, you will be hiding the studs). Then you will use the Arduino to bring it to life. The Arduino will allow it
to have lights and sounds just like the TARDIS on the television program.

A list of the parts in this chapter can be found in the appendix.

Doctoring the TARDIS
The first step is to have a way for the TARDIS to be able to make sounds, which is not inherently built into the Arduino.
To do so, you will be using a Wave Shield from Adafruit Industries (see Figure 5-1). The Wave Shield allows the Arduino
to play WAV files through a speaker or headphones and gives the ability to play music, sound effects, or any other audio
that can be digitized for listening. Like the Motor Shield, the first step is to assemble the shield (see Figure 5-2). The full
directions to do so can be found on the Adafruit web site at www.ladyada.net/make/waveshield/make.html.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.ladyada.net/make/waveshield/make.html

Chapter 5 ■ Animating the TARDIS

112

Figure 5-1.  The unassembled Wave Shield

Figure 5-2.  The assembled Wave Shield

Chapter 5 ■ Animating the TARDIS

113

Once all the soldering is done and the Wave Shield is built, the sounds need to be added. This requires an SD
memory card, which can be found at any electronics or camera store, many drugstores, and other large retailers; they
can also be ordered online. The sounds for the TARDIS and Doctor Who can be found online with a little searching,
but are mostly found in MP3 format. They will need to be converted to a WAV format to make them compatible.
This can be done in iTunes or using free software, but take care to specify the 44KHz WAV formatted audio file in order
for it to be able to be played by the Wave Shield. An online converter can be found at http://media.io/.

There are two ways to hear the output from the Wave Shield. The port on the lower left of Figure 5-2 is a
headphone port, and a pair of headphones or speakers can be plugged in to it. The alternative is to solder a speaker into
the two holes behind the headphone port. In this chapter, you will be soldering in a speaker (as seen in Figure 5-3),
but to get louder sound, a powered speaker can be plugged in instead.

Figure 5-3.  Wave Shield with speaker soldered in

Coding the Wave Shield
With the Wave Shield assembled to use with the Arduino, the next step is to upload some code to the Arduino.
Listing 5-1 contains the code for the TARDIS, which is based on code to play WAVs by LadyAda. The Arduino and
Wave Shield will play the sounds that are stored in the SD card and light the top of the TARDIS, then go dark and
silent for a preset amount of time.

Listing 5-1.  Playing the Music and Lighting the TARDIS

#include "WaveHC.h"
#include "WaveUtil.h"
 
SdReader card; // This object holds the information for the card
FatVolume vol; // This holds the information for the partition on the card

http://media.io/

Chapter 5 ■ Animating the TARDIS

114

FatReader root; // This holds the information for the volumes root directory
WaveHC wave; // This is the only wave (audio) object, since we will only play one at a time
 
uint8_t dirLevel; // indent level for file/dir names (for prettyprinting)
dir_t dirBuf; // buffer for directory reads
 
//LED Variables
int ledvalue = 0; // variable to keep the actual value
int ledpin = 6; // light connected to digital pin 6
int up=1;
int delaytime;
 
/*
 * Define macro to put error messages in flash memory
 */
#define error(msg) error_P(PSTR(msg))
 
// Function definitions (we define them here, but the code is below)
void play(FatReader &dir);
 
//////////////////////////////////// SETUP
void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps for debugging
 pinMode(6, OUTPUT);
 pinMode(17, OUTPUT);
 
 putstring_nl("\nWave test!"); // say we woke up!
 
 putstring("Free RAM: "); // This can help with debugging, running out of RAM is bad
 Serial.println(FreeRam());
 
 // if (!card.init(true)) { //play with 4 MHz spi if 8MHz isn't working for you
 if (!card.init()) { //play with 8 MHz spi (default faster!)
 error("Card init. failed!"); // Something went wrong, lets print out why
 }
 
 // enable optimize read - some cards may timeout. Disable if you're having problems
 card.partialBlockRead(true);
 
 // Now we will look for a FAT partition!
 uint8_t part;
 for (part = 0; part < 5; part++) { // we have up to 5 slots to look in
 if (vol.init(card, part))
 break; // we found one, let’s bail
 }
 if (part == 5) { // if we ended up not finding one :(
 error("No valid FAT partition!"); // Something went wrong, lets print out why
 }
 
 // Lets tell the user about what we found
 putstring("Using partition ");
 Serial.print(part, DEC);

Chapter 5 ■ Animating the TARDIS

115

 putstring(", type is FAT");
 Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?
 
 // Try to open the root directory
 if (!root.openRoot(vol)) {
 error("Can't open root dir!"); // Something went wrong,
 }
 
 // Whew! We got past the tough parts.
 putstring_nl("Files found (* = fragmented):");
 
 // Print out all of the files in all the directories.
 root.ls(LS_R | LS_FLAG_FRAGMENTED);
 
}
 
//////////////////////////////////// LOOP
void loop() {
 
 delay(500);
 root.rewind();
 play(root);
 ledvalue=0;
analogWrite(ledpin, ledvalue);
 
 delayTime=7 * 60 * 1000; //7 minutes * 60 seconds * 1000 milliseconds = 420000
 delay(delayTime);
 Serial.println("loopit");
}
 
/////////////////////////////////// HELPERS
/*
 * print error message and halt
 */
void error_P(const char *str) {
 PgmPrint("Error: ");
 SerialPrint_P(str);
 sdErrorCheck();
 while(1);
}
/*
 * print error message and halt if SD I/O error, great for debugging!
 */
void sdErrorCheck(void) {
 if (!card.errorCode()) return;
 PgmPrint("\r\nSD I/O error: ");
 Serial.print(card.errorCode(), HEX);
 PgmPrint(", ");
 Serial.println(card.errorData(), HEX);
 while(1);
}

Chapter 5 ■ Animating the TARDIS

116

/*
 * play recursively - possible stack overflow if subdirectories too nested
 */
void play(FatReader &dir) {
 
 FatReader file;
 while (dir.readDir(dirBuf) > 0) { // Read every file in the directory one at a time
 
 // Skip it if not a subdirectory and not a WAV file
 if (!DIR_IS_SUBDIR(dirBuf)
 && strncmp_P((char *)&dirBuf.name[8], PSTR("WAV"), 3)) {
 continue;
 }
 
 Serial.println(); // clear out a new line
 
 for (uint8_t i = 0; i < dirLevel; i++) {
 Serial.print(' '); // this is for prettyprinting, put spaces in front
 }
 if (!file.open(vol, dirBuf)) { // open the file in the directory
 error("file.open failed"); // something went wrong
 }
 
 if (file.isDir()) { // check if we opened a new directory
 putstring("Subdir: ");
 printEntryName(dirBuf);
 dirLevel += 2; // add more spaces
 // play files in subdirectory
 play(file); // recursive!
 dirLevel -= 2;
 } else {
 // Aha! we found a file that isn’t a directory
 putstring("Playing ");
 printEntryName(dirBuf); // print it out
 if (!wave.create(file)) { // Figure out, is it a WAV proper?
 putstring(" Not a valid WAV"); // ok skip it
 } else {
 Serial.println(); // Hooray it IS a WAV proper!
 wave.play(); // make some noise!
 
 uint8_t n = 0;
 while (wave.isplaying) { // playing occurs in interrupts, so we print dots in realtime
 if (up == 1) {
 ledvalue=ledvalue+3; //Gradually increase the illumination if we are lighting up
 } else {
 ledvalue=ledvalue-3; //Otherwise decrease to lower the lighting
 }
  
 if (ledvalue > 255) { //If we reach maximum illumination, start decreasing
 up=0;
 ledvalue=ledvalue-3;
 } else if (ledvalue < 0) { //Otherwise we’re going to make the light brighter

Chapter 5 ■ Animating the TARDIS

117

 up=1;
 ledvalue=ledvalue+3;
 }
 analogWrite(ledpin, ledvalue);
 
 putstring(".");
 if (!(++n % 32)) Serial.println();
 delay(100);
 
 }
 sdErrorCheck(); // everything OK?
 // if (wave.errors)Serial.println(wave.errors); // wave decoding errors
 }
 }
 }
}
 

It is worth noting that this code will not work without downloading the latest version of the Wave Shield drivers.
Since they did not come with the Arduino software, they must be downloaded from the software repository at
http://code.google.com/p/wavehc/. Download the file and unzip it. From there, copy the WaveHC folder into the
Arduino Libraries folder. The location of the folder can be found in the Arduino preferences. If the Arduino software
is open at the time, you must quit and restart the Arduino software so it can read the new library and use it to compile.

In the setup() function, you start by testing how much RAM is free to make sure it is available, since the Wave
Shield is more system intensive than prior programs. Although the software does not make use of this information, you
print it to the serial monitor for debugging purposes. The next step is to make sure that the SD card is readable. If the
SD card is formatted properly in a FAT format (most SD cards are preformatted in a FAT32 file system) and the card is
securely in the slot, then there is probably a bad solder joint somewhere. Since the solder joints are fairly close together
on the board, check the pins fastened to the SD card holder as well as the wires in the lower left that lead from the WAV
playing holes to the Arduino pin holes.

If the card can be read, the setup() function optimizes the ability to read, then checks if there is a valid FAT partition
on the drive. Since there are multiple parts of the card that can hold the FAT partition, it checks each in turn, and once it
finds one, it will make sure it can read the root directory in the partition. If all of those different things check out, it reads
through the directories on the card and pulls out the names of the different files on the card in order to play them during
the execution of the loop() function.

The loop() function is where you play the music. The loop() simply rewinds the WAV file back to the beginning,
then plays the music and/or sound effects that are stored on the SD card. Since the LED on top of the TARDIS is
running as part of the playing of the sounds, you do an analogWrite to turn off the light, regardless of where in the
cycle the light may be, then wait the delaytime value before playing again. While delaytime is 7 minutes (7 minutes
times 60 seconds times 1000 milliseconds), it can easily be changed to shorten the time between executions.

