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Multipliers

Name Symbol Value
terra T 10"
giga G 10°
mega M (MEG in SPICE) 10°
kilo k 10°
milli m 107

micro u (or u) 107
nano n 107
pico p 107"

femto f 107"
atto a (not used in SPICE) 107"

Physical Constants

Name Symbol Value/Units
Vacuum dielectric g, 8.85 aF/um
constant
Silicon dielectric & 11.7g,
constant
Si0, dielectric €, 3.97¢,
constant
SiN, dielectric €y lég,
constant
Boltzmann’s constant k 1.38 x 107 J/K
Electronic charge q 1.6 x 10" C
Temperature T Kelvin

Thermal voltage

=

kT/g =26 mV @ 300K
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Preface

CMOS (complementary metal oxide semiconductor) technology continues to be the
dominant technology for fabricating integrated circuits (ICs or chips). This dominance
will likely continue for the next 25 years and perhaps even longer. Why? CMOS
technology is reliable, manufacturable, low power, low cost, and, perhaps most
importantly, scalable. The fact that silicon integrated circuit technology is scalable was
observed and described in 1965 by Intel founder Gordon Moore. His observations are
now referred to as Moore’s law and state that the number of devices on a chip will double
every 18 to 24 months. While originally not specific to CMOS, Moore’s law has been
fulfilled over the years by scaling down the feature size in CMOS technology. Whereas
the gate lengths of early CMOS transistors were in the micrometer range (long-channel
devices) the feature sizes of current CMOS devices are in the nanometer range
(short-channel devices).

To encompass both the long- and short-channel CMOS technologies in this book,
a two-path approach to custom CMOS integrated circuit design is adopted. Design
techniques are developed for both and then compared. This comparison gives readers
deep insight into the circuit design process. While the square-law equations used to
describe  MOSFET operation that students learn in an introductory course in
microelectronics can be used for analog design in a long-channel CMOS process they are
not useful when designing in short-channel, or nanometer, CMOS technology. The
behavior of the devices in a nanometer CMOS process is quite complex. Simple
equations to describe the devices' behavior are not possible. Rather electrical plots are
used to estimate biasing points and operating behavior. It is still useful, however, for the
student to use mathematical rigor when learning circuit analysis and design and, hence,
the reason for the two-path approach. Hand calculations can be performed using a
long-channel CMOS technology with the results then used to describe how to design in a
nano-CMOS process.

XXX1
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What's new in the third edition of CMOS? The information discussing computer-
aided design (CAD) tools (e.g., Cadence, Electric, HSPICE, LASI, LTspice, and
WinSpice) has been moved to the book's webpage, http://CMOSedu.com. In addition,
chapters were added covering the implementation of data converters and feedback
amplifiers. This additional, practical, information should make the book even more useful
as an academic text and companion for the working design engineer. As in the earlier
editions, the book is filled with practical design examples, discussions, and problems.
The solutions to the end-of-chapter problems (for self-study) and the netlists used when
simulating the circuits are found at CMOSedu.com. Additional problems are also found
at this website. Those interested in gaining an in-depth knowledge of CMOS analog and
digital design will be greatly aided by downloading, modifying, and simulating the design
examples found in the book.

The assumed background of the reader is a knowledge of linear circuits (e.g., RC
and RLC circuits, Bode plots, Laplace transforms, AC analysis, etc.), microelectronics
(e.g., diodes, transistors, small-signal analysis, amplifiers, switching behavior, etc.), and
digital logic design. Several courses can be taught using this book including VLSI or
CMOS digital IC design (chapters 1-7 and 10-19), CMOS analog IC design (chapters 9
and 20-24), and advanced analog IC design (chapters 8 and 25-31).

How will this book be useful to the student, researcher, or practicing engineer?

A great deal of effort has gone into making this book useful to an eclectic audience. For
the student, the book is filled with hundreds of examples, problems, and practical
discussions (according to one student there can never be too many examples in a
textbook). The layout discussions build a knowledge foundation important for
troubleshooting and precision or high-speed design. Layout expertise is gained in a
step-by-step fashion by including circuit design details, process steps, and simulation
concerns (parasitics). Covering layout in a single chapter and decoupling the discussions
from design and simulation was avoided. The digital design chapters emphasize
real-world process parameters (e.g., I, , 1, , £, , VDD). The analog chapters provide
coherent discussions about selecting device sizes and design considerations. Likewise
“cookbook” design procedures for selecting the widths/lengths of MOSFETSs and design
using long-channel equations in a short-channel process are not present. The focus is on
preparing the student to “hit the ground running” when they become a custom CMOS IC
designer or product engineer.

For the researcher, topics in circuit design such as noise considerations and
sensing using delta-sigma modulation (DSM) continue to be important in nanometer
CMOS. For example, in Ch. 17 the use of DSM has been applied to CMOS image
sensors, Flash memory, and memory using thin oxides (direct tunneling). Sensing using
DSM is important because it makes use of the fact that as CMOS clock speeds are going
up, the gain and matching of transistors is deteriorating. Further, Ch. 8 discusses
noise-limited design issues such as, “Why can’t I improve the signal-to-noise ratio in my
imaging chip?” or “Why is integrating thermal or flicker noise harmful?”

For the working engineer, the book provides design and layout examples that will
be immediately useful in products. At the risk of stating the obvious, matching, power,
speed, process shifts, power supply voltage variations, and temperature behavior are
extremely important in practical design. The discussions and examples found in this book
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are focused on these topics. Phase-locked loops, charge pumps, low-voltage references,
single and fully-differential op-amp designs, continuous-time and clocked comparators,
memory circuits, etc., are covered in detail with numerous examples. To ensure the most
practical computer validation of the designs, the simulations for the nanometer designs (a
50 nm process) use the BSIM4 SPICE models. Again, all of the book's simulation
examples are available at CMOSedu.com.
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Chapter

Introduction to CMOS Design

This chapter provides a brief introduction to the CMOS (complementary metal oxide
semiconductor) integrated circuit (IC) design process (the design of “chips”). CMOS is
used in most very large scale integrated (VLSI) or ultra-large scale integrated (ULSI)
circuit chips. The term “VLSI” is generally associated with chips containing thousands or
millions of metal oxide semiconductor field effect transistors (MOSFETs). The term
“ULSI” is generally associated with chips containing billions, or more, MOSFETs. We’ll
avoid the use of these descriptive terms in this book and focus simply on “digital and
analog CMOS circuit design.”

We’ll also introduce circuit simulation using SPICE (simulation program with
integrated circuit emphasis). The introduction will be used to review basic circuit analysis
and to provide a quick reference for SPICE syntax.

1.1 The CMOS IC Design Process

The CMOS circuit design process consists of defining circuit inputs and outputs, hand
calculations, circuit simulations, circuit layout, simulations including parasitics,
reevaluation of circuit inputs and outputs, fabrication, and testing. A flowchart of this
process is shown in Fig. 1.1. The circuit specifications are rarely set in concrete; that is,
they can change as the project matures. This can be the result of trade-offs made between
cost and performance, changes in the marketability of the chip, or simply changes in the
customer’s needs. In almost all cases, major changes after the chip has gone into
production are not possible.

This text concentrates on custom IC design. Other (noncustom) methods of
designing chips, including field-programmable-gate-arrays (FPGAs) and standard cell
libraries, are used when low volume and quick design turnaround are important. Most
chips that are mass produced, including microprocessors and memory, are examples of
chips that are custom designed.

The task of laying out the IC is often given to a layout designer. However, it is
extremely important that the engineer can lay out a chip (and can provide direction to the
layout designer on how to layout a chip) and understand the parasitics involved in the
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layout. Parasitics are the stray capacitances, inductances, pn junctions, and bipolar
transistors, with the associated problems (breakdown, stored charge, latch-up, etc.). A
fundamental understanding of these problems is important in precision/high-speed design.

Define circuit inputs
and outputs
(Circuit specifications)

!

Hand calculations
and schematics

l

Circuit simulations W

Does the circuit
meet specs?

—)1 Layout
'

Re-simulate with parasitics

Does the circuit
meet specs?

4)‘ Prototype fabrication ‘

{ Test and evaluate J

No, fab problem No, spec problem

Does the circuit
meet specs?

Production

Figure 1.1 Flowchart for the CMOS IC design process.
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1.1.1 Fabrication

CMOS integrated circuits are fabricated on thin circular slices of silicon called wafers.
Each wafer contains several (perhaps hundreds or even thousands) of individual chips or
“die” (Fig. 1.2). For production purposes, each die on a wafer is usually identical, as seen
in the photograph in Fig. 1.2. Added to the wafer are test structures and process monitor
plugs (sections of the wafer used to monitor process parameters). The most common
wafer size (diameter) in production at the time of this writing is 300 mm (12 inch).

A die fabricated with other dice on the silicon wafer
= O
\
] Top (layout)
/ Enlarged view
N 2 ——— Side (cross-section)
u view

Wafer diameter is typically 100 to 300 mm.

Figure 1.2 CMOS integrated circuits are fabricated on and in a silicon wafer.
Shown are 150, 200, and 300 mm diameter wafers. Notice the reflection
of ceiling tiles in the 300 mm wafer.

The ICs we design and lay out using a layout program can be fabricated through
MOSIS (http://mosis.com) on what is called a multiproject wafer; that is, a wafer that is
comprised of chip designs of varying sizes from different sources (educational, private,
government, etc.). MOSIS combines multiple chips on a wafer to split the fab cost among
several designs to keep the cost low. MOSIS subcontracts the fabrication of the chip
designs (multiproject wafer) out to one of many commercial manufacturers (vendors).
MOSIS takes the wafers it receives from the vendors, after fabrication, and cuts them up
to isolate the individual chip designs. The chips are then packaged and sent to the
originator. A sample package (40-pin ceramic) from a MOSIS-submitted student design
is seen in Fig. 1.3. Normally a cover (not shown) keeps the chip from being exposed to
light or accidental damage.
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. R Bond wire Epoxy to hold
Chip (b) Bonding pad c}fip is::. place

Figure 1.3 How a chip is packaged (a) and (b) a closer view.

Note, in Fig. 1.3, that the chip’s electrical signals are transmitted to the pins of the
package through wires. These wires (called “bond wires”) electrically bond the chip to the
package so that a pin of the chip is electrically connected (shorted) to a piece of metal on
the chip (called a bonding pad). The chip is held in the cavity of the package with an
epoxy resin (“glue”) as seen in Fig. 1.3b.

The ceramic package used in Fig. 1.3 isn’t used for most mass-produced chips.
Most chips that are mass produced use plastic packages. Exceptions to this statement are
chips that dissipate a lot of heat or chips that are placed directly on a printed circuit board
(where they are simply “packaged” using a glob of resin). Plastic packaged (encapsulated)
chips place the die on a lead frame (Fig. 1.4) and then encapsulate the die and lead frame
in plastic. The plastic is melted around the chip. After the chip is encapsulated, its leads
are bent to the correct position. This is followed by printing information on the chip (the
manufacturer, the chip type, and the lot number) and finally placing the chip in a tube or
reel for shipping to a company that makes products that use the chips. Example products
might include chips that are used in cell phones, computers, microwave ovens, printers.

Layout and Cross Sectional Views

The view that we see when laying out a chip is the top, or layout, view of the die.
However, to understand the parasitics and how the circuits are connected together, it’s
important to understand the chip’s cross-sectional view. Since we will often show a
layout view followed by a cross-sectional view, let’s make sure we understand the
difference and how to draw a cross-section from a layout. Figure 1.5a shows the layout
(top) view of a pie. In (b) we show the cross-section of the pie (without the pie tin) at the
line indicated in (a). To “lay-out” a pie we might have layers called: crust, filling,
caramel, whipped-cream, nuts, etc. We draw these layers to indicate how to assemble the
pie (e.g., where to place nuts on the top). Note that the order we draw the layers doesn't
matter. We could draw the nuts (on the top of the pie) first and then the crust. When we
fabricate the pie, the order does matter (the crust is baked before the nuts are added).



Chapter 1 Introduction to CMOS Design 5

Figure 1.4 Plastic packages are used (generally) when the chip is mass produced.

(a) Layout view

(b) Cross-sectional view

Figure 1.5 Layout and cross sectional view of a pie (minus pie tin).
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1.2 CMOS Background

CMOS circuit design (the idea and basic concepts) was invented in 1963 by Frank
Wanlass while at Fairchild Semiconductor, see US Patent 3,356,858, [5]. The idea that a
circuit could be made with discrete complementary MOS devices, an NMOS (n-channel
MOSFET) transistor (Fig. 1.6) and a PMOS (p-channel) transistor (Fig. 1.7) was quite
novel at the time given the immaturity of MOS technology and the rising popularity of the
bipolar junction transistor (BJT) as a replacement for the vacuum tube.

SOURCE

Figure 1.6 Discrete NMOS device from US Patent 3,356,858 [S]. Note the metal
gate and the connection to the MOSFET's body on the bottom of the
device. Also note that the source and body are tied together.

The CMOS Acronym

Note in Figs. 1.6 and 1.7 the use of a metal gate and the connection to the MOSFET's
body on the bottom of the transistor (these are discrete devices). As we'll see later in the
book (e.g., Fig. 4.3) the gate material used in a modern MOSFET is no longer metal but
rather polysilicon. Strictly speaking, modern technology is not CMOS then but rather
CPOS (complementary-polysilicon-oxide-semiconductor). US Patent 3,356,858 refers to
the use of insulated field effect transistors (IFETs). The acronym IFET is perhaps, even
today, a more appropriate descriptive term than MOSFET. Others (see the footnote on
page 154) have used the term IGFET (insulated-gate-field-effect-transistor) to describe
the devices. We'll stick to the ubiquitous terms MOSFET and CMOS since they are
standard terms that indicate devices, design, or technology using complementary field
effect devices.