The main work of the code is done in the play() function. The play() function recursively traverses the
directories on the SD card, seeking out the subdirectories and will play every WAV file it finds as it goes through.
It is not necessary to put the WAV files in directories beyond the root directory, but if they are put into directories,
this code will traverse the directory structure and seek them out. When it finds a file, it opens the file and checks if it is
a WAV. If it is a WAV file, it calls the wave.play() function and starts playing the file. You create a loop with the
while (wave.isplaying), and it will stay in this loop until the end of the sound. In here, you are raising and lowering
the LED, but you can’t do it in a for loop, like you did with the crystal ball so that it is controlled by the while loop.
Instead you set a variable called up, and you raise the value of the analogWrite with each iteration until it reaches 255
(the maximum value) and flips the flag to start decrementing until it hits zero. When the loop ends, the value of the
LED is left where it is, to be reset when the play() function ends, and it returns to the loop() function. You are also
printing periods to the serial monitor so that you can see if the file is playing for debugging purposes.

http://code.google.com/p/wavehc/

Chapter 5 ■ Animating the TARDIS

118

The Chameleon Circuit: Building the TARDIS
Now that you have working code to play sound effects and light up the top of the TARDIS, it is time to actually build it.
While the first layer is plates, like in previous projects, you will not be building a three-plate base. Instead you will use
plates to secure bricks for the base. Figure 5-4 shows the 22 x 22 stud base.

Figure 5-4.  The 22 ¥ 22 stud layout of plates

The plates in Figure 5-4 are spread out to make them easier to see, but the next step is to push them together and
secure them with blue bricks. The bricks should cover the seams of the plates and hold them in place. Notice the 1 x 4
groove in the upper right corner of Figure 5-5. This is where you will lay the power cable for the Arduino, so that it can
be integrated into your design smoothly.

Chapter 5 ■ Animating the TARDIS

119

The two layers of plates and bricks will be firm, but will be made stronger with a layer of tiles. The TARDIS should
have no visible studs, so you need to cover all of the studs in the middle and the edges with tiles to give it a smooth
appearance. The side with the doors will also be covered with tiles so that they can slide smoothly over the base.
The locations of the walls will have a plate fill in the groove that the walls can be laid upon. The groove that the power
cable is laid in will not be covered by plates, but tiles will be laid down in their appropriate places (see Figure 5-6).

Figure 5-5.  A layer of bricks laid onto the plates

Chapter 5 ■ Animating the TARDIS

120

Building the Walls
Now that the base is done, it’s time to start building the walls. Since the TARDIS design features very defined seams,
you will be laying everything down to preserve them but still build a strong structure. You are laying down another
layer of plates above the base, but the corners should be 2 x 2 studs and two 2 x 8 plates between them (see Figure 5-7).
You are also laying down two 2 x 8 plates in the front, even though they will not be connected to the base, so that
the doors will have the same layout as you build them up. There will also be a one-stud hole to allow the power cord
through. This will give the cord enough room to be firmly entrenched in the base but have room to move, and the
plate to the outer edge of the layer will hide the cable hole from the outside.

Figure 5-6.  A layer of tiles and plates is laid down on top of the bricks to hide the studs

Chapter 5 ■ animating the tarDiS

121

Figure 5-7. Plates are put down over the plates on the base

Figure 5-8. Bricks are laid down on top of the plates

You have a firm base to build upon, so you can now put down bricks. The bricks are going to follow the same
pattern as the plates in Figure 5-7. In Figure 5-8, the 2 x 8 plates are covered with 2 x 8 bricks and the corners are
covered with 2 x 2 bricks. Don’t worry about the seams not being covered; you’ll take care of that soon.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5 ■ Animating the TARDIS

122

The panels of the TARDIS walls start to become defined as you start to raise them. The edges of the 2 x 8 bricks each
receive a 1 x 2 brick, except for the ones in the front corners. The doors each receive a 2 x 2 hinge to connect them to
the corner next to them; those corners each receive a 1 x 2 brick to fill them out, and the perpendicular side gets a 1 x 1
brick to give the hinge room to move when opening the doors inwards. Each of the 2 x 8 bricks has six 1 x 2 jumper plates
between the 1 x 2. The panels on the TARDIS are receded, but going one stud back would be too much, so you will use
jumpers to push the panel halfway back, giving it the proper look and feel (see Figure 5-9).

Figure 5-9.  Jumpers, hinges, and 1 ¥ 2 bricks are laid out

Three LEGO plates are the same height as one brick. You laid out the jumpers (shown in Figure 5-9) and will do so
again at the top of the panel, which means a third plate will be needed to give the panels their proper height. In Figure 5-10,
eight 1 x 6 plates are placed on top of the jumpers to adjust the height to the necessary size to fill out the panels.

Chapter 5 ■ Animating the TARDIS

123

The walls start to gain height as the hinges are secured with 2 x 2 bricks, as are the other corners. The 1 x 2 bricks,
including the hinges and the 1 x 1 bricks, are covered with another 1 x 2 brick. The 1 x 6 plates are then covered by
1 x 6 bricks; see Figure 5-11 for reference.

Figure 5-11.  1 ¥ 6 bricks go on top of the 1 ¥ 6 plates and the other bricks stack one higher

Figure 5-10.  1 ¥ 6 plates are put on top of the jumper plates

Chapter 5 ■ Animating the TARDIS

124

Once you have a firm base and the beginnings of the walls, you can begin to secure them.

Securing the Walls
Since you are keeping the visible seams based on the TARDIS from the TV show, you will use a little trickery to make
it seem like the panels and corners are independent while they are actually secured in the back. On the four corners,
you will put 2 x 2 brick corners, which are 2 x 2 bricks with one stud missing. The left and the right walls will have
1 x 2 bricks go from on top of the 1 x 2 bricks to the corners, and 1 x 1 bricks will go in front of them to make it seem
the same. With the two panels next to each other, you will put a 1 x 2 across the two 1 x 2 bricks and put two 1 x 1 bricks
in front of them. The two side walls will now be secured to the corners and to each other, as seen in Figure 5-12.
Additionally, you will place another 1 x 6 brick on top of the stacks of 1 x 6 bricks.

Figure 5-12.  The two side walls are anchored to the corners and to each other

With the two sides secure, it’s now time to do the same to the back wall. Spread 1 x 2 bricks from the edges of the
panels to the corners and across the two panels next to each other to fortify the back wall and hold it in place as well.
The side panels and other two corners will be stacked with 1 x 2 and 2 x 2 bricks to bring them up one more level.
The 1 x 6 bricks will also be raised one more level (see Figure 5-13).

Chapter 5 ■ Animating the TARDIS

125

Now the 1 x 6 bricks are slightly lower than the other bricks, so you need to put down plates to make it even.
You are laying down 1 x 2 jumper plates on top of the 1 x 6 bricks so that they will be even in height and can hold the
bricks that will be stacked on top of them (see Figure 5-14).

Figure 5-13.  The back wall is secured in place and the rest of the bricks are raised a level

Figure 5-14.  1 ¥ 2 jumper plates are placed on top of the 1 ¥ 6 bricks

Chapter 5 ■ Animating the TARDIS

126

The first set of panels is completed by placing a 2 x 8 brick across the 1 x 2 jumper plates. The jumpers will line up
with the holes in the bottom of the 2 x 8 brick, so it will securely hold the panels together. This will not only be the top
for this set of panels, but will be the bottom for the next set as well. The corners will be raised to the same level as the
2 x 8 bricks with 2 x 2 bricks (see Figure 5-15).

Figure 5-15.  The first set of panels is completed with 2 ¥ 8 bricks

The TARDIS itself has three sets of panels with windows on top, as well as the two doors, so you need to do the
same. You are going to copy the process two more times to get three sets of panels, including securing each of them to
the corners and the panels next to them. Figures 5-16 and 5-17 show the second and third sets of panels being raised.

Chapter 5 ■ Animating the TARDIS

127

Figure 5-16.  The second set of panels is raised

Figure 5-17.  The third set of panels is added

Since you don’t want to have any studs showing, you need to use a Studs Not On Top (SNOT) technique. SNOT
techniques tend to use bricks in unusual ways in order to hide the studs. You’re going to use one such technique in
order to create your windows.

Chapter 5 ■ Animating the TARDIS

128

Building the Windows
The way the windows are framed in the TARDIS, you need to be able to put plates and/or tiles between bricks to get
the proper effect. Since there needs to be a horizontal frame in addition to the vertical ones, you need to build the
windows in two ways. The first is a simple stack of blue plates and white bricks capped by a blue tile. In Figure 5-18,
the parts used are on the left and the assembled one is on the right. You need to make eight of these.

Figure 5-18.  The windows are made from a stack of plates and bricks. The parts are on the left and the assembled
windows are on the right

For the second set of windows, which you build in Figure 5-19, the middle white 1 x 2 brick is replaced by a
1 x 1 white brick and a 1 x 1 white Technic brick, which will hold a ½ Technic pin, with a 1 x 6 tile attaching to it.
The center stud beneath the 1 x 6 tile will go over the ½ pin and should cover the length of your windows. Again,
you need eight of these.

Chapter 5 ■ Animating the TARDIS

129

Now that you have the windows, you need to prepare the TARDIS for them.

Installing the Windows
You will start this level the same way that you started the previous panel sets, but instead of jumper plates, you will just
put in tiles to keep the smooth, studless appearance. The two sides are secured to the corners here to keep building
strong, as seen in Figure 5-20.