Figure 1.7 Discrete PMOS device from US Patent 3,356,858 [5].
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CMOS Inverter

Figure 1.8 shows the schematic of a CMOS inverter. Note the use of a modified bipolar
symbol for the MOSFET (see Fig. 4.14 and the associated discussion). Also note that the
connections of the sources (the terminals with arrows) and drains are backwards from
most circuit design and schematic drawing practices. Current flows from the top of the
schematic to the bottom, and the arrow indicates the direction of current flow.

w
TN . 50
2E 7
455 3e’ 5] 156
Vi 53 yd 52 © Ve
l 28 21 \)o -L

-V

Figure 1.8 Invérter schematic from US Patent 3,356,858 [5].

When the input voltage, V;, is —¥ (the negative supply rail), the output, ¥, goes to
+V (the positive supply voltage). The NMOS device (bottom) shuts off and the PMOS
device (top) turns on. When the input goes to +¥, the output goes to —V turning on the
NMOS and turning off the PMOS. So if a logic 0 corresponds to —F and a logic 1 to +7,
the circuit performs the logical inversion operation. This topology has several advantages
over digital circuits implemented using BJTs including an output swing that goes to the
power supply rails, very low static power dissipation, and no storage time delays (see Sec.
2.4.3).

The First CMOS Circuits

In 1968 a group led by Albert Medwin at RCA made the first commercial CMOS
integrated circuits (the 4000 series of CMOS logic gates). At first CMOS circuits were a
low-power, but slower, alternative to BJT logic circuits using TTL (transistor-transistor
logic) digital logic. During the 1970s, the makers of watches used CMOS technology
because of the importance of long battery life. Also during this period, MOS technology
was used for computing processor development, which ultimately led to the creation of
the personal computer market in the 1980s and the use of internet, or web, technology in
the 1990s. It's likely that the MOS transistor is the most manufactured device in the
history of mankind.

Currently more than 95% of integrated circuits are fabricated in CMOS. For the
present, and foreseeable future, CMOS will remain the dominant technology used to
fabricate integrated circuits. There are several reasons for this dominance. CMOS ICs can
be laid out in a small area. They can handle very high operating speeds while dissipating
relatively low power. Perhaps the most important aspect of CMOS's dominance is its
manufacturability. CMOS circuits can be fabricated with few defects. Equally important,
the cost to fabricate in CMOS has been kept low by shrinking devices (scaling) with each
new generation of technology. This also, for digital circuits, is significant because in
many cases the same layout can be used from one fabrication size (process technology
node) to the next via simple scaling.
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Analog Design in CMOS

While initially CMOS was used exclusively for digital design, the constant push to lower
costs and increase the functionality of ICs has resulted in it being used for analog-only,
analog/digital, and mixed-signal (chips that combine analog circuits with digital signal
processing) designs. The main concern when using CMOS for an analog design is
matching. Matching is a term used to describe how well two identical transistors'
characteristics match electrically. How well circuits "match” is often the limitation in the
quality of a design (e.g., the clarity of a monitor, the accuracy of a measurement, etc.).

1.3 An Introduction to SPICE

The simulation program with an integrated circuit emphasis (SPICE) is a ubiquitous
software tool for the simulation of circuits. In this section we'll provide an overview of
SPICE. In addition, we'll provide some basic circuit analysis examples for quick reference
or as a review. Note that the reader should review the links at CMOSedu.com for SPICE
download and installation information. In addition, the examples from the book are
available at this website. Note that all SPICE engines use a text file (a netlist) for
simulation input.

Generating a Netlist File

We can use, among others, the Window’s notepad or wordpad programs to create a
SPICE netlist. SPICE likes to see files with “*.cir, *.sp, or *.spi” (among others)
extensions. To save a file with these extensions, place the file name and extension in
quotes, as seen in Fig. 1.9. If quotes are not used, then Windows may tack on “.txt” to the
filename. This can make finding the file difficult when opening the netlist in SPICE.

D a3
Savein | L) Mosis v ‘ M
3
ad
My Racant
Documernts

Deskiop

Putting the file name with

My Documents extension (cir) in quotes
. won't tack on the gratuitous
'g,! .txt to the end of the filename.
My Computer
‘_j Fie name m/ i 5.:'\'2- .
My Network  Save as lype Text Documents [ i) v [ Cancel |
Encoding: ANS v

Figure 1.9 Saving a text file with a ".cir” extension.
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Operating Point

The first SPICE simulation analysis we'll look at is the .op or operating point analysis. An
operating point simulation's output data is not graphical but rather simply a list of node
voltages, loop currents, and, when active elements are used, small-signal AC parameters.
Consider the schematic seen in Fig. 1.10. The SPICE netlist used to simulate this circuit
may look like the following (again, remember, that all of these simulation examples are
available for download at CMOSedu.com):

*** Figure 1.10 CMOS: Circuit Design, Layout, and Simulation ***

*#destroy all

*#run
*#print all
.op
Vin 1 0 DC 1
R1 1 2 1k
R2 2 0 2k
.end
node 1 m node 2
Vin, 1 V R2, 2k

Figure 1.10 Operation point simulation for a resistive divider.

The first line in a netlist is a title line. SPICE ignores the first line (important to avoid
frustration!). A comment line starts with an asterisk. SPICE ignores lines that start with a
* (in most cases). In the netlist above, however, the lines that start with *# are command
lines. These command lines are used for control in some SPICE simulation programs. In
other SPICE programs, these lines are simply ignored. The commands in this netlist
destroy previous simulation data (so we don't view the old data), run the simulation, and
then print the simulation output data. SPICE analysis commands start with a period. Here
we are performing an operating point analysis. Following the .op, we've specified an input
voltage source called Vin (voltage source names must start with a V, resistor names must
start with an R, etc.). connected from node 1 to ground (ground always has a node name
of 0 [zero]). We then have a 1k resistor from node 1 to node 2 and a 2k resistor from node
2 to ground. Running the simulation gives the following output:
v(1) = 1.000000e+00

v(2) = 6.666667e-01
vin#branch = -3.33333e-04

The node voltages, as we would expect, are 1 V and 667 mV, respectively. The current
flowing through Vin is 333 pA. Note that SPICE defines positive current flow as from the
+ terminal of the voltage source to the — terminal (hence, the current above is negative).
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It's often useful to use names for nodes that have meaning. In Fig. 1.11, we
replaced the names node 1 and 2 with Vin and Vout. Vin corresponds to the input voltage
source's name. This is useful when looking at a large amount of data. Also seen in Fig.
1.11 is the modified netlist.

*** Figure 1.11 CMOS ***
*#destroy all

Vout “#run

*#print all

.op

Vin Vin0 DC 1

R1 Vin Vout 1k

R2 Vout 0 2k

.end

Vin Rl 1k

Vin, 1 V R2, 2k

Figure 1.11 Operation point simulation for a resistive divider.

Transfer Function Analysis

The transfer function analysis can be used to find the DC input and output resistances of a
circuit as well as the DC transfer characteristics. To give an example, let's replace, in the
netlist seen above, .op with

.TF V(Vout,0) Vin

The output is defined as the voltage between nodes Vout and 0 (ground). The input is a
source (here a voltage source). When we run the simulation with this command line, we
get an output of

transfer_function = 6.666667e-01
output_impedance_at_v(vout,0) = 6.666667e+02
vin#input_impedance = 3.000000e+03

As expected, the "gain" of this voltage divider is 2/3, the input resistance is 3k (1k + 2k),
and the output resistance is 667 Q (1k|[2k).

As another example of the use of the .tf command consider adding the 0 V voltage
source to Fig. 1.11, as seen in Fig. 1.12, Adding a 0 V source to a circuit is a common
method to measure the current in an element (we plot or print I(Vmeas) for example).

; R1, 1k *** Figure 1.12 CMOS ***

Vin VA Vout *#destroy all
*#run ’

Vin, 1 V R2, 2k ll(vmeas) *#print all
.TF I(Vmeas) Vin
Vin Vin 0 DC 1

Vmeas, 0 V R1 Vin Vout 1k

R2 Vout Vmeas 2k
Vmeas Vmeas 0 DC 0
.end

Figure 1.12 Measuring the transfer function in a resistive divider when the output
variable is the current through R2 and the input is Vin.
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Here, in the .tf analysis, we have defined the output variable as a current, I(Vmeas) and
the input as the voltage, Vin. Running the simulation, we get an output of

transfer_function = 3.333333e-04
vin#input_impedance = 3.000000e+03
vmeas#output_impedance = 1.000000e+20

The gain is I(Vmeas)/Vin or 1/3k (= 333 umhos), the input resistance is still 3k, and the
output resistance is now an open (Vmeas is removed from the circuit).
The Voltage-Controlled Voltage Source

SPICE can be used to model voltage-controlled voltage sources (VCVS). Consider the
circuit seen in Fig. 1.13. The specification for a VCVS starts with an E in SPICE. The
netlist for this circuit is

*** Figure 1.13 CMOS: Circuit Design, Layout, and Simulation ***
*#destroy all

*#run

*#print all

TF  V(Vout,0) Vin

Vin Vin 0 DC 1

R1 Vb 0 3k

R2 Vt Vout 1k

R3 Vout O 2k

E1 Vt Vb Vin 0 23
.end

The first two nodes (Vt and Vb), following the VCVS name El, are the VCVS outputs
(the first node is the + output). The second two nodes (Vin and ground) are the
controlling nodes. The gain of the VCVS is, in this example, 23. The voltage between Vt
and Vb is 23-Vin. Running this simulation gives an output of

transfer_function = 7.666667e+00

output_impedance_at_v(vout,0) = 1.333333e+03
vin#input_impedance = 1.000000e+20

Notice that the input resistance is infinite.

Vi lk Vout
Vin
23
v Vb 2k
3k

Figure 1.13 Example using a voltage-controlled voltage source.
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An Ideal Op-Amp

We can implement a (near) ideal op-amp in SPICE with a VCVS or with a voltage-
controlled current source (VCCS), Fig. 1.14. It turns out that using a VCCS to implement
an op-amp in SPICE results, in general, in better simulation convergence. The input
voltage, the difference between nodes nl and n2 in Fig. 1.14, is multiplied by the
transconductance G (units of amps/volts or mhos) to cause a current to flow between n3
and n4. Note that the input resistance of the VCCS, the resistance seen at nl and n2, is
infinite.

n3
+
nl G. eai
w2 _ , gain
n4

Voltage-Controlled Current Source (VCCS)
Gln3n4nln2G

Figure 1.14 Voltage-controlled current source in SPICE.

Figure 1.15 shows the implementation of an ideal op-amp in SPICE along with an
example circuit. The open-loop gain of the op-amp is a million (the product of the
VCCS's transconductance with the 1-ohm resistor). Note how we've flipped the polarity
of the (SPICE model of the) op-amp's input to ensure a rising voltage on the noninverting
input (+ input) causes Vout to increase. The closed-loop gain is —3 (if this isn't obvious
then the reader should revisit sophomore circuits before going too much further in the
book).

RY, 3k
_________ NAA A
Rin, 1k | | pe— Vout
YWD IMEG Z1ohm ]
Vin, 1V P :
| dealopamp |
Rf, 3k
A
Rin, 1k
AN =
— Vout
Vin, 1V N

Figure 1.15 An op-amp simulation example.
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The Subcircuit

In a simulation we may want to use a circuit, like an op-amp, more than once. In these
situations we can generate a subcircuit and then, in the main part of the netlist, call the
circuit as needed. Below is the netlist for simulating, using a transfer function analysis,
the circuit in Fig. 1.15 where the op-amp is specified using a subcircuit call.

*** Figure 1.15 CMOS: Circuit Design, Layout, and Simulation ***

*#destroy all
*#run
*#print all

TE  V(Vout0) Vin
Vin  Vin 0 DC 1

Rin Vin Vm 1k
Rf Vout Vm 3k

X1 Vout O vm Ideal_op_amp
.subckt Ideal_op_amp Vout Vp vm
G1 Vout O Vm Vp 1MEG
RL Vout O 1

.ends

.end

Notice that a subcircuit call begins with the letter X. Note also how we've called the
noninverting input (the + input) Vp and not V+ or +. Some SPICE simulators don't like +
or — symbols used in a node's name. Further note that a subcircuit ends with .ends (end
subckt). Care must be exercised with using either .end or .ends. If, for example, a .end is
placed in the middle of the netlist all of the SPICE netlist information following this .end
is ignored.

The output results for this simulation are seen below. Note how the ideal gain is
-3 where the simulated gain is —2.99999. Our near-ideal op-amp has an open-loop gain of
one million and thus the reason for the slight discrepancy between the simulated and
calculated gains. Also note how the input resistance is 1k, and the output resistance,
because of the feedback, is essentially zero.

transfer_function = -2.99999e+00
output_impedance_at_v(vout,0) = 3.999984¢-06
vin#input_impedance = 1.000003e+03

DC Analysis

In both the operating point and transfer function analyses, the input to the circuit was
constant. In a DC analysis, the input is varied and the circuit's node voltages and currents
(through voltage sources) are simulated. A simple example is seen in Fig. 1.16. Note how
we are now plotting, instead of printing, the node voltages. We could also plot the current
through Vin (plot Vin#branch). The .dc command specifies that the input source, Vin,
should be varied from 0 to 1 V in 1 mV steps. The x-axis of the simulation results seen in
the figure is the variable we are sweeping, here Vin. Note that, as expected, the slope of
the Vin curve is one (of course) and the slope of Vout is 2/3 (= Vout/Vin).
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*** Figure 1.16 CMOS ***
*#destroy all
Vin \l}\l/’v{k Vout *#run
*#plot Vin Vout
deVin011m

Vin, 1V R2, 2k Vin Vin 0 DC 1

R1 Vin Vout 1k
R2 Vout 0 2k
.end

v — — vaut

- Vin

- Vout

1o

Vin
Figure 1.16 DC analysis simulation for a resistive divider.