Figure 5-19.  The other eight windows will be constructed like this one

Chapter 5 ■ Animating the TARDIS

130

The windows that you built will be put in sideways, which means that they need something to attach to. The outer
1 x 2 bricks (the ones closest to the corners) will all be 1 x 2 Technic bricks with ½ Technic pins inserted into them.
This will give a stud for the windows to attach to, as shown in Figure 5-21.

Figure 5-21.  The TARDIS is raised a brick higher with Technic bricks on the outer edges

Figure 5-20.  The next set of panels prepares for the windows

Chapter 5 ■ animating the tarDiS

131

The windows with the 1 x 6 tile on the side will be attached first. The tile edge should be up, and the higher of the
two stud holes will be put on the Technic pins. The windows will not be entirely secure yet, but they will hold in place for
the remainder of the building of this section. As you install the windows, you will raise the sides a level higher as well.
You will secure the back wall of the TARDIS and secure each set of panels to the one next to it to strengthen the structure
for the last time (see Figure 5-22).

Figure 5-22. The first set of windows is attached

By adding another 1 x 2 Technic brick to the inner 1 x 2 brick stack, you add a place for the other window set.
This is also the last level before you lock everything into place with another 2 x 8 brick, so this is where you will add
another set of hinges for the doors. Like the first time, the hinges go from the 2 x 2 pillars to the outer edges of the
walls, with a 1 x 2 brick complimenting them on the pillar, and a 1 x 1 brick atop the 1 x 2 bricks on the perpendicular
edges to give the hinges room to open (Figure 5-23).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5 ■ Animating the TARDIS

132

The second set of windows goes in the same way as the first set. The windows will be on their side with the ½ pin
going into the higher of the two peg holes. Again, it will not be completely secure, but the following step will lock it into
place (see Figure 5-24).

Figure 5-23.  The second set of 1 ¥ 2 Technic bricks is added to hold the second set of windows, as well as the second set of hinges

Figure 5-24.  The second set of windows is added

Chapter 5 ■ Animating the TARDIS

133

With the windows installed, they need to be locked into place. Like the previous sets of panels, you need to put
a 2 x 8 on top of each of the sets of windows and a 2 x 2 brick on top of each of those pillars. Figure 5-25 shows the final
bricks for the TARDIS body.

Figure 5-25.  The final set of bricks for the panels is added

For the doors to move smoothly, they need to have tiles on top; otherwise they will stick on the door frame.
Figure 5-26 shows the tiles added to the tops of the doors and the plates placed on top of the other bricks to keep
a consistent height across the entire body of the TARDIS.

Chapter 5 ■ Animating the TARDIS

134

Now you need to add a level of brick, but you want to be able to hang the “Police Box” sign off the side. So instead
of putting down a level of bricks, you’ll do three levels of plates. The first level will not support all of the plates because
you have an opening in the front, but you can hold it in place by letting it rest on top of the doors until the second level.
On the third level, you will lay down a 1 x 2 – 1 x 4 bracket. This piece has a 1 x 2 stud plate on top and a 1 x 4 plate at a 90
degree angle, allowing it to hang pieces off the side. Figures 5-27 through 5-29 show the building of the stack of plates.

Figure 5-26.  Tiles are added to make the door move smoothly and plates are added for consistent height

Chapter 5 ■ Animating the TARDIS

135

Figure 5-27.  The first layer of plates is laid down. Portions of the front plates are resting on the doors and are not
secured yet

Figure 5-28.  The second layer of plates is laid down, covering the seams to lock the plates into place

Chapter 5 ■ Animating the TARDIS

136

Figure 5-29.  The third layer has a 1 ¥ 2 – 1 ¥ 4 bracket at the middle of each side

Now you want to hide the studs on the top as well as add a place to put the sign. The outer studs of that level will
be covered with tiles so they will not be seen as you continue to build upwards. Two 1 x 8 tiles will be added to each of
the 1 x 4 plates on the bracket, giving you a place to put the signs when you are ready for them (see Figure 5-30).

Figure 5-30.  Tiles are placed around the edge and on the sides

Chapter 5 ■ Animating the TARDIS

137

Adding the Arduino
Before you continue to build up, now is a good time to place the Arduino. We didn’t build a place for the Arduino into
the design of the TARDIS since we have limited room (and our version is not bigger on the inside). Instead, you are
going to use Velcro to hold the Arduino inside the TARDIS. In Figure 5-31, the Arduino with Wave Shield can be seen
with the Velcro, and in Figure 5-32, the Velcro is applied and the unit is adhered within what you have built so far.

Figure 5-31.  The Arduino setup and the Velcro

Chapter 5 ■ Animating the TARDIS

138

With the additional 2 x 2 bricks placed around the top of the TARDIS, tiles need to be placed around the edge.
Figure 5-33 shows the tiles placed atop the bricks.

Figure 5-32.  The Velcro is applied to the back of the Arduino and speaker, and that unit is adhered to the back of the
TARDIS. A layer of 2 ¥ 2 bricks is placed in a ring on the exposed studs

Figure 5-33.  With the additional 2 ¥ 2 bricks placed around the top of the TARDIS, tiles are to be placed around the edge

Chapter 5 ■ Animating the TARDIS

139

Now that the Arduino is inside the TARDIS, you can continue to build up the top.

Back to the Body . . .
The body will have a cookie jar type top, so this is the last level for the body. A set of bricks two studs wide will be
placed on top of the current level and then secured by covering the entire level with tiles, so the lip can easily rest on
top (see Figures 5-34 and 5-35).

Figure 5-34.  The last set of bricks for the body is placed on top

Chapter 5 ■ Animating the TARDIS

140

The last step to complete the body is to create labels for it.

Creating Labels
The labels consist of four Police Box banners for the top and a single sign for the left door. The best labels are
waterslide decals, but if they are unavailable, paper labels from any stationary store can be used; just be sure to get
the 8” x 10” sheets so that the labels are not cut in the middle. Figure 5-36 shows what the labels should look like,
and Figure 5-37 shows the completed TARDIS body with labels applied.

Figure 5-35.  The top level is covered in tiles

Chapter 5 ■ animating the tarDiS

141

Figure 5-36. The decals for the Police Box banner and TARDIS doordecal

Figure 5-37. The completed TARDIS body

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5 ■ Animating the TARDIS

142

Now that the body is done, you need to give your TARDIS a roof.

Building the Roof
Since you are going with a cookie jar type top, it needs an edge to hold it in place when it slides into the body, and to
give the slopes something to sit on. In Figure 5-38, you start with a ring of bricks. The ring will fit in the opening on top
of the TARDIS body.

Figure 5-38.  The initial ring for the TARDIS lid

The second layer of the lid will have 2 x 3 33 1/3 slopes around the edge, as well as the 2 x 2 33 1/3 slope corners.
Since this will not make for a very strong foundation, the inner ring of studs will be filled in with a two-stud ring of
bricks, as seen in Figure 5-39.

Chapter 5 ■ Animating the TARDIS

143

You now need to lay down two more levels of slopes. This first level, as seen in Figure 5-40, sits on top of the
exposed studs of the layer in Figure 5-39. It is secured by locking in on the level beneath it, but the level above it, which
is seen in Figure 5-41, has the slopes’ outer studs attach to the slopes beneath it. While not completely secure, they will
hold in place well enough for you to work with.

Figure 5-39.  A ring of slopes is laid down and is supported by an inner ring of bricks

Figure 5-40.  The slopes completely cover the studs beneath them

Chapter 5 ■ Animating the TARDIS

144

Figure 5-41.  The last layer of slopes have their outer edge on the slopes beneath them

Figure 5-42.  An LED is run through the hole in the middle of the 2 ¥ 4 plate and more plates secure the slopes

Now you will flip over the lid and secure the top layer of slopes in place. The center piece securing the slopes in place is
a 2 x 4 plate with holes in it. You are using a Technic plate so you can feed an LED through the hole and have the top of the
TARDIS light up. The 2 x 4 is surrounded by a ring of plates to lock the plates more firmly and cover the seams (Figure 5-42).

Chapter 5 ■ Animating the TARDIS

145

When you flip the lid back over, you push the LED over one of the studs and push a 2 x 2 corner piece into the
hole. There will be enough room to slide the LED leads into the hole after the 2 x 2 corner is inserted, so push the LED
down so that it does not stick out higher than the brick and so that the two leads do not touch (see Figure 5-43).

Figure 5-43.  The 2 ¥ 2 corner piece with the white LED in the corner

The studs are still exposed on top, so a ring of 1 x 3 tiles covers the outer exposed studs. A round 2 x 2 clear brick is
placed on top of the corner brick in the middle, which can be seen in Figure 5-44. A second 2 x 2 clear round is placed
on top of the first with a 2 x 2 round tile on top; this completes the TARDIS, as shown in Figure 5-45. Even though
the LED is hidden beneath the round, the clear bricks will refract the light and the light will be seen clearly when the
music and sounds start to play (see Figure 5-46).

Chapter 5 ■ Animating the TARDIS

146

Figure 5-45.  A second 2 ¥ 2 round is placed on top of the first, and a 2 ¥ 2 round tile is placed on top

Figure 5-44.  Tiles are placed around the top of the slopes, and a clear 2 ¥ 2 round is placed over the 2 ¥ 2 corner

Chapter 5 ■ Animating the TARDIS

147

Summary
Doctor Who fandom is at an all-time high, so you used SNOT techniques to build your own TARDIS. You were able to
capture the look and feel without having any exposed studs. Although it cannot travel through space and time, nor does
it fade out when it activates, it can simulate the lights and sounds of the TARDIS that occur when the Doctor travels.

What else can you make the TARDIS do? Can you build a sonic screwdriver that will trigger the TARDIS? Can you
make it play different sounds based on different triggers? Can you use the TARDIS to battle intergalactic machinations
of alien overlords?

Figure 5-46.  The LED is attached to the ground and pin 6, the lid is placed onto the top of the body, and the TARDIS
is completed

149

Chapter 6

Controlling LEGO Trains with Arduino

The LEGO Group has its own mechanical system, the Power Functions system. Power Functions are a system of motors
and lights that are made by LEGO and are used to power and control such projects as dinosaurs, bulldozers and trucks.
There is also a thriving train community that uses LEGO trains to create large, ornate multi-train layouts that run
through LEGO cities and towns crowded with buildings and people as they go about their LEGO lives. Like the other
Power Functions creations, the trains are controlled remotely to tell each train which direction and how fast to travel.

The LEGO Power Functions are predominantly controlled by remote controls that use infrared technology. IR is
commonly used in devices like TV remote controls to send signals to devices and react to them. The Arduino can both
send and receive IR signals with the proper connections. A simple infrared LED and the proper frequencies can be
used to mimic these signals and control these devices.

For this project, you will take an Arduino and use it to control a LEGO train. The Arduino can control all the same
functions as the Power Functions remote, but it should be more reliable and send a cleaner signal to the IR receiver
in the train to allow for finer control of the train. While the Arduino can control up to eight trains, you will be working
with just one for this project.

A list of the parts in this chapter can be found in the appendix.

Arduino Train Controls
The most basic things you need for this project are an Arduino and an infrared LED, but that wouldn’t give you
enough control over the train, so you will add a potentiometer, a button, and some LEDs to be able to control the train
and have some visible reactions. Figure 6-1 shows a diagram of the wiring and Figure 6-2 shows the required hardware
on a breadboard.

Chapter 6 ■ Controlling LEGO Trains with Arduino

150

Figure 6-1.  Diagram of the wiring for the train controller

Figure 6-2.  The Arduino hardware for the train project

Chapter 6 ■ Controlling LEGO Trains with Arduino

151

The component in the upper right is a type of a variable resistor called a potentiometer. As the shaft turns, the
resistance increases or decreases. Using one of the Arduino’s analog inputs, it is possible to read this value and do
something in your code like control the brightness of an LED or, in this case, the speed of the train. There are three
connections coming from it: far left is ground, middle connects to a pin, and far right connects to the 5V pin. The
middle connection has to go to an Analog In pin because unlike a button, which has an on state and an off state, the
potentiometer returns a numeric value from 0 to 1024, similar to the way you used the Analog Out pins to send values
of 0 to 255 to dim LEDs. You are going to use the potentiometer to control the speed of the train.

The button next to the potentiometer is a Normally Open (NO) push button. Normally Open means that there
is no connection when the button is not being pressed. Pressing the button creates a connection and the Arduino
receives a signal to let it know that the circuit has been closed. On the breadboard between the Arduino and the
button is a 200 Ohm resistor. The resistor’s job is to provide the path of least resistance for the flow of the electricity, so
the Arduino doesn’t think the button was pushed when it wasn’t.

The LEDs are going to display the current speed of the train as it is running. Since Power Functions have eight
speeds (stop and one to seven), the LEDs will be lit up to display the current speed. The LEDs will be connected to
pins 2 through 8 on the Arduino and are connected on the breadboard to the ground. The infrared LED will be used to
send the signal to the train and is connected like a normal LED, in pin 13.

Programming the Train Controls
With the hardware set up, the next step is to get the code ready. The Arduino sketch in shown in Listing 6-1.

Listing 6-1.  Train Control Code

#include <legopowerfunctions.h>
 
int fwdSpeed[] = {PWM_FLT, PWM_FWD1, PWM_FWD2,
 PWM_FWD3, PWM_FWD4, PWM_FWD5, PWM_FWD6, PWM_FWD7};
int revSpeed[] = {PWM_FLT, PWM_REV1, PWM_REV2,
 PWM_REV3, PWM_REV4, PWM_REV5, PWM_REV6, PWM_REV7};
int curSpeed = 0;
 
// IR led on port 13
LEGOPowerFunctions lego(13);
int potPin = A2; // select the input pin for the potentiometer
int val = 0;
int setSpeed = 0;
int ledPin[] = {2, 3, 4, 5, 6, 7, 8};
int buttonPin = 10;
int buttonState=0;
int fwdRev=0;
 
void setup() {
 for (int i=0; i<7; i++) {
 pinMode(ledPin[i], OUTPUT);
 }
 Serial.begin(9600);
 pinMode(buttonPin, INPUT);
}
 

Chapter 6 ■ Controlling lego trains with arduino

152

void loop() {
 val = analogRead(potPin); // read the value from the sensor
 Serial.print("POT: ");
 Serial.println(val);

 buttonState = digitalRead(buttonPin);
 Serial.print("BUTTON: ");
 Serial.println(buttonState);

if (buttonState) fwdRev = !fwdRev;

setSpeed=val/125;
 if(setSpeed>7) setSpeed=7;

 for (int i=0; i<7; i++) {
 digitalWrite(ledPin[i], LOW);
 }

 for (i=0; i<setSpeed; i++) {
 digitalWrite(ledPin[i], HIGH);
 }

 Serial.print("SPEED: ");
 Serial.println(setSpeed);
 if (fwdRev==0) {
 curSpeed=fwdSpeed[setSpeed];
 } else {
 curSpeed=revSpeed[setSpeed];
 }
 lego.ComboPWM(curSpeed, curSpeed, CH1); // set speed
 delay(100);

}

The first thing the train needs is the LEGO Power Functions library for Arduino. This library makes it
simple to interface with the infrared LED and make it talk to the train. You can find the library at
http://arduino.cc/forum/index.php?topic=89310.0, where it can be downloaded, uncompressed and
copied to the library folder. Restarting the Arduino software after it is installed will make the library accessible.

Once you have access to the library, you can set up arrays to hold the different speeds. You have two arrays, from
zero to seven (stopped to top speed). One array is for going forward while the other array is for going in reverse. The
curSpeed variable is passed to the movement function, and the fwdRev variable controls which direction the train
travels.

The setup() function is just used to do some basic preparation for the loop() function. It does some initial
definition of pins and opens the connection so that you can use the serial monitor for debugging purposes.

The loop() function starts by checking the values of the potentiometer and the button. If the button is pushed,
it flips the value of the fwdRev variable. A 0 value will tell the train to go forward and a 1 value will tell the train to go
in reverse. Then you look at the potentiometer. The potentiometer value goes from 0 to approximately 1024 and you
divide by 7. Should the value be over 7, you set it to 7 to keep the speed within the accepted values and tell the train to
crank up the speed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://arduino.cc/forum/index.php?topic=89310.0
http://arduino.cc/forum/index.php?topic=89310.0

Chapter 6 ■ Controlling LEGO Trains with Arduino

153

Once you know the speed value, you can turn on that number of LEDs. You use a for loop with an array to turn
all the lights off first, then turn on the same number of lights as the speed value. An if statement based on fwdRev tells
the code whether to use the forward or reverse array, then sets that value to the curSpeed variable. That variable is
then passed to the Power Functions function.

Power Functions have four channels and can be defined as red or blue, allowing for up to eight controls from one
unit. The channel and the color are set on the IR receiver. Most LEGO remotes can control one channel at a time but
have two switches or knobs to control red and blue simultaneously. The Arduino allows you to control more, even if
you are not using it to its full capability in this project. The ComboPWM function (attached to the variable lego, defined
right after the speed variables) has three variables passed to it: red speed, blue speed, and channel. For this program,
you are making red and blue the same speed and only using channel 1, but it’s easy to edit to add additional trains or
do things with additional Power Functions motors.

Building the Train Station
With the code done, it’s time to build the train station and then the train. First you will build the train control unit.
You need someplace to put the Arduino and breadboard, so start with a stack of three plates again. Figure 6-3 shows
the base.

Figure 6-3.  Three plates stacked for the base

Place the Arduino and breadboard from Figure 6-2 on the base to build around them. You can use the
breadboard in the base of the controller, but you may need to rearrange the layout. Lay out the Arduino and
breadboard for spacing and build the first layer of the walls around it, as shown in Figure 6-4.

Chapter 6 ■ Controlling LEGO Trains with Arduino

154

The box is built up and the parts inside are rearranged to fit in the box and to allow the LEDs to be seen from
outside. The LED bulbs are pushed into 1 x 2 Technic bricks and the lights will shine out as the potentiometer is turned.
Because the lights are recessed and covered, ultrabright LEDs are recommended so they can be viewed better. Figure 6-5
shows the second and third layers of the walls and the Technic bricks facing outwards from the front of the base.

Figure 6-4.  The basic layout for the LEGO box to hold the Arduino and breadboard

Figure 6-5.  The walls of the base are built up

Chapter 6 ■ Controlling LEGO Trains with Arduino

155

Figures 6-6 to 6-8 show the three layers of the lid being built up. Notice how the hole in the corner is left open for
the IR LED, the potentiometer, and the button. While the hole is wide initially, it is made tighter on the second layer
and finally covered as much as possible in the third layer.

Figure 6-6.  The first layer of the lid is laid down

Figure 6-7.  The second layer of the lid

Chapter 6 ■ Controlling LEGO Trains with Arduino

156

This unit can be used as a handheld remote control for the train, either using batteries to have a more mobile
experience or rooted to a limited space with a power cord. If it is going to remain in place, it is worth decorating the
base to look like a train station or some train-related destination. Figure 6-9 shows some added flourishes so it doesn’t
look out of place next to the train tracks.