Plotting IV Curves

One of the simulations that is commonly performed using a DC analysis is plotting the
current-voltage (IV) curves for an active device (e.g., diode or transistor). Examine the
simulation seen in Fig. 1.17. The diode is named D1. (Diodes must have names that start
with a D.) The diode's anode is connected to node Vd, while its cathode is connected to

*** Figure 1.17 CMOS ***
*#destroy all
Vin 1k vd *#run
+ *#let ID=-Vin#branch
. - *#plot iID
Vin 1d vd deVin011m
1 Vin Vin 0 DC 1
— R1 Vin Vd 1k
D1 Vd 0 mydiode
N\ .model mydiode D
.end

000

Figure 1.17 Plotting the current-voltage curve for a diode.
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ground. This is our first introduction to the .model specification. Here our diode's model
name is mydiode. The .model parameter D seen in the netlist simply indicates a diode
model. We don't have any parameters after the D in this simulation, so SPICE uses
default parameters. The interested reader is referred to Table 2.1 on page 47 for additional
information concerning modeling diodes in SPICE. Note, again, that SPICE defines
positive current through a voltage source as flowing from the + terminal to the — terminal
(hence why we defined the diode current the way we did in the netlist).

Dual Loop DC Analysis

An outer loop can be added to a DC analysis, Fig. 1.18. In this simulation we start out by
setting the base current to 5 pA and sweeping the collector-emitter voltage from 0 to 5V
in 1 mV steps. The output data for this particular simulation is the trace, seen in Fig. 1.18,
with a label of "Ib=5u." The base current is then increased by 5 pA to 10 pA, and the
collector-emitter voltage is stepped again (resulting in the trace labeled "Ib=10u". This
continues until the final iteration when Ib is 25 pA. Other examples of using a dual-loop
DC analysis for MOSFET IV curves are found in Figs. 6.11, 6.12, and 6.13.

*** Figure 1.18 CMOS ***
*#destroy all
*#run
*#let lc=-Vce#branch
lf *#plot Ic

; + L\
L‘: s - ) .dc Vee 05 1m Ib 5u 25u 5u
/\) l Vce Vee 0DC O
(4 <L-_
Kr

Vce

IbOVbDCO
Q1 Vee Vb 0 myNPN
.model myNPN NPN

N .end

) Ib=25u

- b=20u

~ Ib=15u
Ib=10u
Ib=5u

Figure 1.18 Plotting the current-voltage curves for an NPN BJT.

Transient Analysis

The form of the transient analysis statement is

tran tstep tstop <tstart> <tmax> <uic>

where the terms in < > are optional. The tstep term indicates the (suggested) time step to
be used in the simulation. The parameter tstop indicates the simulation’s stop time. The
starting time of a simulation is always time equals zero. However, for very large (data)
simulations, we can specify a time to start saving data, tstart. The tmax parameter is used
to specify the maximum step size. If the plots start to look jagged (like a sinewave that
isn’t smooth), then tmax should be reduced.
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A SPICE transient analysis simulates circuits in the time domain (as in an
oscilloscope, the x-axis is time). Let’s simulate, using a transient analysis, the simple
circuit seen back in Fig. 1.11. A simulation netlist may look like (see output in Fig. 1.19):

*** Figure 1.19 CMOS: Circuit Design, Layout, and Simulation ***
*#destroy all

*#run

*#plot vin vout

.tran 100p 100n

Vin Vin 0 DC 1
R1 Vin Vout 1k

R2 Vout O 2k

.end

= H i —Vin

[ FE o &0.0 0 100 0

Figure 1.19 Transient simulation for the circuit in Fig. 1.11.

The SIN Source

To illustrate a simulation using a sinewave, examine the schematic in Fig 1.20. The
statement for a sinewave in SPICE is

SIN Vo Va freq <td> <theta>

The parameter Vo is the sinusoid’s offset (the DC voltage in series with the sinewave).
The parameter Va is the peak amplitude of the sinewave. Freq is the frequency of the
sinewave, while td is the delay before the sinewave starts in the simulation. Finally, theta
is used if the amplitude of the sinusoid has a damped nature. Figure 1.20 shows the netlist
corresponding to the circuit seen in this figure and the simulation results.

Some key things to note in this simulation: (1) MEG is used to specify 10°. Using
“m” or “M” indicates milli or 107, The parameter IMHz indicates 1 milliHertz. Also, f
indicates femto or 10™'°. A capacitor value of 1f doesn’t indicate one Farad but rather 1
femto Farad. (2) Note how we increased the simulation time to 3 ps. If we had a
simulation time of 100 ns (as in the previous simulation), we wouldn’t see much of the
sinewave (one-tenth of the sinewave’s period). (3) The “SIN” statement is used in a
transient simulation analysis. The SIN specification is not used in an AC analysis
(discussed later).
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*** Figure 1.20 ***
Vin \I/{\l/i/l\k Vout *#destroy all
*#run
Vin R2, 2k *#plot vin vout

tran 1n 3u
1V (peak) at Vin Vin 0 DC 0 SIN 0 1 1MEG

1 MHz R1 Vin Vout 1k
R2 Vout 0 2k
.end

Figure 1.20 Simulating a resistive divider with a sinusoidal input.

An RC Circuit Example

To illustrate the use of a .tran simulation let's determine the output of the RC circuit seen
in Fig. 1.21 and compare our hand calculations to simulation results. The output voltage
can be written in terms of the input voltage by

1 0 (DC Vout 1

ot = Vi + ——— = 1.1
Vou=Vin 150C+R & Vi ~ 14j@RC a.n
Taking the magnitude of this equation gives
P e (1.2)
il 1+ @nRC)
and taking the phase gives
4V71 = _tan™! % (1.3)

From the schematic the resistance is 1k, the capacitance is 1 uF, and the frequency is 200
Hz. Plugging these numbers into Egs. (1.1) - (1.3) gives | 52| =0.623 and 252 =
—0.898 radians or —-51.5 degrees. With a 1 V peak input then our output voltage is 623
mV (and as seen in Fig. 1.21, it is). Remembering that phase shift is simply an indication
of time delay at a particular frequency,

Z (radians) = ’7" .21 or £ (degrees) = ’7" -360 = £4-f~ 360 (1.4)

The way to remember this equation is that the time delay, ¢, is a percentage of the period
(D), t,/T, multiplied by either 27 (radians) or 360 (degrees). For the present example, the
time delay is 715 ps (again, see Fig. 1.21). Note that the minus sign indicates that the
output is lagging (occurring later in time) the input (the input leads the output).
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*** Figure 1.21 ***
Vin R, 1k Vout *#destroy all
"' B *#run
, *#plot vin vout

C, uF Atran 10u 30m
Vin Vin 0 DC 0 SIN 0 1 200
R1 Vin Vout 1k
CL Vout 0 1u

Vin
1V (peak) at
200 Hz

.end

Figure 1.21 Simulating the operation of an RC circuit using a .tran analysis.

Another RC Circuit Example

As one more example of simulating the operation of an RC circuit consider the circuit
seen in Fig, 1.22. Combining the impedances of C1 and R, we get

RjoC, R

= = 1.
R+1joCy  1+joRC (1.3)
The transfer function for this circuit is then
Vour __1joC2 1+joRC, (1.6)
Vi 1/joC2+Z~ 1+joR(Ci +C>) )
The magnitude of this transfer function is
Vou J1+QyRC)’ an
Vin I [+ @uR- (€ + C))?
and the phase response is
4% = tan™! —Z“ffc‘ — tan™! —Z“fR(Cl‘ +C2) (1.8)

Plugging in the numbers from the schematic gives a magnitude response of 0.6 (which
matches the simulation results) and a phase shift of — 0.119 radians or — 6.82 degrees.
The amount of time the output is lagging the input is then

_I-£Z__Z —6.82

=360 ~7-360 - 200-360 = > W (1.9)

ta

which is confirmed with the simulation results seen in Fig. 1.22,
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*** Figure 1.22 ***
*#destroy all

*#run

*#plot vin vout

tran 10u 30m
VinVinODC O0SINO 1200
R1 Vin Vout 1k

C1 Vin Vout 2u

C2Vout 0 1u

.end

Vin

Vin
1V (peak) at
200 Hz

Figure 1.22 Another RC circuit example.

AC Analysis

When performing a transient analysis (.tran) the x-axis is time. We can determine the
frequency response of a circuit (the x-axis is frequency) using an AC analysis (.ac). An
AC analysis is specified in SPICE using

.ac dec nd fstart fstop

The dec indicates that the x-axis should be plotted in decades. We could replace dec with
lin (linear plot on the x-axis) or oct (octave). The term nd indicates the number of points
per decade (say 100), while fstart and fstop indicate the start and stop frequencies (note
that fstart cannot be zero, or DC, since this isn't an AC signal). The netlist used to
simulate the AC response of the circuit in Fig. 1.21 follows. The simulation output is seen
in Fig. 1.23, where we've pointed out the response at 200 Hz (the frequency used in Fig.
1.21 and used for calculations on page 17).

*** Figure 1.23 CMOS: Circuit Design, Layout, and Simulation ***

*#destroy all

*#run

*#plot db(voutivin)
*#set units=degrees
*#plot ph(vout/vin)

.acdec 100 1 10k

Vin Vin 0 DC 0 SINO 1200 AC1
R1 Vin Vout 1k
CL Vout 0 1u

.end
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4B —— dbjweutowing 20 J 1Dg (0‘623/] == 41 1 dB
TTTIT T T T = | IR

—51.5 degrees

Eraquency Ttz

200 Hz
Figure 1.23 AC simulation for the RC circuit in Fig. 1.21.

Note in this netlist that the SIN specification in Vin has nothing to do with an AC
analysis (it's ignored for an AC analysis). For the AC analysis, we added, to the statement
for Vin, the term AC 1 (specifying that the magnitude or peak of the AC signal is 1). We
can add a phase shift of 45 degrees by using AC 1 45 in the statement.

Decades and Octaves

In the simulation results seen in Fig. 1.23 we used decades. When we talk about decades
we either are multiplying or dividing by 10. One decade above 23 MHz is 230 MHz,
while one decade below 1.2 kHz is 120 Hz.

When we talk about octaves, we talk about either multiplying or dividing by 2.
One octave above 23 MHz is 46 MHz while one octave below 1.2 kHz is 600 Hz. Two
octaves above 23 MHz is (multiply by 4) 92 MHz.

Decibels

When the magnitude response of a transfer function decreases by 10, it is said it goes
down by —20 dB (divide by 10, 20 -log(0.1) = ~20dB). When the magnitude response
increases by 10, it goes up by 20 dB (multiply by 10). For the frequency response in Fig.
1.23 (above 159 Hz, the —3 dB frequency, or here when the magnitude response is 0.707),
the response is rolling off at —20 dB/decade. What this means is that if we increase the
frequency by 10 the magnitude response decreases by 10. We could also say the response
is rolling off at —6 dB/octave above 159 Hz (for every increase in frequency by 2 the
magnitude response drops by a factor of 2). If a magnitude response is rolling off at —40
dB/decade, then for every increase in frequency by 10 the magnitude drops by 100.
Similarly if a response rolls off at —12 dB/octave, for every doubling in frequency our
response drops by 4. Note that —6 dB/octave is the same rate as —20 dB/decade.
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Pulse Statement

The SPICE pulse statement is used in transient simulations to specify pulses or clock
signals. This statement has a format given by

pulse vinit vfinal td tr {f pw per

The pulse’s initial voltage is vinit while vfinal is the pulse’s final (or pulsed) value, td is
the delay before the pulse starts, tr and tf are the rise and fall times, respectively, of the
pulse (noting that when these are set to zero the step size used in the transient simulation
is used), pw is the pulse’s width; and per is the period of the pulse. Figure 1.24 provides
an example of a simulation that uses the pulse statement. A section of the netlist used to
generate the waveforms in this figure follows.

.tran 100p 30n

Vin Vin 0 DC 0 pulse 0 16n 00 3n 10n
R1 Vin Vout 1k
C1 Vout O 1p

Vin R1, Tk \J"lout

OtolV ! VW i L
delay 6ns (\ =

time at | V=3 ns =l lp T
period = 10 ns J7

Figure 1.24 Simulating the step response of an RC circuit using a pulsed source voltage.

Finite Pulse Rise Time

Notice, in the simulation results seen in Fig. 1.24, that the rise and fall times of the input
pulse are not 0 as specified in the pulse statement but rather 100 ps as specified by the
suggested maximum step size in the .tran statement. Figure 1.25 shows the simulation
results if we change the pulse statement to

Vin Vin 0 DC 0 pulse 0 1 6n 10p 10p 3n 10n

where we've specified 10 ps rise and fall times. Note that in some SPICE simulators you
must specify a maximum step size in the .tran statement. You could do this in the .tran
statement above by using .tran 10p 30n 0 10p (where the 10p is the maximum step size
and the simulation starts saving data at 0.)
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Figure 1.25 Specifying a rise time in the pulse statement to avoid slow rise times
(rise times set by the maximum step size in the .tran statement.)

Step Response
The pulse statement can also be used to generate a step function
Vin Vin 0 DC 0 pulse 0 1 2n 10p

We've reduced the delay to 2n and have specified (only) a rise time for the pulse. Since
the pulse width isn't specified, the pulse transitions and then stays high for the extent of
the simulation. Figure 1.26 shows the step response for the RC circuit seen in Fig. 1.24.

waut —win

Figure 1.26 Step response of an RC circuit.

Delay and Rise Time in RC Circuits

From the RC circuit review on page 50 we can write the delay time, the time it takes the
pulse to reach 50% of its final value in an RC circuit, using

t;~0.7RC (1.10)
and the rise time (or fall time) as
t, =22RC (1.11)

Using the RC in Fig. 1.24 (1 ns), we get a (calculated) delay time of 700 ps and a rise
time of 2.2 ns. These numbers are verified in Fig. 1.26. To show that the pulse statement
can be used for other amplitude steps consider resimulating the circuit in Fig. 1.24 (see
Fig. 1.27) with an input pulse that transitions from —1 to —2 V (note how the delay and
transition times remain unchanged. The SPICE pulse statement is now

Vin Vin 0 DC 0 pulse -1 -2 2n 10p
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Figure 1.27 Another step response (negative going) of an RC circuit.