Figure 6-9.  The base decorated to look like a train platform

Figure 6-8.  The lid is completed, exposing the potentiometer, button, and IR LED in the back corner

Chapter 6 ■ Controlling LEGO Trains with Arduino

157

Building a LEGO Train
There are three essential pieces for a LEGO train: the powered wheels, the battery box, and the IR receiver. The wheels
connect to one of two plugs on the IR receiver, which defines it as either a red or a blue engine, and the IR receiver
connects to a plug on the battery box. Figure 6-10 shows all three pieces.

Adding Wheels
First you need a base to connect everything to. Once you have the base (see Figure 6-11), you can flip it over and add
the wheels (see Figure 6-12). The wheels on the back of the train will be powered, giving it a rear wheel drive, while the
front wheels will be loose and just follow the tracks.

Figure 6-10.  The powered wheels, battery box, and IR receiver

Chapter 6 ■ Controlling LEGO Trains with Arduino

158

Figure 6-12.  The wheels are connected to the bottom and the cable from the back wheels is pushed through a hole

Figure 6-11.  The base for the train

Chapter 6 ■ Controlling LEGO Trains with Arduino

159

With the wheels attached, you can flip over the base and set down the framework for the train (see Figure 6-13).
You are building a basic train, but you can build any kind of train off this base. Your train’s look is based on old steam
locomotives, but it could be easily changed to a bullet train or tram.

The front of the framework will be the locomotive, while the back will be the coal car, since it will be powering
the train. For the second layer, though, just put down a second layer on top of the bricks you already laid down
(Figure 6-14).

Figure 6-13.  The framework for the train

Chapter 6 ■ Controlling LEGO Trains with Arduino

160

With two layers down, you can start to give it more shape. The third layer adds slopes to the front of the coal car
and opens a groove for where the boiler’s backhead would be located if it were an actual train. Otherwise, the front of
the train gets another layer, as does the coal car (see Figure 6-15).

Figure 6-14.  The second layer of the train

Figure 6-15.  The third layer starts to give the train shape

Chapter 6 ■ Controlling LEGO Trains with Arduino

161

The fourth layer gives the train more defined lines as you start to add more slopes. The front of the train has
slopes that angle inwards and the control area is built up another brick high. The coal car takes another slope to angle
it back further while a one-stud border goes around the rest of that area (see Figure 6-16).

Adding the Battery Pack
Since your train is powered by battery instead of coal, you will put the battery pack in the coal car (see Figure 6-17).
Once it is there, you can add the IR receiver and run the plugs from the wheels to the IR receiver to the battery pack.
1 x 2 red bricks are placed under the IR receiver to give it height for when you stack it on top of the battery pack. On
the front, four stacks of three 1 x 1 bricks are placed at the corners of the control area and a stack of three 2 x 2 rounds
are placed at the front of the train to simulate the smoke stack (see Figure 6-18).

Figure 6-16.  The train engine gets its curves, and the coal car gets its shape

Chapter 6 ■ Controlling lego trains with arduino

162

Figure 6-17. The battery pack is placed in the coal car

Figure 6-18. The train is wired up as the smoke stack and poles are added

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 6 ■ Controlling LEGO Trains with Arduino

163

Figure 6-19.  A roof and engineer are added to the front of the train while the IR receiver is added to the back

Adding the IR Receiver
All that is left now is to place the IR receiver on top of the battery pack. Be sure not to cover the power button when
adding the receiver; otherwise it will be hard to turn the train on and off. A roof and engineer are added to the front of
the train (see Figure 6-19), and it is ready to pull into the station (see Figure 6-20).

Chapter 6 ■ Controlling LEGO Trains with Arduino

164

Summary
The LEGO Group has a robust engine system and trains that can be made to be very interactive. With Arduino, they
can be programmed to be far more complex than with the simple controls LEGO provides. Going further, adding
sensors and input devices can make them even more interesting.

What kinds of things could you do to improve this system? Could you add sensors so the train interacts with the
base when it approaches the station? Could you add an Ethernet shield and have an Internet-controlled train? Could
you have multiple trains that can interact with each other and react as they go around the tracks?

Figure 6-20.  The train is ready to pull into the station

165

Chapter 7

Building a Light-Sensitive Box

This project, which was inspired by a jewelry box. In the previous projects, you worked with servo motors, which
predominantly have a limited field of motion of 180 degrees, but what happens if you want to make something turn
all the way around, like the ornamentation in a jewelry box? This project will allow you to do so based on whether the
box is open or closed.

Most jewelry boxes have a button hidden somewhere that controls the motor and tells the ornament to spin,
but you will take a more technological approach to this concept. Instead, you will read how much light is in the box
and based on that, you will tell the motor to spin.

A list of the parts in this chapter can be found in the appendix.

The Box’s Mechanics
A photocell is a variable resistor that changes its resistance based on how much or how little light is hitting it.
In this case, you are using a second resistor as a voltage divider, and it should be of equal value of the photocell.
The photocell in the figures is rated at 10k, so you should use a 10k resistor. One pin from the photocell goes to the 5V
pin to get current, while the other goes to both the Arduino pin and the resistor, the other pin of which goes to the
ground. A diagram of the layout of the sensor on a breadboard can be seen in Figure 7-1.

Chapter 7 ■ Building a Light-Sensitive Box

166

Figure 7-1.  The photo sensor and 10K Ohm resistor connect to the Arduino

Now that you have a working photocell circuit, you want to make something happen that you can see. You will
use the Adafruit motor shield again to use a stepper motor to turn when the photocell is above a certain threshold.

A stepper motor is a brushless DC motor that breaks its rotation into a defined number of steps around its 360
degree turn. Unlike the servo motor in previous projects, the motor can turn all the way around and continue turning
without resetting. The stepper you are using is a unipolar stepper motor, so it has windings on two sides, and there are
two sets of pairs of cables that need to be connected, plus a fifth wire to ground it. The stepper motor connected to the
motor shield, in addition to the soldered photocell, can be seen in Figure 7-2.

Chapter 7 ■ Building a Light-Sensitive Box

167

Programming the Box
Using the AFMotor library to control the stepper motor makes it a fairly simple process to code and utilize. The code
for the box is shown in Listing 7-1.

Listing 7-1.  The Light Controlled Motor

#include <AFMotor.h>
 
// Connect a stepper motor with 48 steps per revolution (7.5 degree)
// to motor port #1 (M1 and M2)
AF_Stepper motor(48, 1);
 
int photocellPin = A0; // the cell and 10K pulldown are connected to a0
int photocellReading; // the analog reading from the sensor divider
int threshold = 200; // the amount of light required to activate the motor
 
void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps
 
 motor.setSpeed(50); // 50 rpm
}
 
void loop() {
 photocellReading = analogRead(photocellPin);
  

Figure 7-2.  The motor shield with stepper motor and photocell attached

Chapter 7 ■ Building a Light-Sensitive Box

168

 Serial.print("Photocell reading = ");
 Serial.println(photocellReading); // the raw analog reading
 
 if (photocellReading > threshold) {
 motor.step(100, FORWARD, INTERLEAVE);
 }
 
  
 delay(100);
}
 

The first thing the code does is define the stepper motor for use. The code defines the motor as having 48 steps to
make a single 360 degree rotation and using motor port one. On the motor shield, motor port one means it is using the
M1 and M2 ports on the side of the motor shield, which are split by a ground port.

The photocell is an analog sensor, which runs from 0 to 1024 depending how much light is in the room. You
define the photocell to be on Analog In pin 0, which is found on the side closer to the power plug (this is visible in
Figure 1 as the pins closer to you).

The setup() function is used to define the speed of the motor. Since you are not utilizing a variable speed to the
motor, you are defining the speed of the stepper motor in the motor in setup(). It’s set for 50 revolutions per minute
in the code, but you can consider other ways to adjust the speed later.

In the loop() function, you read in the value of the photocell and print it to the serial monitor to see how strong
the light is. You check to see that the light is over 200, which is the threshold to take action.

A value of 200 should be high enough that the box needs to be open to start the motor once the photocell sees the
light, but the number can be adjusted accordingly for different lighting situations.

The motor is told to step forward and will continue to do so with each execution of the loop while the photocell
reading is above the threshold. If the motor is not triggered by the light or is triggered too easily, then adjust the
threshold number.

Building the Box
Now you need to build the box. It will be narrow but tall. To build a more useful box, the dimensions can be adjusted
accordingly. Start by building out the base with three layers of plates (see Figure 7-3).

Chapter 7 ■ Building a Light-Sensitive Box

169

Figure 7-3.  A stack of three plates creating a secure base

With the base created, it’s time to move the Arduino in and build the first layer of the walls to hold it in place.

Adding the Arduino
The motor and photocell will be going above the Arduino and motor shield when you are done, so put them to the
sides while you build the walls, as shown in Figure 7-3.

Chapter 7 ■ Building a Light-Sensitive Box

170

The second layer of bricks is laid down on top of the first, as shown in Figure 7-5, with the wires still laid out around it.

Figure 7-4.  The Arduino is placed on the base and the first layer of bricks make up the walls

Figure 7-5.  The second layer of bricks is added

Chapter 7 ■ Building a Light-Sensitive Box

171

The third layer clears the USB and power ports. 1 x 4 bricks lead from the sides to the two 1 x 2 bricks stacked
between the two ports, and the walls begin to circle the entire Arduino now, as shown in Figure 7-6.

Figure 7-6.  The wall now covers over the ports as well, so the bricks surround the entire Arduino

One more level of bricks is needed in order for the motor to have clearance to hang down from above the motor
without making contact with the shield (see Figure 7-7).

Chapter 7 ■ Building a light-SenSitive Box

172

Adding the Motor
Since the motor is moving, there are vibrations, and it’s a bad idea to have a motor in a metal casing rubbing against
sensitive electronic parts. Start to turn bricks inward to give the visible part of the box a bottom with which to display
your moving part. The layer of bricks will enclose the motor just enough for it to be able to hang from the motor. You
will successively close the hole in as you add plates above it. A hole is also left for the photocell, as shown in Figure 7-8.

Figure 7-7. The final level of wall bricks is laid down

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 7 ■ Building a Light-Sensitive Box

173

The bricks turned inwards are not very secure, so you should cover them with a layer of plates (see Figure 7-9).
You won’t be able to fully cover the motor yet, but enough of it can be covered to secure it in place, as well as lock the
bricks in place. If the motor is still slightly higher than the level of the plates, then leave more of it uncovered and it
will be taken care of in the following step.

Figure 7-8.  Bricks are turned inwards to support the motor

Chapter 7 ■ Building a Light-Sensitive Box

174

Figure 7-9.  A layer of plates is laid down to secure the bricks in place

Figure 7-10 shows a second layer of plates laid down, this time covering everything but the shaft of the motor and
the photocell. It’s important to make sure that nothing is touching the shaft, since that will create friction as the shaft
turns, wearing away the LEGO plate as well as affecting the performance of the motor.

Chapter 7 ■ Building a Light-Sensitive Box

175

Figure 7-10.  Another layer of plates coveres everything but the photocell and the motor shaft

Adjusting the Wall Height
You need to know how tall the walls on top should be in order to cover whatever will turn on the shaft. In this example,
you will have a fairy figure turning on the shaft and she is six bricks high. The first layer of the walls is laid out around
her as you gauge her height and width for the box (see Figure 7-11).

Chapter 7 ■ Building a Light-Sensitive Box

176

Now that you know what height the walls should be, you’re going to build them up. Since you know the height needs
to be six bricks high, you’re going to build them that high. This height may vary based on what is placed on the shaft.
You are also going to give it a staircase pattern by receding the edge one stud with each level added (see Figure 7-12).

Figure 7-11.  The fairy is placed on top of the motor shaft and the walls are defined

Chapter 7 ■ Building a Light-Sensitive Box

177

Adding Hinges
In order to be able to open and close the box, you need to add hinges. A layer of plates is added on top of the top layer
of bricks, then a second layer is added with two click hinges placed with a stud between the hinge and the wall. The
first two layers of plates can be seen in Figure 7-13 and the third layer, securing the hinges, can be seen in Figure 7-14.

Figure 7-12.  The walls are built high enough to encompass the minifigure on the shaft

Chapter 7 ■ Building a Light-Sensitive Box

178

Figure 7-14.  A third layer of plates is added to secure the hinges in place

Figure 7-13.  Two layers of plates are laid down, the second with click hinges

Chapter 7 ■ Building a Light-Sensitive Box

179

Adding a Lid
Now that the hinges are done, you need a lid. It needs to be able to cover the exposed area of the opening of the box,
so in this case it needs to be six bricks high. Note that it has a staircase pattern, complementary to the one you created
on the wall, which can be seen in Figure 7-15.

Figure 7-15.  The front and side of the lid

The top of the lid needs to be able to hold the other half of the click hinges, so add some plates. The top of the lid
will be three layer of plates again, but with the click hinges placed on the inside in positions that match the positions
of the ones that have been put on top of the box. The lid with click places can be seen in Figure 7-16.

Chapter 7 ■ Building a Light-Sensitive Box

180

Now you just need to attach the lid. The click hinges will snap into place and be able to freely open and close.
It will also be able to hold the lid in place in several positions: fully open and closed, plus a few positions in between.
Figure 7-17 shows the box with the lid installed and Figure 7-18 shows the completed box with the lid closed.

Figure 7-16.  The top of the lid of the box is three layers of plates with click hinges protruding

Chapter 7 ■ Building a Light-Sensitive Box

181

Figure 7-17.  The lid is snapped into place, completing the box

Figure 7-18.  The lid comes down to hide its contents and block light to stop the figure from moving

-

Chapter 7 ■ Building a light-SenSitive Box

182

Summary
You just built the basis for a jewelry box or some other container that could have moving parts inside. Being able to
read the climate outside, like current light or sound, gives you the ability to affect the world around you in different
ways, not just triggering motors.

What else could you have the box do? Could it make noise or play music when it opens? Could it trigger some
other projects or other devices when it opens? What could you hide in a box like this and protect by using the Arduino
as a security device?

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

183

APPENDIX A

Parts List

The following is a list of parts needed to build the projects in each of the chapters. Images of all the parts can be found
in the corresponding chapters. Each of the parts can easily be found online on web sites like SparkFun for electronic
parts and BrickLink.com for LEGO parts.

Chapter 1: LEGO, Arduino, and the Ultimate Machine
Electronics

1 Arduino Uno
1 Adafruit Industries Motor Shield
1 standard servo, TowerPro SG-5010
1 toggle on/off switch

LEGO
29 black 4 x 10 plates
5 black 2 x 10 plates
4 black 2 x 4 plates
2 black 1 x 2 plates
2 black 1 x 1 plates
5 black 1 x 4 plates
3 black 2 x 2 plates
3 black 4 x 6 plates
3 black 4 x 4 plates
2 black 2 x 12 plates
2 black 1 x 12 plates
17 blue 2 x 2 bricks
262 blue 1 x 2 bricks
2 blue 1 x 1 bricks
1 blue 2 x 4 brick
2 blue 1 x 2 Technic bricks with a hole
1 white 1 x 2 Technic brick with holes
1 dark gray Technic liftarm 1 x 9
2 dark gray Technic liftarms 2 x 4 L-shape
1 5M light gray axle
2 black Technic axle and pin connectors

http://bricklink.com/

APPENDIX A ■ Parts List

184

3 black 1M Technic pins
4 light gray Technic axle connectors
10 11M Technic beams
18 black Technic pins
2 light gray Technic pins

Chapter 2: Using Sensors with the Android
Electronics

1 Arduino Uno
3 PING))) Ultrasonic Distance Sensor by Parallax, Inc.
22 gauge wire
3 LEDs

LEGO
620 green 1 x 2 bricks
93 green 2 x 4 bricks
23 green 1 x 1 bricks
24 green 2 x 2 bricks
23 green 1 x 4 bricks
4 blue Techic 1 x 2 bricks
22 white 1 x 2 bricks
5 white 2 x 4 bricks
2 white 2 x 3 bricks
6 white 1 x 1 bricks
26 white 1 x 2 tiles
6 white 2 x 2 tiles
1 blue round 2 x 2 brick
1 light gray Technic 2 x 4 plate with holes
1 light gray 5M Technic axle
1 light gray Technic wedge-belt wheel
2 black Technic pins
2 green minifigure legs

Chapter 3: Twitter Pet
Electronics

1 Arduino Uno
1 Arduino Ethernet Shield
2 ultra bright red LEDs
22 gauge wire

APPENDIX A ■ Parts List

185

LEGO
29 black 4 x 10 plates
2 black 2 x 10 plates
2 black 4 x 4 plates
30 black 1 x 2 plates
2 black 4 x 8 plates
49 black 2 x 4 bricks
9 black 1 x 2 bricks
4 black 2 x 2 bricks
4 black 1 x 1 bricks
2 black 1 x 4 bricks
1 black 1 x 1 round plate
203 white 1 x 2 bricks
20 white 1 x 1 bricks
40 white 2 x 4 bricks
16 white 2 x 2 bricks
3 white Technic 1 x 2 bricks with holes
1 dark gray 3M Technic beam
2 white 7M Technic beams
2 black Technic pins

Chapter 4: RFID and the Crystal Ball
Electronics

1 Arduino Uno
2 SparkFun glass capsule RFID tags
1 SparkFun ID-12 RFID reader
1 SparkFun ID-12 RFID reader breakout board
6 ultra bright red LEDs

LEGO
24 black 4 x 10 plates
2 black 4 x 8 plates
2 black 2 x 10 plates
4 black 4 x 4 plates
4 black 1 x 10 plates
33 black 2 x 4 bricks
10 black 1 x 2 bricks
3 black 2 x 2 bricks
4 black 2 x 3 bricks
2 black 1 x 1 bricks
2 red 2 x 2 bricks
1 red 2 x 4 brick
104 translucent blue 1 x 2 bricks
142 translucent blue 2 x 2 bricks
24 translucent blue 1 x 1 bricks

APPENDIX A ■ Parts List

186

11 black round 2 x 2 bricks
16 white round 2 x 2 bricks
1 black round 2 x 2 tile
1 32 M Technic pin

Chapter 5: Animating the TARDIS
Electronics

1 Arduino Uno
1 Adafruit Industries Wav Shield
1 speaker

LEGO
8 blue 1 x 10 plates
1 blue 1 x 1 plate
101 blue 1 x 2 plates
32 blue 1 x 6 plates
13 blue 2 x 2 plates
5 blue 2 x 4 plates
42 blue 2 x 8 plates
25 blue 4 x 4 plates
192 blue 1 x 2 jumper plates
1 blue 2 x 4 Technic plate
52 blue 1 x 1 bricks
223 blue 1 x 2 bricks
1 blue 1 x 4 brick
98 blue 1 x 6 bricks
112 blue 2 x 2 bricks
2 blue 2 x 4 bricks
6 blue 2 x 6 bricks
73 blue 2 x 8 bricks
18 blue 1 x 2 tiles
4 blue 1 x 6 tiles
8 blue 1 x 4 tiles
84 blue 1 x 8 tiles
1 blue 2 x 2 rounded tile
4 sets of blue hinges
23 blue modified 2 x 2 bricks
8 white 1 x 1 bricks
40 white 1 x 2 bricks
8 white 1 x 1 Technic bricks
24 blue ½ Technic pins
14 blue 1 x 2 Technic bricks
36 blue 45 degree slopes
12 blue 45 degree corner slopes
2 trans clear 2 x 2 rounds
4 blue 1 x 2 – 1 x 4 brackets

APPENDIX A ■ Parts List

187

Chapter 6: Controlling LEGO Trains With Arduino
Electronics

1 Arduino Uno
7 ultra bright red LEDs
1 infrared LED
1 normal open push button
1 potentiometer
1 220 Ohm resistor

LEGO for Train Station
1 black 1 x 1 plate
14 black 1 x 2 plates
1 black 1 x 3 plate
11 black 1 x 4 plates
1 black 2 x 2 plate
1 black 2 x 6 plate
1 black 2 x 8 plate
3 black 2 x 10 plates
3 black 4 x 4 plates
27 black 4 x 10 plates
24 white 1 x 2 bricks
8 white 2 x 4 bricks
7 white 1 x 2 Technic bricks
Decorative LEGO pieces including chairs, minifigures, clocks, etc.