Piece-Wise Linear (PWL) Source

The piece-wise linear (PWL) source specifies arbitrary waveform shapes. The SPICE
statement for a PWL source is

pwl t1 v1 2 v2 13 v3 ... <rep>
To provide an example using a PWL voltage source, examine Fig. 1.28. The input
waveform in this simulation is specified using

pwl00.53n15n155n07n0
At 0 ns, the input voltage is 0.5 V. At 3 ns the input voltage is 1 V. Note the linear change
between 0 and 3 ns. Each pair of numbers, the first the time and the second the voltage
(or current if a current source is used) represent a point on the PWL waveform. Note that

in some simulators the specification for a PWL source may be quite long. In these
situations a text file is specified that contains the PWL for the simulation.

Vin R1, 1k \ioul

— AN
PWL00.53n15n15.5n07n0 @ ?'l
p

r

Figure 1.28 Using a PWL source to drive an RC circuit.
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Simulating Switches

A switch can be simulated in SPICE using the following (for example) syntax

s1 node1 node2 controlp controlm switmod
.model switmod sw ron=1k

The name of a switch must start with an s. The switch is connected between nodel and
node2, as seen in Fig. 1.29. When the voltage on node controlp is greater than the voltage
on node controlm, the switch closes. The switch is modeled using the .model statement.
As seen above, we are setting the series resistance of the switch to 1k.

s1 nodel node2 controlp controlm switmod

nodel —/‘ﬁ/\/\/; node2
sl ron

The switch is closed when the node voltage controlp
is greater than the node voltage controlm

Figure 1.29 Modeling a switch in SPICE.
Initial Conditions on a Capacitor

An example of a circuit that uses both a switch and an initial voltage on a capacitor is
seen in Fig. 1.30. Notice, in the netlist, that we have added UIC to the end of the .tran
statement. This addition makes SPICE "use initial conditions" or skip an initial operating
point calculation. Also note that to set the initial voltage across the capacitor we simply
added IC=2 to the end of the statement for a capacitor. To set a node to a voltage (that
may have a capacitor connected to it or not), we can add, for example,

.ic v(vout)=2

*** Figure 1.30 ***
Vin RI, 1k yout 9

. *#destroy all
bl tallyacy fn
5V Ip T L b *#plot vout

At t=2ns switch closes .tran 100p 8n UIC

Vclk clk O pulse -1 1 2n
VinVin0DC 5
: [ : i S1 Vin Vouts clk 0 switmodel
vibsossdzek / 1 i R1 Vouts Vout 1k

L A B C1 Vout 0 1p IC=2

ot

N .model switmodel sw ron=0.1

e .end

Figure 1.30 Using initial conditions and a switch in an RC circuit simulation.
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Initial Conditions in an Inductor

Consider the circuit seen in Fig. 1.31. Here we assume that the switch has been closed for
a long period of time so that the circuit reaches steady-state. The inductor shorts the
output to ground and the current flowing in the inductor is 5 mA. To simulate this initial
condition, we set the current in the inductor using the IC statement as seen in the netlist
(remembering to include the UIC in the .tran statement). At 2 ns after the simulation
starts, we open the switch (the control voltage connections are switched from the previous
simulations). Since we know we can't change the current through an inductor
instantaneously (the inductor wants to keep pulling 5 mA), the voltage across the inductor
will go from 0 to —5 V. The inductor will pull the 5 mA of current through the 1k resistor
connected to the output node. Note that we select the transient simulation time by looking
at the time constant, L/R, of the circuit (here 10 ns).

*** Figure 1.31 ***
vin Rl Ik . Vout 9
L *#destroy all

*#run
5V 10 uH 1k *#plot vout
At t=2ns switch opens tran 100p 8n UIC
(assume switch was
closed for a long time.) Vclk clk 0 pulse -1 1 2n

. ) T VinVin0DC5
55 i 81 Vin Vouts 0 clk switmodel
il i ‘ : R1 Vouts Vout 1k

i i ; R2 Vout 0 1k
e L1 Vout 0 10u IC=5m

‘ e .model switmodel sw ron=0.1

.end

Figure 1.31 Using initial conditions in an inductive circuit.

Qofan LC Tank

Figure 1.32 shows a simulation useful in determining the quality factor or Q of a parallel
LC circuit (a tank, used in communication circuits among others). The current source and
resistor may model a transistor. The resistor can also be used to model the losses in the
capacitor or inductor. Quality factor for a resonant circuit is defined. as the ratio of the
energy stored in the tank to the energy lost. Our circuit definition for Q is the ratio of the
center (resonant) frequency to the bandwidth of the response at the 3 dB points. We can
write an equation for this circuit definition of Q as

Q _ f center _ f center
BW  fiushigh —f3dBiow

The center frequency of the circuit in Fig, 1.32 is roughly 503 MHz, while the upper 3 dB
frequency is 511.2 MHz and the lower 3 dB frequency is 494.8 MHz. The Q is roughly
30. Note the use of linear plotting in the ac analysis statement.

(1.12)
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*** Figure 1.32 ***

_ Vout
*#destroy all
*#run
AC1 1k 10nH < 10 pF *#plot db(vout)

]
l

.AC lin 100 400MEG 600MEG

lin Vout 0 DC 0 AC 1
R1 Vout 0 1k

L1 Vout 0 10n

C1 Vout 0 10p

.end

Figure 1.32 Determining the Q, or quality factor, of an LC tank.

Frequency Response of an Ideal Integrator

The frequency response of the integrator seen in Fig. 1.33 can be determined knowing the
op-amp keeps the inverting input terminal at the same potential as the non-inverting input
(here ground). The current through the resistor must equal the current through the
capacitor so

Vin Vout

—Ié— + W =0 (1.13)
or
Vout -1 _(1 +j : 0)
= = 1.14
Vie JoRC 0+joRC (1.14)
The magnitude of the integrator's transfer function is
Vou|  ACDTHEO L1s)
Vin | ] - )
(0)2 +(27[_ch)2 ZTCRCf
while the phase shift through the integrator is
Vou _,, =0 . 1 20RCf
V4 7 =tan ) tan 0 - 90 (1.16)

Note that the gain of the integrator approaches infinity as the frequency decreases towards
DC while the phase shift is constant.

Unity-Gain Frequency

It's of interest to determine the frequency where the magnitude of the transfer function is
unity (called the unity-gain frequency, f,,.) Using Eq. (1.15), we can write
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Vo ut
Vi

-1
= 2nRCfim

Using the values seen in the schematic, the unity-gain frequency is 159 Hz (as verified in
the SPICE simulation seen in Fig. 1.33).

1

=1 27RC

_>fun= (117)

SuE *** Figure 1.33 ***
1
*#destroy all
1k .

A — #run

*#plot db(vout/vin)
~— Vout *#set units=degrees

° i *#iplot ph(vout/vin)

Vin

.ac dec 100 1 10k

VinVin0DC 1AC1
Rin Vin vm 1k
Cf Vout vm 1u

X1 Vout 0 vm ldeal_op_amp
.subckt Ideal_op_amp Vout Vp Vm
G1 Vout 0 Vm Vp 1IMEG

RL Vout 0 1

.ends

.end

Figure 1.33 An integrator example.

Time-Domain Behavior of the Integrator

The time-domain behavior of the integrator can be characterized, again, by equating the
current in the resistor with the current in the capacitor

- 1 Vin
Vou="5 IT-dt (1.18)

If our input is a constant voltage, then the output is a linear ramp increasing (if the input
is negative) or decreasing (if the input is positive) with time. If the input is a squarewave,
with zero mean then the output will look like a triangle wave. Using the values seen in
Fig. 1.33 for the time-domain simulation seen in Fig. 1.34, we can estimate that ifa 1 V
signal is applied to the integrator the output voltage will have a slope of

1

Vin
Voulf) = R_IC “Tms

(1.19)
or 1 V/ms slope. This equation can be used to design a sawtooth waveform generator
from an input squarewave. Note, however, there are several practical concerns. To begin,
we set the output of the integrator, using the .ic statement, to ground at the beginning of
the simulation. In a real circuit this may be challenging (one method is to add a reset
switch across the capacitor). Another issue, discussed later in the book, is the op-amp's
offset voltage. This will cause the outputs to move towards the power supply rails even
with no input applied. Finally, notice that putting a + in the first column treats the SPICE
code as if it were continued from the previous line.
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Vin

1k

1uF
|

*** Figure 1.34 ™

*#destroy all
*#run

Wit #plot vout vin

tran 10u 10m
.ic v(vout)=0

Vin Vin 0 DC 1
+pulse -1 10 1u 1u 2m 4m
L : Rin Vin vm 1k

; ; i Cf Vout vm 1u

X1 Vout 0 vm Ideal_op_amp
i 3 \ .subckt ideal_op_amp Vout Vp Vm
N A | N /A N G1 Vout 0 Vm Vp 1MEG
-0 X g e e F RL Vout 0 1
; ¢ .ends
.end

Figure 1.34 Time-domain integrator example.

Convergence

A netlist that doesn’t simulate isn’t converging numerically. Assuming that the circuit
contains no connection errors, there are basically three parameters that can be adjusted to
help convergence: ABSTOL, VNTOL, and RELTOL.

ABSTOL is the absolute current tolerance. Its default value is 1 pA. This means
that when a simulated circuit gets within 1 pA of its “actual” value, SPICE assumes that
the current has converged and moves onto the next time step or AC/DC value. VNTOL is
the node voltage tolerance, default value of 1 pV. RELTOL is the relative tolerance
parameter, default value of 0.001 (0.1 percent). RELTOL is used to avoid problems with
simulating large and small electrical values in the same circuit. For example, suppose the
default value of RELTOL and VNTOL were used in a simulation where the actual node
voltage is 1 V. The RELTOL parameter would signify an end to the simulation when the
node voltage was within 1| mV of 1 V (1IV-RELTOL), while the VNTOL parameter
signifies an end when the node voltage is within 1 pV of 1 V. SPICE uses the larger of
the two, in this case the RELTOL parameter results, to signify that the node has
converged.

Increasing the value of these three parameters helps speed up the simulation and
assists with convergence problems at the price of reduced accuracy. To help with
convergence, the following statement can be added to a SPICE netlist:

.OPTIONS ABSTOL=1uA VNTOL=1mV RELTOL=0.01

To (hopefully) force convergence, these values can be increased to
.OPTIONS ABSTOL=1mA VNTOL=100mV RELTOL=0.1
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Note that in some high-gain circuits with feedback (like the op-amp’s designed later in
the book) decreasing these values can actually help convergence.

Some Common Mistakes and Helpful Techniques

The following is a list of helpful techniques for simulating circuits using SPICE.

1.

10.

The first line in a SPICE netlist must be a comment line. SPICE ignores the first
line in a netlist file.

One megaohm is specified using IMEG, not 1M, 1m, or 1 MEG.

One farad is specified by 1, not 1f or 1F. 1F means one femto-Farad or 107"
farads.

Voltage source names should always be specified with a first letter of V. Current
source names should always start with an L.

Transient simulations display time data; that is, the x-axis is time. A jagged plot
such as a sinewave that looks like a triangle wave or is simply not smooth is the
result of not specifying a maximum print step size.

Convergence with a transient simulation can usually be helped by adding a UIC
(use initial conditions) to the end of a .tran statement.

A simulation using MOSFETs must include the scale factor in a .options
statement unless the widths and lengths are specified with the actual (final) sizes.

In general, the body connection of a PMOS device is connected to VDD, and the
body connection of an n-channel MOSFET is connected to ground. This is easily
checked in the SPICE netlist.

Convergence in a DC sweep can often be helped by avoiding the power supply
boundaries. For example, sweeping a circuit from 0 to 1 V may not converge, but
sweeping from 0.05 to 0.95 will.

In any simulation adding .OPTIONS RSHUNT=1E8 (or some other value of resistor)
can be used to help convergence. This statement adds a resistor in parallel with
every node in the circuit (see the WinSPICE manual for information concerning
the GMIN parameter). Using a value too small affects the simulation results.
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PROBLEMS

1.1

1.2

1.3

1.4
1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

What would happen to the transfer function analysis results for the circuit in Fig.
1.11 if a capacitor were added in series with R1? Why? What about adding a
capacitor in series with R2?

Resimulate the op-amp circuit in Fig. 1.15 if the open-loop gain is increased to
100 million while, at the same time, the resistor used in the ideal op-amp is
increased to 100 Q. Does the output voltage move closer to the ideal value?

Simulate the op-amp circuit in Fig. 1.15 if Vin is varied from -1 to +1V. Verify,
with hand calculations, that the simulation output is correct.

Regenerate IV curves, as seen in Fig. 1.18, for a PNP transistor.

Resimulate the circuit in Fig. 1.20 if the sinewave doesn't start to oscillate until 1
us after the simulation starts.

At what frequency does the output voltage, in Fig. 1.21, become half of the input
voltage? Verify your answer with SPICE

Determine the output of the circuit seen in Fig. 1.22 if a 1k resistor is added from
the output of the circuit to ground. Verify your hand calculations using SPICE.

Using an AC analysis verify the time domain results seen in Fig. 1.22.

If the capacitor in Fig. 1.24 is increased to 1 pF simulate, similar to Fig. 1.26 but
with a longer time scale, the step response of the circuit. Compare the simulation
results to the hand-calculated values using Eqgs. (1.10) and (1.11).

Using a PWL source (instead of a pulse source), regenerate the simulation data
seen in Fig. 1.26.

Using the values seen in Fig. 1.32, for the inductor and capacitor determine the Q
of a series resonant LC tank with a resistor value of 10 ohms. Note that the
resistor is in series with the LC and that an input voltage source should be used
(the voltage across the LC tank goes to zero at resonance.)

Suppose the input voltage of the integrator in Fig. 1.34 is zero and that the op-amp
has a 10 mV input-referred offset voltage. If the input-referred offset voltage is
modeled using a 10 mV voltage source in series with the non-inverting (+)
op-amp input then estimate the output voltage of the op-amp in the time-domain.
Assume thatat =0V __=0. Verify your answer with SPICE.

out



Chapter

The Well

To develop a fundamental understanding of CMOS integrated circuit layout and design,
we begin with a study of the well. The well is the first layer fabricated when making a
CMOS IC. The approach of studying the details of each fabrication (layout) layer will
build a solid foundation for understanding the performance limitations and parasitics (the
pn junctions, capacitances, and resistances inherent in a CMOS circuit) of the CMOS
process.

The Substrate (The Unprocessed Wafer)

CMOS circuits are fabricated on and in a silicon wafer, as discussed in Ch. 1. This wafer
is doped with donor atoms, such as phosphorus for an n-type wafer, or acceptor atoms,
such as boron for a p-type wafer. Our discussion centers around a p-type wafer (the most
common substrate used in CMOS IC processing). When designing CMOS integrated
circuits with a p-type wafer, n-channel MOSFETs (NMOS for short) are fabricated
directly in the p-type wafer, while p-channel transistors, PMOS, are fabricated in an
“n-well.” The substrate or well are sometimes referred to as the bulk or body of a
MOSFET. CMOS processes that fabricate MOSFETs in the bulk are known as “bulk
CMOS processes.” The well and the substrate are illustrated in Fig. 2.1, though not to
scale.

Often an epitaxial layer is grown on the wafer. In this book we will not make a
distinction between this layer and the substrate. Some processes use a p-well or both n-
and p-wells (sometimes called twin tub processes). A process that uses a p-type (n-type)
substrate with an n-well (p-well) is called an “n-well process” (“p-well process”). We will
assume, throughout this book, that an n-well process is used for the layout and design
discussions.

A Parasitic Diode

Notice, in Fig. 2.1, that the n-well and the p-substrate form a diode. In CMOS circuits, the
substrate is usually tied to the lowest voltage in the circuit (generally, the substrate is
grounded) to keep this diode from forward biasing. Ideally, zero current flows in the
substrate. We won’t concern ourselves with how the substrate is connected to ground at
this point (see Ch. 4).
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n-well
|
] Flip chip N\
Chlp _— p-type epi layer (p-)
on its side
and enlarge

p-type substrate (p+)

MOSFETS are not shown.

M

Figure 2.1 The top (layout) and side (cross-sectional) view of a die.

Usually, we
will not show
the epitaxial
layer. Many
processes don't use
the epi layer.

p-substrate

Using the N-well as a Resistor

In addition to being used as the body for p-channel transistors, the n-well can be used as a
resistor, Fig. 2.2. The voltage on either side of the resistor must be large enough to keep
the substrate/well diode from forward biasing.

Substrate ___—— Resistor leads —
connection =~

1

A%
4 n-well
Shows parasitiV7 T
diode
p-substrate

Figure 2.2 The n-well can be used as a resistor.

2.1 Patterning

CMOS integrated circuits are formed by patterning different layers on and in the silicon
wafer. Consider the following sequence of events that apply, in a fundamental way, to any
layer that we need to pattern. We start out with a clean, bare wafer, as shown in Fig. 2.3a.
The distance given by the line A to B will be used as a reference in Figs. 2.3b—j. Figures
2.3b—j are cross-sectional views of the dashed line shown in (a). The small box in Fig.
2.3a is drawn with a layout program (and used for mask generation) to indicate where to
put the patterned layer.
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A B
____________ For cross section,
cut along dotted p-type
line

(a) Unprocessed wafer (b} Cross-sectional view of (a)

A B - B Photo-
resist

% Oxide g g Oxide

p-type p-type

{c) Grow oxide (glass or SiOz) onwafer.  (d) Deposit photoresist

A B
A B < e —— Ma8k

Photo-
Top view Oxide
Side view
e
p-type
(e) Mask made resulting from layout. (f) Placement of the mask over the wafer.
l i l Ultraviolet Tight i l l
< Mask (reticle)
Photo- Photo-
X resist F q resist
Oxide Oxide
p-type p-type
{g) Exposing photoresist. (h) Developing exposed photoresist.
Ph()l?—-
resis
g : : g Oxide E \ [ E Oxide
p-type p-type
(i) Etching oxide to expose wafer. (j) Removal of photoresist.

Figure 2.3 Generic sequence of events used in photo patterning.
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The first step in our generic patterning discussion is to grow an oxide, SiO, or
glass, a very good insulator, on the wafer. Simply exposing the wafer to air yields the
reaction Si + O, — SiO,. However, semiconductor processes must have tightly controlled
conditions to precisely set the thickness and purity of the oxide. We can grow the oxide
using a reaction with steam, H,0, or with O, alone. The oxide resulting from the reaction
with steam is called a wet oxide, while the reaction with O, is a dry oxide. Both oxides
are called thermal oxides due to the increased temperature used during oxide growth. The
growth rate increases with temperature. The main benefit of the wet oxide is fast growing
time. The main drawback of the wet oxide is the hydrogen byproduct. In general terms,
the oxide grown using the wet techniques is not as pure as the dry oxide. The dry oxide
generally takes a considerably longer time to grow. Both methods of growing oxide are
found in CMOS processes. An important observation we should make when looking at
Fig. 2.3c is that the oxide growth actually consumes silicon. This is illustrated in Fig. 2.4.
The overall thickness of the oxide is related to thickness of the consumed silicon by

xsi = 045 - x4 @.1)

p-substrate

Figure 2.4 How growing oxide consumes silicon.

The next step of the generic CMOS patterning process is to deposit a
photosensitive resist layer across the wafer (see Fig. 2.3d). Keep in mind that the
dimensions of the layers, that is, oxide, resist, and the wafer, are not drawn to scale. The
thickness of a wafer is typically 500 um, while the thickness of a grown oxide or a
deposited resist may be only a pm (107° m) or even less. After the resist is baked, the
mask derived from the layout program, Figs. 2.3e and f; is used to selectively illuminate
areas of the wafer, Fig. 2.3g. In practice, a single mask called a reticle, with openings
several times larger than the final illuminated area on the wafer, is used to project the
pattern and is stepped across the wafer with a machine called a stepper to generate the
patterns needed to create multiple copies of a single chip. The light passing through the
opening in the reticle is photographically reduced to illuminate the correct size area on the
wafer.

The photoresist is developed (Fig. 2.3h), removing the areas that were
illuminated. This process is called a positive resist process because the area that was
illuminated was removed. A negative resist process removes the areas of resist that were
not exposed to the light. Using both types of resist allows the process designer to cut
down on the number of masks needed to define a CMOS process. Because creating the
masks is expensive, lowering the number of masks is equated with lowering the cost of a
process. This is also important in large manufacturing plants where fewer steps equal
lower cost.
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The next step in the patterning process is to remove the exposed oxide areas (Fig.
2.31). Notice that the etchant etches under the resist, causing the opening in the oxide to
be larger than what was specified by the mask. Some manufacturers intentionally bloat
(make larger) or shrink (make smaller) the masks as specified by the layout program.
Figure 2.3j shows the cross-sectional view of the opening after the resist has been
removed.

2.1.1 Patterning the N-well

At this point we can make an n-well by diffusing donor atoms, those with five valence
electrons, as compared to the 4 four found in silicon, into the wafer. Referring to our
generic patterning discussion given in Fig. 2.3, we begin by depositing a layer of resist
directly on the wafer, Fig. 2.3d (without oxide). This is followed by exposing the resist to
light through a mask (Figs. 2.3f and g) and developing or removing the resist (Fig. 2.3h).
The mask used is generated with a layout program. The next step in fabricating the n-well
is to expose the wafer to donor atoms. The resist blocks the diffusion of the atoms, while
the openings allow the donor atoms to penetrate into the wafer. This is shown in Fig.
2.5a. After a certain amount of time, depending on the depth of the n-well desired, the
diffusion source is removed (Fig. 2.5b). Notice that the n-well “outdiffuses” under the
resist; that is, the final n-well size is not the same as the mask size. Again, the foundry
where the chips are fabricated may bloat or shrink the mask to compensate for this lateral
diffusion. The final step in making the n-well is the removal of the resist (Fig. 2.5¢).

ilillillillill"‘ff“‘"““”mmawms

/ $ Resist

-_______..--

Start of diffusion into the wafer
p-type

(a) Diffusion of donor atoms

p-type

(b) After diffusion

p-type

\_ n-well /

(d) Angled view of n-well

p-type

(c) After resist removal

Figure 2.5 Formation of the n-well.
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2.2 Laying Out the N-well

When we lay out the n-well, we are viewing the chip from the top. One of the key points
in this discussion, as well as the discussions to follow, is that we do layout to a generic
scale factor. If, for example, the minimum device dimensions are 50 nm (= 0.05 pm =
50 x 10~"m), then an n-well box drawn 10 by 10, see Fig. 2.6, has an actual size after it
is fabricated of 10-50 nm or half a micron (0.5 um = 500 nm), neglecting lateral
diffusion or other process imperfections. We scale the layout when we generate the GDS
(calma stream format) or CIF (Caltech-intermediate-format) file from a layout program.
(A GDS or CIF file is what the mask maker uses to make reticles.) Using integers to do
layout simplifies things. We’ll see in a moment that many electrical parameters are ratios
(such as resistance) and so the scale factor cancels out of the ratio.

Cross section
shown belowl

1|10

p-substrate

Figure 2.6 Layout and cross-sectional view of a 10 by 10 (drawn) n-well.

2.2.1 Design Rules for the N-well

Now that we’ve laid out the n-well (drawn a box in a layout program), we might ask the
question, “Are there any limitations or constraints on the size and spacing of the
n-wells?” That is to say, “Can we make the n-well 2 by 2?” Can we make the distance
between the n-wells 1?7 As we might expect, there are minimum spacing and size
requirements for all layers in a CMOS process. Process engineers, who design the
integrated circuit process, specify the design rules. The design rules vary from one
process technology (say a process with a scale factor of 1 um) to another (say a process
with a scale factor of 50 nm).

Figure 2.7 shows sample design rules for the n-well. The minimum size (width or
length) of any n-well is 6, while the minimum spacing between different n-wells is 9. As
the layout becomes complicated, the need for a program that ensures that the design rules
are not violated is needed. This program is called a design rule checker program (DRC
program). Note that the minimum size may be set by the quality of patterning the resist
(as seen in Fig. 2.5), while the spacing is set by the parasitic npn transistor seen in Fig,
2.7. (We don’t want the n-wells interacting to prevent the parasitic npn from turning on.)
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1
Cross section ]
I
I
I

shown belowi i i l Design rules: width of
________________ the n-well must be at
least 6 while spacing
should be at least 9.

n-well n-well

il p-substrate

Parasitic npn bipolar transistor

Figure 2.7 Sample design rules for the n-well.

2.3 Resistance Calculation

In addition to serving as a region in which to build PMOS transistors (called the body or
bulk of the PMOS devices), n-wells are often used to create resistors. The resistance of a
material is a function of the material’s resistivity, p, and the material’s dimensions. For
example, the slab of material in Fig. 2.8 between the two leads has a resistance given by

= b.Loscale P L 2.2)

In semiconductor processing, all of the fabricated thicknesses, ¢, seen in a cross-
sectional view, such as the n-well’s, are fixed in depth (this is important). When doing
layout, we only have control over W (width) and L (length) of the material. The W and L
are what we see from the top view, that is, the layout view. We can rewrite Eq. (2.2) as

p

L
R = quuare ‘ W - quuare = 7 (23)

R, pare 18 the sheet resistance of the material in €)/square (noting that when L = W the
layout is square and R=R_,,.).

w

/(—) 5
t
A" Layout view
A—te L W B

Figure 2.8 Calculation of the resistance of a rectangular block of material.
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Example 2.1

Calculate the resistance of an n-well that is 10 wide and 100 long. Assume that the
n-well’s sheet resistance is typically 2 kQ/square; however, it can vary with
process shifts from 1.6 to 2.4 kQ)/square.

The typical resistance, using Eq. (2.3), between the ends of the n-well is

100
0.2
10

The maximum value of the resistor is 24k, while the minimum value is 16k. B

R =2,00 = 20kQ

Layout of Corners

Often, to minimize space, resistors are laid out in a serpentine pattern. The corners, that
is, where the layer bends, are not rectangular. This is shown in Fig. 2.9a. All sections in
Fig 2.9a are square, so the resistance of sections 1 and 3 is R, The equivalent
resistance of section 2 between the adjacent sides, however, is approximately 0.6 R_,,..
The overall resistance between points A and B is therefore 2.6 ‘R, As seen in Ex. 2.1
the actual resistance value varies with process shifts. The layout shown in Fig. 2.9b uses
wires to connect separate sections of unit resistors to avoid corners. Avoiding corners in a
resistor is the (generally) preferred method of layout in analog circuit design where the
ratio of two resistors is important. For example, the gain of an op-amp circuit may be

RJR,.

Layout (top view) ﬁ "‘——— B

@ ] (b)

Figure 2.9 (a) Calculating the resistance of a corner section and (b) layout to avoid corners.

2.3.1 The N-well Resistor

At this point, it is appropriate to show the actual cross-sectional view of the n-well after
all processing steps are completed (Fig. 2.10). The n+ and p+ implants are used to
increase the threshold voltage of the field devices; more will be said on this in Ch. 7. In
all practical situations, the sheet resistance of the n-well is measured with the field
implant in place, that is, with the n+ implant between the two metal connections in Fig.
2.10. Not shown in Fig. 2.10 is the connection to substrate. The field oxide (FOX; also
known as ROX or recessed oxide) are discussed in Chs. 4 and 7 when we discuss the
active and poly layers. The reader shouldn’t, at this point, feel they should understand any
of the cross-sectional layers in Fig. 2.10 except the n-well. Note that the field implants
aren’t drawn in the layout and so their existence is transparent to the designer.
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Metal

; n-well ,\
" n+ active implant

p+ field implant P4
n+ field implant — p-substrate

Figure 2.10 Cross-sectional view of n-well showing field implant. The field
implantation is sometimes called the "channel stop implant."