LEGO for Train
Train base
Train motor
Train wheels
Train battery pack
16 red 1 x 1 bricks
71 red 1 x 2 bricks
15 red 2 x 4 bricks
4 red 33 3 x 1 slopes
2 red 33 3 x 4 slopes
3 blue 2 x 2 rounded bricks
2 black 6 x 6 plates
1 conductor minifigure

Chapter 7: Building a Light Sensitive Box
Electronics

1 Arduino Uno
1 Adafruit Industries Motor Shield
1 10k protocell
1 10k resistor
1 stepper motor

APPENDIX A ■ Parts List

188

LEGO
8 black 4 x 10 plates
3 black 2 x 12 plates
42 black 1 x 2 plates
24 black 2 x 2 plates
4 black 2 x 4 plates
7 black 4 x 4 plates
1 black 4 x 6 plate
4 black 1 x 1 plates
14 black 1 x 2 plates
2 black 6 x 8 plates
1 black 1 x 3 plate
4 black 1 x 4 plates
6 black 1 x 1 bricks
26 black 1 x 2 bricks
2 black x`1 x 3 bricks
2 black 1 x 4 bricks
2 black 1 x 10 bricks
21 black 2 x 3 bricks
3 black 2 x 2 bricks
32 black 2 x 4 bricks
39 red 1 x 2 bricks
1 red 1 x 8 brick
2 light gray hinge plates 1 x 2 with 2 fingers on end
2 light gray hinge plates 1 x 2 with 1 finger on end

A�       �
Arduino

electronics, 183
Ethernet shield, 3
internet connection, 3
LEGO, 183
and LEGO Mindstorms NXT Intelligent Brick, 2
microcontroller, 1
program, 3

Blink program, 4
digitalWrite function, 5
global variables, 5
light emitting diode (LED), 3–4

ultimate machine building, 10
activated machine, 25
addition of layers, 14
Angled Technic beam, 18
Arduino addition, 15
attachments, switch, 19
axle joiners and pins, 19
base creation, 12
box layer, 14
bricks stacking, 11
brick walls, 13
completed box, 25
curved Technic beam, 18
dimension selection, 11
extension (switch), 20
frictionless pins, 23
layers, plate, 12–13
Lego arms, 17
Lego plates, 11
Lid, 21, 24
motor arms, 20
seating of Arduino, 16
servo motor and switch, 17
shelf creation, 15
switch, 17

Technic beams, 21–22
Technic bricks, 24
toggle switch, Technic brick, 16
walls, 20

ultimate machine program, 6
Arduino programming, 9
assembling, 6
code, 9
connection(switch), 9
global variables, 10
motor requirement, 6
motor shield (assembled), 7
with servo motor, 7
setup() section, 10
switch addition to, 8
unassembled motor shield, 6

B�       �
Building Twitter Pet

Arduino positioning, 72
brick connection, 73
bricks shifting, 73
ethernet port covered

by lid, 74
initial level, 72

base, 70
layers overlapping, 71
locking plates, 72
plates for bottom, 71

covering Arduino, 74
accessible ports, 76
covering layer, 75
LEGO plates over top, 74
sculpture, 75

ears, 85–86
eyes and nose, 82
head, 83–84
pet, 86

Index

189

rings addition, 76
fifth ring-three bricks, 81
first ring, 76
forth ring-four bricks high, 78
second ring-two bricks high, 77
third ring-four bricks high, 78

C, D, E, F, G, H�       �
Chameleon Circuit

Arduino addition
bricks and tiles, 138
to TARDIS, 138
and Velcro, 137

body of, 139
brick set, 139
tiles, 140

install windows, 129
increase, Technic bricks, 130
panel, 130
plate layers, 135–136
set of windows, 131–133
tiles, 136
tiles and plates, 134

label creation, 140
Police Box banner, 141
TARDIS body, 141
TARDIS doordecal, 141

roof building, 142
bricks, inner rings, 143
completed TARDIS, 147
fixing LED, 144
ring, lid, 142
round tile, 146
slopes of, 143–144
tiles, slopes, 146
white LED, 145

secure, wall, 124
anchored walls, 124
back wall, 125
jumper plates, 125
panel set, 126–127

TARDIS building, 118
brick layers, 119
stud layout, plates, 118
tiles and plates, 120

wall building, 120
base, placing plates, 121
bricks and plates, 123
bricks placing, 121
jumpers, hinges and bricks, 122
LEGO plate, jumper, 123

windows building
eight windows, 129
stack of plates, 128

Crystal Ball and RFID
and Arduino, 89

connection to reader, 91
connection via breadbord, 91
glass capsule tags, 89
RFID reader, 90
SparkFun button, 89

building of, 94
Arduino and reader,

base levels, 95
assembling sphere base, 100
base, 94
base, sphere, 99
bottom of sphere, 104
centre ring, sphere, 100
completed sphere, 104
a crystal ball, 108
finalizing sphere, 103
first layer of lid, 98
flipping of sphere, 103
layers, 97
layer security, 96
LED positioning, 104
LEGO RFID, 108
lid, 97
magic wand, 108
addition of rings, 105–106
ring, sphere, 101–102
second layer of lid, 98
shaping sphere, 102
addition of sphere, 106
sphere, 100, 107
stud layer, 101, 107
third layer of lid, 99
a wand, 109

electronics, 185
LEGO, 185
magic generation, 92

crystal ball, 92
loop() functions, 94
setup() function, 94

I, J, K�       �
Internet of Things, 65

L, M, N, O, P, Q, R�       �
LEGO machine See Arduino
Light-Sensitive Box

building, 168
Arduino addition, 169
bricks, second layer, 170
bricks support, motor, 173
click hinges protrude, 180
completed box, lid, 181

■ index

190

Building Twitter Pet (cont.)

fairy palcement, 176
final wall, 172
height of wall, adjust, 175
hinges, 177
lid addition, 179
minifigure encompassment, 177
motor addition, 172
motor shaft, 175
performance of lid, light, 181
photocell, 175
plates and hinges, 178
plates for base, 169
secure, hinges, 178
security, bricks, 174
USB and power ports,

third layer, 171
walls, first layer of bricks, 170

electronics, 187
LEGO, 188
mechanics, 165

Ohm resistor, 166
photo sensor, 166
stepper motor, 167

programming, 167
light controlled motor, 167
loop() function, 168
photocell, 168
setup() function, 168

S�       �
Sensors with Android, 27

building, 38
antenna, 62
arms, 60–61
arms addition, 44
assembled rings, 40
body, 42–44
body’s first layer, 39
bottom of head, 53
completed legs, 59
foundation, 38
harness for Arduino, 41
head, 49–52
head separation, 47
leg creation, 57–59
neck, servo motor, 48
portion for eyes, 51
positioning the head, 56
power plug addition, 42
ring(blocks), 40
second layer of the body, 39
sensors addition, 45–47
supporting head, 54
Technic hole, 53
Technic pin and wheel, 55

turning head, 52, 54
wheel and servo motor, 55

electronics, 184
LEGO, 184
ultrasound, 27

addition of sensors, 31
and Arduino layout, 28
breadboard components, 28
breadboard, ultrasonic sensors, 32
code, 34
code, PING))), 29
executing servo motor, 36–38
green LED and Arduino to the

breadboard, 29
LED lighting, 35
PING))) Ultrasonic Distance Sensor, 27
pingPin, 30
pins of, 27
serial monitor, 31
soldered sensors, 35
ultrasonic sensors, 33
wiring of Arduino, 32

T�       �
Time And Relative Dimension In Space (TARDIS)

animation, 111
Chameleon circuit, 118

Arduino addition, 137
base, placing plates, 121
body of, 139
brick layers, 119
bricks and plates, 123
install windows, 129
jumper plates, 123
jumpers, hinges and bricks, 122
label creation, 140
placing of bricks, 121
plates, stud layout, 118
roof building, 142
security, walls, 124
tiles and plates, 120
walls, 120
windows building, 128

doctoring, 111
assembled wave shield, 112
coding wave shield, 113
loop() function, 117
music and light, 113
output ports, 113
play() function, 117
setup() function, 117
speaker, wave shield, 113
wave shield (unassembled), 112

electronics, 186
LEGO, 186

■ Index

191

Trains with Arduino, LEGO, 149
building, 157

addition of wheels, 157
battery box, 157
battery pack, 161
coal car, battery pack, 162
completed train, 164
engine and coal car, 161
framework, 159
IR receiver, 157, 163
powered wheels, 157
roof and engineer, 163
second layer, 160
third layer, 160
train base, 158
wheel connection, 158
wired, smoke stack and poles, 162

controls, 149
hardware, project, 150
normally open (NO), 151
potentiometer, 151
wiring, controller, 150

electronics, 187
LEGO for train, 187
programming controls, 151

code, 151
ComboPWM function, 153
loop() function, 152
power function library, 152
setup() function, 152

station building, 153
box for Arduino and breadboard, 154
decorated platform, 156
first layer of lid, 155
IR LED, 156
LEDs, 154
lid layer, 156
plates for base, 153
potentiometer, 156
second layer of lid, 155
walls of base, 154