2.4 The N-well/Substrate Diode

As seen in Fig. 2.1, placing an n-well in the p-substrate forms a diode. It is important to
understand how to model a diode for hand calculations and in SPICE simulations. In
particular, let’s discuss general diodes using the n-well/substrate pn junction as an
example. The DC characteristics of the diode are given by the Shockley diode equation,
or

vd
Ip = Is(e"VT - 1) (24)

The current I, is the diode current; / is the scale (saturation) current; V, is the voltage
across the diode where the anode, A, (p-type material) is assumed positive with respect to
the cathode, K, (n-type); and V. is the thermal voltage, which is given by %T where k =
Boltzmann’s constant (1.3806 x 10 Joules per degree Kelvin), T is temperature in
Kelvin, n is the emission coefficient (a term that is related to the doping profile and
affects both the exponential behavior of the diode and the diode’s tumm-on voltage), and ¢
is the electron charge of 1.6022 x 107" coulombs. The scale current and thus the overall
diode current are related in SPICE by an area factor (not associated with or to be confused
with the scale term we use in layouts, Eq. (2.2)). The SPICE (Simulation Program with
Integrated Circuit Emphasis) circuit simulation program assumes that the value of /,
supplied in the model statement was measured for a device with a reference area of 1. If
an area factor of 2 is supplied for a diode, then I is doubled in Eq. (2.4).

2.4.1 A Brief Introduction to PN Junction Physics

A conducting material is made up of atoms that have easily shared orbiting electrons. As
a simple example, copper is a better conductor than aluminum because the copper atom’s
electrons aren’t as tightly coupled to its nucleus allowing its electrons to move around
more easily. An insulator has, for example, eight valence electrons tightly coupled to the
atom’s nucleus. A significant electric field is required to break these electrons away from
their nucleus (and thus for current conduction). A semiconductor, like silicon, has four
valence electrons. Silicon’s conductivity falls between an insulator and a conductor (and
thus the name “semiconductor”). As silicon atoms are brought together, they form both a
periodic crystal structure and bands of energy that restrict the allowable energies an
electron can occupy. At absolute zero temperature, (7 = 0 K), all of the valence electrons
in the semiconductor crystal reside in the valence energy band, E,. As temperature
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increases, the electrons gain energy (heat is absorbed by the silicon crystal), which causes
some of the valence electrons to break free and move to a conducting energy level, E_.
Figure 2.11 shows the movement of an electron from the valence band to the conduction
band. Note that there aren’t any allowable energies between E, and E, in the silicon
crystal structure (if the atom were by itself, that is, not in a crystal structure this exact
limitation isn’t present). Further note that when the electron moves from the valence
energy band to the conduction energy band, a hole is left in the valence band. Having an
electron in the conduction band increases the material’s conductivity (the electron can
move around easily in the semiconductor material because it’s not tightly coupled to an
atom’s nucleus). At the same time a hole in the valence band increases the material’s
conductivity (electrons in the valence band can move around more easily by simply
falling into the open hole). The key point is that increasing the number of electrons or
holes increases the materials conductivity. Since the hole is more tightly coupled to the
atom’s nucleus (actually the electrons in the valence band), its mobility (ability to move
around) is lower than the electron’s mobility in the conduction band. This point is
fundamentally important. The fact that the mobility of a hole is lower than the mobility
of an electron (in silicon) results in, among other things, the size of PMOS devices being
larger than the size of NMOS devices (when designing circuits) in order for each device
to have the same drive strength.

o clectron

E,

E,

0000000600606 0000000000°

hole

Figure 2.11 An electron moving to the conduction band, leaving
behind a hole in the valence band.

Carrier Concentrations

Pure silicon is often called intrinsic silicon. As the temperature of the silicon crystal is
increased it absorbs heat. Some of the electrons in the valence band gain enough energy
to jump the bandgap energy of silicon, E, (see also Eq. (23.21)), as seen in Fig. 2.11. This
movement of an electron from the valence band to the conduction band is called
generation. When the electron loses energy and falls back into the valence band, it is
called recombination. The time the electron spends in the conduction band, before it
recombines (drops back to the valence energy band), is random and often characterized by
the carrier lifetime, t,(a root-mean-square, RMS, value of the random times the electrons
spend in the conduction band of the silicon crystal). While discussing the actual processes
involved with generation-recombination (GR) is outside the scope of this book, the
carrier lifetime is a practical important parameter for circuit design. Another important
parameter is the number of electrons in the conduction band (and thus the number of
holes in the valence band) at a given time (again a random number). These carriers are
called intrinsic carriers, n,. At room temperature

n; = 14.5 x 10° carriersicm® 2.5)
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noting that cm’® indicates a volume. If we call the number of free electrons (meaning
electrons excited up in the conduction band of silicon) » and the number of holes p, then
for intrinsic silicon,

n=p=n;~14.5x 10° carriersicm? 2.6)

This may seem like a lot of carriers. However, the number of silicon atoms, N , in a
given volume of crystalline silicon is

Ns; =50 x 102! atoms/cm? V)
so there is only one excited electron/hole pair for (roughly) every 10" silicon atoms.

Next let’s add different materials to intrinsic silicon (called doping the silicon) to
change silicon’s electrical properties. If we add a small amount of a material containing
atoms with five valence electrons like phosphorous (silicon has four), then the added
atom would bond with the silicon atoms and the donated electron would be free to move
around (and easily excited to the conduction band). If we call the density of this added
donor material N, with units of atoms/cm® and we assume the number of atoms added to
the silicon is much larger than the intrinsic carrier concentration, then we can write the
number of free electrons (the electron concentration #) in the material as

n~Np when Ng; >> Np >>n; 2.8)

A material with added donor atoms is said to be an “n-type” material. Similarly, if we
were to add a small material to silicon with atoms having three valence electrons (like
boron), the added material would bond with the silicon resulting in a hole in the valence
band. Again, this increases the conductivity of silicon because, now, the electrons in the
valence band can move into the hole (having the effect of making it look like the hole is
moving). The added material in this situation is said to be an accepror material. The
added material accepts an electron from the silicon crystal. If the density of the added
acceptor material is labeled N, , then the hole concentration, p , in the material is

p=N4 when Ng;>> Ny>>n; 2.9
A material with added acceptor atoms is said to be a “p-type” material.

If we dope a material with donor atoms, the number of free electrons in the
material, n , goes up, as indicated by Eq. (2.8). We would expect, then, the number of free
holes in the material to go down (some of those free electrons fall easily into the available
holes reducing the number of holes in the material). The relationship between the number
of holes, electrons, and intrinsic carrier concentration, is governed by the mass-action law

pn=n’ ' (2.10)

Consider the following example.

Example 2.2
Suppose silicon is doped with phosphorous having a density, N, , of 10"
atoms/cm’. Estimate the doped silicon’s hole and electron concentration.

The electron concentration, from Eq. (2.8) is, » = 10'® electrons/cm® (one electron
for each donor atom). The hole concentration is found using the mass-action law
as



42 CMOS Circuit Design, Layout, and Simulation

Basically, all of the holes are filled. Note that with a doping density of 10™ there
is one dopant atom for every 50,000 silicon atoms. If we continue to increase the
doping concentration, our assumption that N >> N, isn’t valid and the material is
said to be degenerate (no longer mainly silicon). A degenerate semiconductor
doesn’t follow the mass-action law (or any of the equations for silicon we
present). B

Fermi Energy Level

To describe the carrier concentration in a semiconductor, the Fermi energy level is often
used. The Fermi energy level is useful when determining the contact potentials in
materials. For example, the potential that you have to apply across a diode before it turns
on is set by the p-type and n-type material contact potential difference. Also, the threshold
voltage is determined, in part, by contact potentials.

The Fermi energy level simply indicates the energy level where the probability of
occupation by a free electron is 50%. Figure 2.12a shows that for intrinsic silicon the
(intrinsic) Fermi level, E, is close to the middle of the bandgap. In p-type silicon, the
Fermi level, E,, moves towards the valence band, Fig. 2.12b, since the number of free
electrons, n , is reduced with the abundance of holes. Figure 2.12c shows the location of
the Fermi energy level in n-type silicon. The Fermi level moves towards E, with the
abundance of electrons in the conduction band.

E,
E. E.  ————— E £,
-------------- E; B O St
E, “""""_"_EVEIP E,
(@) Intrinsic silicon (b) p-type silicon (¢) n-type silicon
Eer——— B S—
q- Vi
A——
B Ey
E,
p-type n-type
E,
(d) A pn-junction diode

Figure 2.12 The Fermi energy levels in various structures.
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The energy difference between the E, and E, is given, for a p-type semiconductor,

by

Ei~Ep=kT-In%2 @.11)
and for an n-type semiconductor by

Ep—E,=kT-In 52 2.12)

The band diagram of a pn junction (a diode) is seen in Fig. 2.12d. Note how the Fermi
energy level is constant throughout the diode. A variation in E, would indicate a
nonequilibrium situation (the diode has an external voltage applied across it). To get
current to flow in a diode, we must apply an external potential that approaches the diode’s
contact potential (its built-in potential, ¥, ). By applying a potential to forward bias the
diode, the conduction energy levels in each side of the diode move closer to the same
level. The voltage applied to the diode when the conduction energy levels are exactly at
the same level is given by

(2.13)

noting that k7/q = V7 is the thermal voltage.
2.4.2 Depletion Layer Capacitance

We know that n-type silicon has a number of mobile electrons, while p-type silicon has a
number of mobile holes (a vacancy of electrons in the valence band). Formation of a pn
junction results in a depleted region at the p-n interface (Fig. 2.13). A depletion region is
an area depleted of mobile holes or electrons. The mobile electrons move across the
Jjunction, leaving behind fixed donor atoms and thus a positive charge. The movement of
holes across the junction, to the right in Fig. 2.13, occurs for the p-type semiconductor as
well with a resulting negative charge. The fixed atoms on each side of the junction within
the depleted region exert a force on the electrons or holes that have crossed the junction.
This equalizes the charge distribution in the diode, preventing further charges from
crossing the diode junction and also gives rise to a parasitic capacitance. This parasitic
capacitance is called a depletion or junction capacitance.

Anode, A —{>'—— Cathode, K
/ot

p-type n-type
ooooo%@]}@?{@% EEEEERE
0000 O €pielion ees00ee |

—ooooo@ region +® YRR
ooooo@@@@@@ EEEEERE

Two plates of a capacitor

Figure 2.13 Depletion region formation in a pn junction.
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The depletion capacitance, C;, of a pn junction is modeled using

-

C, is the zero-bias capacitance of the pn junction, that is, the capacitance when the
voltage across the diode is zero. ¥V, is the voltage across the diode, m is the grading
coefficient (showing how the silicon changes from n- to p-type), and V), is the built-in

potential given by Eq. (2.13).

G = (2.14)

Example 2.3

Schematically sketch the depletion capacitance of an n-well/p-substrate diode 100
x 100 square (with a scale factor of 1 um), given that the substrate doping is 10'¢
atoms/cm® and the well doping is 10" atoms/cm’. The measured zero-bias
depletion capacitance of the junction is 100 aF/pm? (= 100 x 107! F/um?), and
the grading coefficient is 0.333. Assume the depth of the n-well is 3 pm.

The n-well doping (n-type side of the diode) is N, = 10", while the substrate
doping is N, is 10'®. We can calculate the built-in potential using Eq. (2.13)

16 . 1017

Vi = 26mV-In—10—-10"

= 759 my
(14.5 x 10%)?

The depletion capacitance is made up of a bottom component and a sidewall
component, as shown in Fig. 2.14 (see Eq. (5.17) for the more general form of Eq.
(2.14)).

+V—
]

\ n-well _|_ _J/ l‘—

ol Sidowallcapac
Bottom capacitance idewall capacitance
p-substrate

Figure 2.14 A pn junction on the bottom and sides of the junction.

The bottom zero-bias depletion capacitance, Cy,, is given by
Cio» = (capacitancelarea) - (scale)’ - (bottom area)  (2.15)
which, for this example, is
Cjos = (100 aF/um?)- (1 um)” - (100)* = 1 pF
The sidewall zero-bias depletion capacitance, Cy,, is given by
Cjos = (capacitancelarea) - (depth of the well) - (perimeter of the well) - (scale)®
or (2.16)
Cjos = (100 aF/um?)- (3)- (400) - (1 um)” = 120 fF
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The total diode depletion capacitance between the n-well and the p-substrate is the
parallel combination of the bottom and sidewall capacitances, or

C;j Cios Ciop + Cjos
Cj - jOb 4 jO. _ jOb 70, (217)

EOIECIEECR

Substituting in the numbers, we get
_ 1pF + 0120 pF 1.120 pF

)T ()T

A sketch of how this capacitance changes with reverse potential is given in Fig.
2.15. Notice that when we discuss the depletion capacitance of a diode, it is
usually with regard to a reverse bias (¥}, is negative). When the diode becomes
forward-biased minority carriers, electrons in the p material and holes in the n
material, injected across the junction, form a sfored or diffusion charge in and
around the junction and give rise to a storage or diffusion capacitance. This
capacitance is usually much larger than the depletion capacitance. Furthermore,
the time it takes to remove this stored charge can be significant. B

C;, diode depletion capacitance

Cjo, zero-bias depletion capacitance A

’

 1.12 pF

A

0 Vb, diode voltage

Figure 2.15 Diode depletion capacitance against diode reverse voltage.