Twitter Pet, 65
Arduino internet connection, 65

connectToServer() function, 69
ethernet port, 66

IP address, 69
loop() function, 70
MAC address, 69
new Tweets check, 67, 69
readingTweet

variable, 70
shield, ethernet, 66

building of, 70
Arduino positioning, 72–74
base, 70–72
covering Arduino, 74–76
ears, 85–86
eyes and nose, 82
head, 83–84
pet, 86
rings addition, 76–82

electronics, 184
LEGO, 185

U, V, W, X, Y, Z������
Ultrasound Sensor, 27

additional sensors, 32
Android building, 38

antenna, 62
Arduino harness, 41
arms, 60–61
arms and sensors, 44–47
body, 42–44
foundation, 38–40
head, 49–52
legs, 57–60
power plug level, 42
seperation of head

from body, 47–48
supporting head, 54–56
turning head, 52–54

Arduino connection, 33
Arduino layout, 28
breadboard, 28
code, PING))), 29
PING))) Ultrasonic Distance

Sensor, 27
servo motor, 36, 38

■ index

192

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Arduino and LEGO
Projects

Jon Lazar

Arduino and LEGO Projects

Copyright © 2013 by Jon Lazar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4929-0

ISBN-13 (electronic): 978-1-4302-4930-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Developmental Editor: James Markham
Technical Reviewer: Brian Evans
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To all those who pick up two bricks and snap them together.

vii

Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments��� xv

Introduction��� xvii

Chapter 1: LEGO, Arduino, and The Ultimate Machine■■ ��1

Introducing the Arduino��1

Your First Arduino Program��3

Programming the Ultimate Machine��6

Assembling the Arduino and Motor�� 6

Programming the Arduino��� 9

Building the Ultimate Machine���10

Selecting the Dimensions��� 11

Building the Brick Walls�� 13

Adding The Arduino��� 15

Adding LEGO Arms and a Switch�� 17

Raising the Walls�� 20

Building the Lid��� 21

Summary��26

Chapter 2: Using Sensors with the Android■■ ��27

The Ultrasound Sensor���27

Adding Additional Sensors�� 31

Building the Android���38

Start with the Foundation��� 38

■ Contents

viii

Building a Harness for the Arduino��� 41

Adding a Level for the Power Plug��� 42

Building the Body��� 42

Adding Arms and Sensors�� 44

Separating the Body from the Head��� 47

Building the Head��� 49

Creating the Legs��� 57

Building the Arms��� 60

Building the Antenna�� 62

Summary��63

Chapter 3: Twitter Pet■■ ���65

Connecting the Arduino to the Internet��65

Building The Twitter Pet���70

Building the Base�� 70

Setting the Arduino in Place��� 72

Covering the Arduino�� 74

Adding Rings�� 76

Adding the Eyes and Nose�� 82

Adding the Head��� 83

Summary��87

Chapter 4: RFID and the Crystal Ball■■ ��89

Arduino and RFID��89

Generating Magic with Code��92

Building the Crystal Ball���94

Building the Base�� 94

Building the Lid��� 97

Building the Sphere�� 100

Building the Magic Wand�� 108

Summary��109

■ Contents

ix

Chapter 5: Animating the TARDIS■■ ���111

Doctoring the TARDIS���111

Coding the Wave Shield�� 113

The Chameleon Circuit: Building the TARDIS��118

Building the Walls��� 120

Securing the Walls�� 124

Building the Windows��� 128

Installing the Windows��� 129

Adding the Arduino��� 137

Back to the Body . . .�� 139

Creating Labels��� 140

Building the Roof�� 142

Summary��147

Chapter 6: Controlling LEGO Trains with Arduino■■ ���149

Arduino Train Controls��149

Programming the Train Controls���151

Building the Train Station���153

Building a LEGO Train���157

Adding Wheels�� 157

Adding the Battery Pack��� 161

Adding the IR Receiver��� 163

Summary��164

Chapter 7: Building a Light-Sensitive Box■■ ��165

The Box’s Mechanics��165

Programming the Box��167

Building the Box���168

Adding the Arduino��� 169

Adding the Motor�� 172

Adjusting the Wall Height��� 175

■ Contents

x

Adding Hinges�� 177

Adding a Lid�� 179

Summary��182

Appendix A: Parts List■■ ��183

Chapter 1: LEGO, Arduino, and the Ultimate Machine���183

Electronics�� 183

LEGO��� 183

Chapter 2: Using Sensors with the Android��184

Electronics�� 184

LEGO��� 184

Chapter 3: Twitter Pet���184

Electronics�� 184

LEGO��� 185

Chapter 4: RFID and the Crystal Ball��185

Electronics�� 185

LEGO��� 185

Chapter 5: Animating the TARDIS���186

Electronics�� 186

LEGO��� 186

Chapter 6: Controlling LEGO Trains With Arduino��187

Electronics�� 187

LEGO for Train Station��� 187

LEGO for Train��� 187

Chapter 7: Building a Light Sensitive Box��187

Electronics�� 187

LEGO��� 188

Index��189

xi

About the Author

Jon Lazar is a freelance developer and LEGO builder with 15+ years of experience in
the technology field. He started his career at AT&T and has since helped a number
of startups in the NYC area in building their digital presences and their digital
infrastructures. In his free time, he is an accomplished builder of LEGO sculptures.
He regularly writes about LEGO, social media, technology, and other related topics
on justjon.net and can be found on Twitter at @JustJon.

http://justjon.net
http://@JustJon

xiii

About the Technical Reviewer

Brian Evans is an artist working in electronic media and Assistant Professor of Art at Metropolitan State University of
Denver, where he teaches multidisciplinary courses in art on topics that include electronics and digital fabrication. He
is the author of Beginning Arduino Programming (Apress, 2011) and Practical 3D Printers (Apress, 2012). He received
an MFA from California State University, Long Beach in 2008, and a BFA from Arizona State University in 2005.

xv

Acknowledgments

Jon would like to thank Mike and Lee for helping him come out of his LEGO “dark ages” and become the AFOL LEGO
builder he is today. Thanks to Marwan for his assistance with the Arduino controller for the LEGO Power Functions
train. And thanks to Brian for looking at the code for the projects and cleaning up and improving it.

A special thank you to the British Broadcasting Company for the permission to include the TARDIS in this book
and for 50 years of Doctor Who.

	Arduino and LEGO Projects
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: LEGO, Arduino, and The Ultimate Machine
	Introducing the Arduino
	Your First Arduino Program
	Programming the Ultimate Machine
	Assembling the Arduino and Motor
	Programming the Arduino

	Building the Ultimate Machine
	Selecting the Dimensions
	Building the Brick Walls
	Adding The Arduino
	Adding LEGO Arms and a Switch
	Raising the Walls
	Building the Lid

	Summary

	Chapter 2: Using Sensors with the Android
	The Ultrasound Sensor
	Adding Additional Sensors

	Building the Android
	Start with the Foundation
	Building a Harness for the Arduino
	Adding a Level for the Power Plug
	Building the Body
	Adding Arms and Sensors
	Separating the Body from the Head
	Building the Head
	Turning the Head
	Supporting the Head

	Creating the Legs
	Building the Arms
	Building the Antenna

	Summary

	Chapter 3: Twitter Pet
	Connecting the Arduino to the Internet
	Building The Twitter Pet
	Building the Base
	Setting the Arduino in Place
	Covering the Arduino
	Adding Rings
	The First Ring
	The Second Ring—Two Bricks High
	The Third Ring—Four Bricks High
	The Fourth Ring—Four Bricks High
	The Fifth Ring—Three Bricks High

	Adding the Eyes and Nose
	Adding the Head

	Summary

	Chapter 4: RFID and the Crystal Ball
	Arduino and RFID
	Generating Magic with Code
	Building the Crystal Ball
	Building the Base
	Building the Lid
	Building the Sphere
	Assembling the Bottom Half of the Sphere
	Adding the Bottom of the Sphere to the Base
	Completing the Top Half of the Sphere

	Building the Magic Wand

	Summary

	Chapter 5: Animating the TARDIS
	Doctoring the TARDIS
	Coding the Wave Shield

	The Chameleon Circuit: Building the TARDIS
	Building the Walls
	Securing the Walls
	Building the Windows
	Installing the Windows
	Adding the Arduino
	Back to the Body . . .
	Creating Labels
	Building the Roof

	Summary

	Chapter 6: Controlling LEGO Trains with Arduino
	Arduino Train Controls
	Programming the Train Controls
	Building the Train Station
	Building a LEGO Train
	Adding Wheels
	Adding the Battery Pack
	Adding the IR Receiver

	Summary

	Chapter 7: Building a Light-Sensitive Box
	The Box’s Mechanics
	Programming the Box
	Building the Box
	Adding the Arduino
	Adding the Motor
	Adjusting the Wall Height
	Adding Hinges
	Adding a Lid

	Summary

	APPENDIX A: Parts List
	Chapter 1: LEGO, Arduino, and the Ultimate Machine
	Electronics
	LEGO

	Chapter 2: Using Sensors with the Android
	Electronics
	LEGO

	Chapter 3: Twitter Pet
	Electronics
	LEGO

	Chapter 4: RFID and the Crystal Ball
	Electronics
	LEGO

	Chapter 5: Animating the TARDIS
	Electronics
	LEGO

	Chapter 6: Controlling LEGO Trains With Arduino
	Electronics
	LEGO for Train Station
	LEGO for Train

	Chapter 7: Building a Light Sensitive Box
	Electronics
	LEGO

	Index