2.4.3 Storage or Diffusion Capacitance

Consider the charge distribution of the forward-biased diode shown in Fig. 2.16. When
the diode becomes forward biased, electrons from the n-type side of the junction are
aitracted to the p-type side (and vice versa for the holes). After an electron drifts across
the junction, it starts to diffuse toward the metal contact. If the electron recombines, that
is, falls into a hole, before it hits the metal contact, the diode is called a Jong base diode.
The time it takes an electron to diffuse from the junction to the point where it recombines
is called the carrier lifetime, 1, (see Sec. 2.4.1). For silicon this lifetime is on the order of
10 ps. If the distance between the junction and the metal contact is short, such that the
electrons make it to the metal contact before recombining, the diode is said to be a short
base diode. In either case, the time between crossing the junction and recombining will be
labeled 7, (transit time). A capacitance is formed between the electrons diffusing into the
p-side and the holes diffusing into the n-side, that is, formed between the minority
carriers. (Electrons are the minority carriers in the p-type semiconductor.) This
capacitance is called a diffusion capacitance or storage capacitance due to the presence
of the stored, or diffusing, minority carriers around the forward-biased pn junction.
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Storage or diffusi(}n capacitance

"4

Metal contact

p-type

n-type

el LN

Minority carriers
Figure 2.16 Charge distribution in a forward-biased diode.

We can characterize the storage capacitance, C, in terms of the minority carrier

lifetime. Under DC operating conditions, the storage capacitance is given by
CS:I’II_I[/)T.‘ET (2.18)

I, is the DC current flowing through the forward-biased junction given by Eq. (2.4).
Looking at the diode capacitance in this way is very useful for analog AC small-signal
analysis. However, for digital applications, we are more interested in the large-signal
switching behavior of the diode. It should be pointed out that, in general, for a CMOS
process, it is undesirable to have a forward-biased pn junction. If we do have a
forward-biased junction, it usually means that there is a problem. For example,
electrostatic protection diodes are turning on (Fig. 4.17), capacitive feedthrough is
possibly causing latch-up, or such. These topics appear in more detail later in the book.

Consider Fig. 2.17. In the following diode switching analysis, we assume that V,
>> 0.7, ¥, < 0 and that the voltage source has been at ¥V, long enough to reach
steady-state condition; that is, the minority carriers have diffused out to an equilibrium
condition. At the time ¢, the input voltage source makes an abrupt transition from a
forward voltage of V. to a reverse voltage of V,, causing the current to change from
VF;M to V";Oj. The diode voltage remains at 0.7 V, because the diode contains a stored
charge that must be removed. At time #,, the stored charge is removed. At this point, the
diode basically looks like a voltage-dependent capacitor that follows Eq. (2.14). In other

1 Diode current
R VF - 0.7 1 t I
- R <—S), Diode voltage

O TV 07}

Vr 1, time
Vr—07 |

R R rE—

>

Figure 2,17 Diode reverse recovery test circuit.
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words for ¢ > t, , the diode-depletion capacitance is charged through R until the current in
the circuit goes to zero and the voltage across the diode is ¥,. This accounts for the
exponential decay of the current and voltage shown in Fig. 2.17.

The diode storage time, the time it takes to remove the stored charge, ¢, is simply
the difference in ¢, and ¢, or

L=t (2.19)
This time is also given by
ty=1r InEIR (2.20)
—ig
Vi-0.7

=ir and 22 ;0'7 =ig = a negative number in this discussion. Note that it is
quite easy to determine the minority carrier lifetime using this test setup.

where

Defining a time ¢, where ¢, > ¢,, when the current in the diode becomes 10% of

Ve-0.7 . .
£ we can define the diode reverse recovery time, or

R

L=t~ (2.21)

Note that the reverse recovery time (the time it takes to shut off a forward-biased diode) is
one of the big reasons that digital circuits made using silicon bipolar transistors don’t
perform as well, in general, as their CMOS counterparts.

Table 2.1 SPICE parameters related to diode.

Name SPICE
I IS Saturation current
R RS Series resistance
n N Emission coefficient
Vi BV Breakdown voltage
I, IBV Current which flows during V,
Cy CJo Zero-bias pn junction capacitance
V,; \2) Built-in potential
m M Grading coefficient
Tr TT Carrier transit time

2.4.4 SPICE Modeling

The SPICE diode model parameters are listed in Table 2.1. The series resistance, R,
results from the finite resistance of the semiconductor used in making the diode and the
contact resistance, the resistance resulting from a metal contact to the semiconductor. At
this point, we are only concerned with the resistance of the semiconductor. For a
reverse-biased diode, the depletion layer width changes, increasing for larger reverse
voltages (decreasing both the capacitance and series resistance, of the diode). However,
when we model the series resistance, we use a constant value. In other words, SPICE will
not show us the effects of a varying R,.
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Example 2.4

Using SPICE, explain what happens when a diode with a carrier lifetime of 10 ns
is taken from the forward-biased region to the reverse-biased region. Use the
circuit shown in Fig. 2.18 to illustrate your understanding.

1k
NN
— > +
+10 )
Viv ° SZ Vb

Figure 2.18 Circuit used in Ex. 2.4 to demonstrate simulation of a
diode's reverse recovery time.

We assume a zero-bias depletion capacitance of 1 pF. The SPICE netlist used to
simulate the circuit in Fig. 2.18 is shown below.

*** Figure 2.19 CMOS: Circuit Design, Layout, and Simulation ***

.control

destroy all

run

let id=-i(vin)*1k

plot vd vin id

.endc

D1 vd 0 Dtrr

R1 vin vd 1k

Vin vin 0 DC 0 pulse 10-10 10n .1n .1n 20n 40n

.Model Dtrr D is=1.0E-15 tt=10E-9 ¢j0=1E-12 vj=.7 m=0.33
.tran 100p 25n
.end

Figure 2.19 shows the current through the diode (Z,, ), the input voltage step (V,,),
and the voltage across the diode (V).

What’s interesting to notice about this circuit is that current actually flows
through the diode in the negative direction, even though the diode is forward
biased (has a forward voltage drop of 0.7 V). During this time, the stored minority
carrier charge (the diffusion charge) is removed from the junction. The storage
time is estimated using Eq. (2.20)

9.3+10.7
10.7

which is close to the simulation results. Note that the input pulse doesn’t change
until 10 ns after the simulation starts. This ensures a steady-state condition when
the input changes from 10to-10 V. &

t;=10ns - In =6.25 ns
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Figure 2.19 The simulation results for Ex. 2.4.

2.5 The RC Delay through an N-well

At this point, we know that the n-well can function as a resistor and as a diode when used
with the substrate. Figure 2.20a shows the parasitic capacitance and resistance associated
with the n-well. Since there is a depletion capacitance from the n-well to the substrate, we
could sketch the equivalent symbol for the n-well resistor, as shown in Fig. 2.20b. This is
the basic form of an RC transmission line. If we put a voltage pulse into one side of the
n-well resistor, then a finite time later, called the delay time and measured at the 50%
points of the pulses, the pulse will appear.

(a) Pulse in Pulse out

, R determined by the sheet resistance
of the n-well

| [\ e

1= o o n-well

TTT—I—TT\
p-type

Substrate tied to the lowest potential in the circuit, in this case ground
C determined by the
depletion capacitance
R of the n-well

) Input /\/\/\/\/ Output
C

Substrate connection

Figure 2.20 (a) Parasitic resistance and capacitance of the n-well and (b) schematic symbol.
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RC Circuit Review

Figure 2.21 shows a simple RC circuit driven from a voltage pulse. If the input pulse
transitions from 0 to ¥, at a time which we’ll call zero, then the voltage across the

capacitor (the output voltage) is given by
Vout(t) = Vpulse(l - e_t/RC) (222)

The time it takes the output of the RC circuit to reach 50% of V_, (defined as the

pulse
circuit’s delay time) is determined using

V uise
By ise(1 — e 9RCY 5 142 0.TRC (2.23)

The rise time of the output pulse is defined as the time it takes the output to go from 10%
of the final voltage to 90% of the final voltage (V,,,.,). To determine the rise time in terms
of the RC time constant, we can write

ulse.

0.1V putse = Vpuise(1 — e™10%/RCY (2.24)
and

0.9V puise = Vpuise(1 — e~0%/RCY (2.25)
Solving these two equations for the rise time gives

tr =tooy, — tiow, ® 2.2RC (2.26)

We will use these results often when designing digital circuits. It’s important that any
electrical engineer be able to derive Egs. (2.23) and (2.26).

Input pulse
; R
m out
VvV Vpulse
0-9Vpulse T T T T I T
input pulse C 0. I s ,
0 tI:) Vp 2V : ' ™ Output pulse
pulse 0.1 Vpulse i hastoulitidtied - ! >
0 0 ! >
> . time
Delay time/ih______):
ta=0.7RC " Rise time
t,=2.2RC
Figure 2.21 Rise and delay times in an RC circuit.
Distributed RC Delay

The n-well resistor seen in Fig. 2.20 is an example of a distributed RC circuit (not a
single, RC like the one seen in Fig. 2.21). In order to estimate the delay through a
distributed RC, consider the circuit seen in Fig. 2.22. The delay to node A is estimated
using

tag = 0-7quuare quuare (227)
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l'n quuare A quuﬂre B quuare C . . . quuare
i —/VWN J_ A%

g quuare g quuare i quuare g quuare

Figure 2.22 Calculating the delay through a distributed RC delay.

out

The delay to node B is the sum of the delay to point A plus the delay associated with
charging the capacitance at node B through 2R

square or
tig = 0-7(quuare quuare + 2quuarecsquare) (228)
Similarly, the delay to node C is
tac = 0-7(quuare Cxquare + 2quuare C:quare + 3quuare quuare) (2 29)

For a large number of sections, / , we can write the overall delay through the distributed
RC delay as

ti = 0.7RsquareCsquare - (1 +2+3 +4+ ...+ 1) (2.30)

The term in parentheses can be written as

(1+2+3+4+...+1)=———-—l(l;1) (231
and so for a large number of sections /

ta~0.35 - RoquareCquare + I (232)
where the R and C,,,, are the resistance and capacitance of each square of the

distributed RC line.

Example 2.5

Estimate the delay through a 250 kQ resistor made using an n-well with a width of
10 and a length of 500. Assume that the capacitance of a 10 by 10 square of n-well
to substrate is 5 fF. Verify your answer with SPICE.

We can divide the n-well up into 50 squares each having a size of 10 by 10 and a
resistance of 5 kQ. The delay through the resistor is then (remembering 1 femto =
107")

t3=0.35-(5k)- (5/) - (50)> ~ 22 ns

Note that the total resistance value is Rjguare - / While the total capacitance of the
resistor to substrate is Cguare - [. We can use this result to quickly estimate the
delay of a distributed RC line (sometimes called an RC transmission line) as

ta=0.35 - (total resistance) - (total capacitance) (2.33)

The simulation results are seen in Fig. 2.23. A SPICE lossy transmission line was
used to model the distributed effects of the resistor. B
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‘/m *** Figure 2.23 CMOS: Circuit Design,
10 Layout, and Simulation ***
.control
. destroy all
0.6 I run
y plot vin vout

0.4 / \ out .endc

.tran 100p 100n

v — vout ——vin

A

|

l .

: 40.0 60.0 80.0 100.0 01 V'n 0 VOUt 0 TRC
! tine ns Rload Vout 0 1G

I
I

| 22 ns time Vin vin 0 DC 0 pulse 0 1 5n 0
> .model TRC Iltra R=5k C=5f len=50
: .end

Figure 2.23 SPICE simulations showing the delay through an n-well
resistor.

Distributed RC Rise Time

A similar analysis to what was used to arrive at Eq. (2.32) can be used to determine the
rise time through a distributed RC line. The result is

t,=1.1- quuarecsquare : 12 (234)

Using this equation in Ex. 2.5 results in an output rise time of approximately 69 ns.
Comparing this estimate to the simulation results in Fig. 2.23, we see good agreement.

2.6 Twin Well Processes

Before going too much further, let’s summarize some of the layout discussions presented
in this chapter and discuss some concerns. Examine the cross-sectional views seen in Fig,
2.24. We know that the body of an NMOS transistor is p-type, while the body of a PMOS
device is n-type. In the n-well process, Fig. 2.24a, the NMOS are fabricated directly in the
p-type substrate and the PMOS are made in the n-well. For a p-well process, Fig. 2.24b,
the NMOS are made in the p-well while the PMOS are fabricated in the n-type substrate.
Note that sometimes the term tub is used in place of well (e.g., an n-tub process) because
the resulting semiconductor area has a cross-sectional view like a bathtub’s.

When implanting the n-well, in Fig. 2.24a for example, the substrate must be
counter-doped. This means that the p-substrate must have n-type dopants (such as
phosphorous or arsenic) added until its concentration changes from p- to n-type. The
problem with counter-doping the p-substrate to make an n-well is that the quality of the
resulting semiconductor isn’t as good as it would be by simply taking intrinsic silicon and
adding donor atoms. The acceptor atoms in the p-substrate become ionized (e.g.,
electrons fall into the holes) increasing scattering and reducing mobility. Sometimes the
effects of counter doping are called excessive doping effects. In an n-well process, the
PMOS devices suffer from excessive doping and so the quality of the device isn’t as good
as the quality of a PMOS device in a p-well process. For example, a PMOS device
fabricated in an n-well is slower than a PMOS device fabricated in an n-substrate.
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p-substrate
(b) p-well process

n-substrate

p- or n-substrate (lightly doped)

p-well n-well2
welll (d) Triple-well process
-we i

using p-substrate

(a) n-well process

(c) Twin-well process

p-substrate (lightly doped)

Figure 2.24 The different possible wells used in a bulk CMOS process.

In an attempt to reduce excessive doping effects, a twin-well process, Fig. 2.24c,
can be used. When using a lighter doped substrate, the amount of counter doping isn’t as
significant. We don’t use an intrinsic silicon substrate because it is difficult to control the
doping at such low levels. If a p-substrate is used, then the p-well is electrically connected
to the substrate. The bodies of the NMOS are then all tied to the same potential, usually
ground. To allow the bodies of the MOSFETS to be at different potentials a triple-well
process can be used, Fig. 2.24d. The added n-well isolates the p-well from the substrate
(the n-welll and p-substrate form a diode that electrically isolates the p-well from the
substrate). The p-well can exist directly in the substrate too.

Design Rules for the Well

Figure 2.25 shows the design rules, from MOSIS, for the well. Notice that there are four
different sets of rules that the layout designer can follow. In this book we will use the
CMOSedu rules to illustrate design examples. Before saying why, let’s provide a little
history and background. We know from Ch. 1 that MOSIS collects chip designs from
various sources (education, private, not-for-profit, etc). These designs are put together to
form the masks used for making the chips (on multiproject wafers). The actual vendors
used by MOSIS to fabricate chips has changed throughout the years. To make the layouts
transferable as well as scalable between different CMOS processes, MOSIS came up with
the so-called SCMOS rules (scalable CMOS design rules). A parameter, A, is used in the
rules. All of the layouts are drawn on a A grid. When making the GDS file (or CIF file),
the layout is scaled by this factor. For example, if an n-well box is drawn 10A by 10A with
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Lambda Scale
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Figure 2.25 Layouts showing the MOSIS design rules for the n-well.

a lambda of 0.3 pum, then when the GDS file is exported (called streaming the layout out)
the actual size of the layout is 3 um square. If the layout were used in a different process,
only the value of A would need to be changed. In other words, the exact same layout can
be used in a different technology. Being able to use the same layout and simply scale it is
a significant benefit of CMOS.

When the SCMOS rules were first introduced, the minimum size of a dimension
in CMOS was approximately I um. The “fabs” or vendors (the factory where the wafers
are actually processed) also have a set of design rules. In general, the fab’s design rules
are tighter than the SCMOS rules. For example, one fab may specify a minimum n-well
width of 3 pm, while another fab, in the same process technology, may specify 4 um. The
SCMOS rules may specify 5 pm to cover all possible situations (the price of using the
SCMOS rules over the vendor’s rules is larger layout areas). Unfortunately, as the process
dimensions have shrunk over time, the MOSIS SCMOS rules weren’t relaxed enough,
making modifications necessary. This has led to the MOSIS submicron rules (SUBM)
and the MOSIS deep-submicron (DEEP) rules seen in Fig. 2.25 (there are three sets of
MOSIS scalable design rules, SCMOS, DEEP, and SUBM). Older processes still use the
SCMOS rules, while the smaller technologies use the modified rules. Note that if a layout
passes the DEEP rules, it will also pass the SCMOS rules (except for the exact via size).

Why use the CMOSedu rules in this book? Why not use one of the three sets of
design rules from MOSIS? The answer comes from how we lay out MOSFETs. The
minimum length of a MOSFET using the MOSIS rules is 2 (2A, keeping in mind that
some scale factor is used when generating the GDS or CIF file). In the CMOSedu rules
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we took the MOSIS DEEP rules and divided by two. This means that layouts in the
CMOSedu rules are exactly the same as the MOSIS DEEP rules except that they are
scaled by a factor of 2. Using the CMOSedu rules, the minimum length of a MOSFET
is 1. If MOSIS specifices a scale factor, A, of 90 nm using the DEEP rules, where the
minimum length is 2, then we would use a scale factor of 180 nm when using the
CMOSedu rules with a minimum length of 1. In SPICE we use “.options scale=90n”
when using the DEEP rules and “.options scale=180n” when using the CMOSedu rules.

SEM Views of Wells

Before leaving this chapter, let's show a scanning electron microscope (SEM) image of a
well. In an SEM electrons are emitted from a cathode made with either tungsten or
lanthanum hexaboride (LaB6). Tungsten is generally used for the cathode because it has a
high melting point and a low vapor pressure. In some SEMs electrons are emitted via
field emission. In either case an electron beam is formed and moved across the surface of
an object. To move the electron beam it is passed through pairs of scanning coils and an
objective lens. Varying the current through the coils deflects the beam, moving it across
the surface of an object, and is used to form the image. The electrons are then attracted
towards an anode and collected (as a varying output current).

Figure 2.26 shows an SEM image of a cross-sectional view of a portion of a
CMOS memory chip. While most of the fabricated layers seen in this photograph will be
covered in the next few chapters, we do point out, in the figure, a p-well (hard to see), a
deep n-well, and the p-substrate. Note that in order to view different materials in a
cross-section the sample is first stained prior to placement in the SEM and imaging.

deep n-well

p-substrate

Figure 2.26 SEM image showing the cross-section of a CMOS memory chip.
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PROBLEMS

21

2.2

23

24

For the layout seen in Fig. 2.27, sketch the cross-sectional views at the places
indicated. Is there a parasitic pn junction in the layout? If so, where? Is there a
parasitic bipolar transistor? If so, where?

.......

Cross-section

Cross-section

.......

Figure 2.27 Layout used in problem 2.1.

Sketch (or use a layout tool) the layout of an n-well box that measures 100 by 10.
If the scale factor is 50 nm, what is the actual size of the box after fabrication?
What is the area before and after scaling? Neglect lateral diffusion or any other
fabrication imperfections.

Lay out a nominally 250 kQ resistor using the n-well in a serpentine pattern
similar to what’s seen in Fig. 2.28. Assume that the maximum length of a segment
is 100 and the sheet resistance is 2 kC)/square. Design rule check the finished
resistor. If the scale factor in the layout is 50 nm, estimate the fabricated size of
the resistor.

If the fabricated n-well depth, ¢, is 1 um, then what are the minimum, typical, and
maximum values of the n-well resistivity, p? Assume that the measured sheet
resistances (minimum, typical, and maximum) are 1.6, 2.0, and 2.2 k/square?
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25

2.6

2.7

2.8

Figure 2.28 Layout of an n-well resistor using a serpentine pattern.

Normally, the scale current of a pn junction is specified in terms of a scale current
density, J, (A/m?®), and the width and length of a junction (i.e., I, = J-L-W-scale’
neglecting the sidewall component). Estimate the scale current for the diode of
Ex. 2.3 ifJ,= 10" A/m’.

Repeat problem 2.5, including the sidewall component (I, = J-L-W-scale’ +
J(2L+2Wyscale-depth).

Using the diode of Ex. 2.3 in the circuit of Fig. 2.29, estimate the frequency of the
input signal when the AC component of v, is 707 uV (i.e., estimate the 3 dB
frequency of the v, /v, ).

AAA Vout
10k
v n-well
N
Vin
1 mV Substrate
A\

Figure 2.29 Treating the diode as a capacitor. See Problem 2.7.

Verify the answer given in problem 2.7 with SPICE.
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29

2.10

211

2.12

2.13

2.14

2.15

Using SPICE, show that a diode can conduct significant current from its cathode
to its anode when the diode is forward biased.

Estimate the delay through a 1 MQ resistor (10 by 2,000) using the values given
in Ex. 2.5. Verify the estimate with SPICE.

If one end of the resistor in problem 2.10 is tied to +1 V and the other end is tied
to the substrate that is tied to ground, estimate the depletion capacitance (F/m?)
between the n-well and the substrate at the beginning, the middle, and the end of
the resistor. Assume that the resistance does not vary with position along the
resistor and that the scale factor is 50 nm, C;, = 25 aF for a 10 by 10 square, m =
05,and V,,= 1.

The diode reverse breakdown current, that is, the current that flows when |V, | <
BV (breakdown voltage), is modeled in SPICE by

Ip=1IBV-e ¥o+BNVr

Assuming that 10 nA of current flows when the junction starts to break down at
10 V, simulate, using a SPICE DC sweep, the reverse breakdown characteristics
of the diode. (The breakdown voltage, BV, is a positive number. When the diode
starts to break down —BV = V,,. For this diode, breakdown occurs when ¥V, = -10
V)

Repeat Ex. 2.3 if the n-well/p-substrate diode is 50 square and the acceptor doping
concentration is changed to 10'* atoms/cm’.

Estimate the storage time, that is, the time it takes to remove the stored charge in a
diode, when 1,=5ns, ¥, =5V, V,=-5V, C'j0 = 0.5 pF, and R = 1k. Verify the
estimate using SPICE.

Repeat problem 2.14 if the resistor is increased to 10k. Comment on the
difference in storage time between using a 1k and a 10k resistor. What dominates
the increase the diode's reverse recovery time when using a 10k resistor instead of
a 1k resistor?



Chapter

The Metal Layers

The metal layers in a CMOS integrated circuit connect circuit elements (MOSFETs,
capacitors, and resistors). In the following discussion we’ll discuss a generic CMOS
process with two layers of metal. These levels of metal are named metall and metal2. The
metal in a CMOS process is either aluminum or copper. In this chapter we look at the
layout of the bonding pad, capacitances associated with the metal layers, crosstalk, sheet
resistance, and electromigration.

3.1 The Bonding Pad

The bonding pad is at the interface between the die and the package or the outside world.
One side of a wire is soldered to the pad, while the other side of the wire is connected to a
lead frame, as was seen in Fig. 1.3. Figure 3.1 shows a close up of a bonding pad and
wire. In this chapter we will not concern ourselves with electrostatic discharge (ESD)
protection, which is an important design consideration when designing the pad.

Bonding wire
(the smashed wire)

—— Pad
(the bright square)

Figure 3.1 The bonding wire connection to a pad.
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3.1.1 Laying Out the Pad |

The basic size of the bonding pad specified by MOSIS is a square 100 pm x 100 um
(actual size). For a probe pad, used to probe the circuit with a microprobe station, the size
should be greater than 6 um x 6 um. In production chips the pads may vary in size (e.g.,
75 x 100, or 50 x 75, etc.) depending on the manufacturer’s design rules. The final size of
the pads are the only part of a layout that doesn’t scale as process dimensions shrink.
The layout of a pad that uses metal2 is shown in Fig. 3.2. Notice, in the cross-sectional
view, the layers of insulator (Si0, in most cases) under and above the metal2. These
layers are used for isolation between the other layers in the CMOS process.

Layout or top view 100 pm (final size)

Metal2

A Top of the wafer

< > or die
Cross-sectional view\/ 100 pm (final) f

[ ] Insulator
Insulator

Insulator
FOX

p-substrate

Figure 3.2 Layout of metal2 used for bonding pad with associated cross-sectional view.

Capacitance of Metal-to-Substrate

Before proceeding any further, we might ask the question, “What is the capacitance from
the metal2 box (pad) in Fig. 3.2 to the substrate?”” The substrate is at ground potential and
so, for all intents and purposes, it can be thought of as an equipotential plane. This is
important because we have to drive this capacitance to get a signal off the chip. Table 3.1
gives typical values of parasitic capacitances for a CMOS process. Consider the following
example.

Example 3.1
Estimate the parasitic capacitance associated with the pad in Fig. 3.2.

The capacitance associated with this pad is the sum of the plate (or bottom)
capacitance and the fringe (or edge) capacitance. We can write

Cpad,mZ—»sub =area- Cplate +perimeter . Cfringe (3 1)
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The area of the pad is 100 um? square (100 um by 100 pum), while the perimeter of
the pad is 400 um. Using the typical values of capacitance for metal2 to substrate
in Table 3.1 gives

Cradmr—ssub = 10,000 - 14 aF + 400 - 81 aF = 172,400 aF = 172.4 fF = 0.172 pF

A significant on-chip capacitance. B

Table 3.1 Typical parasitic capacitances in a CMOS process. Note that while the physical
distance between the layers decreases, as process technology scales downwards, the
dielectric constant used in between the layers can be decreased to keep the parasitic
capacitances from becoming too significant. The values are representative of the
parasitics in both long- and short-channel CMOS processes.

Plate Cap. aF/um’ | Fringe Cap. aF/um

min typ max min typ max
Polyl to subs. (FOX) 53 58 63 85 88 92
Metall to polyl 35 38 43 84 88 93
Metall to substrate 21 23 26 75 79 82
Metall to diffusion 35 38 43 84 88 93
Metal2 to polyl 16 18 20 83 87 91
Metal2 to substrate 13 14 15 78 81 85
Metal2 to diffusion 16 18 20 83 87 91
Metal2 to metall 31 35 38 95 100 104

Example 3.2

The pad layout in Fig. 3.2 is the actual size. However, when we lay out the pad
with the other circuit components, it must also be scaled when the layout is
streamed out (see Sec. 1.2.3). If the scale factor in a design is 50 nm, what is the
size of the box used for a pad that we draw with the layout program? Does the
capacitance calculated in Ex. 3.1 change?

Because we want a final pad size of 100 um by 100 pum, the drawn layout size of
the box with a scale factor of 50 nm is

100 um

m— =2,000 (drawn size)

Each side of the pad, in Fig. 3.2, is drawn with a size of 2,000 for a final (actual)
size of 100 um by 100 pm.

The capacitance calculated in Ex. 3.1 doesn’t change. We can rewrite Eq. (3.1)
as

2 .
Cradm2—ssub = AreQdrawn - (scale)” - Cplare + perimeter drawn - (scale) - Cpinge (3.2)

to use the drawn layout size. At this point there should be no confusion between
the terms “drawn layout size” and “actual or final layout size.” B
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Passivation

Because an insulator is covering the pad (the piece of metal2) in Fig. 3.2, we can’t bond
(connect a wire) to it. The top layer insulator on the chip is also called passivation. The
passivation helps protect the chip from contamination. Openings for bonding pads are
called cuts in the passivation. To specify an opening or cut in the glass (insulator)
covering the metal2, we use the overglass layer. The MOSIS rules specify 6 um distance
between the edge of the metal2 and the overglass box, as seen in Fig. 3.3. The drawn
distance between the smaller overglass box and the larger metal2 box, with a scale factor
of 50 nm, is 6/0.05 or 120.

There may be another layer in the MOSIS setups for the layout tool called the
PAD layer. This layer has no fabrication significance but rather is used by the machine
that bonds the chip to the lead frame to indicate the location of the pads. Since MOSIS
takes designs of varying sizes and shapes, the locations of the pads change from one
project to the next. This layer isn’t really necessary since we can use the overglass layer
(ensuring the overglass box has a drawn size of 1,760 square or a final size of 88 um
square) to indicate the location of the pads. We won’t use the PAD layer in our layouts
here.

An Important Note

Here we are using a CMOS process with (only) two layers of metal. In most modern
CMOS processes, more than two layers of metal are used. If the process has five layers of
metal, then the top layer (just like the top floor in a five-story building) is metals.
Therefore, metals is the layer the bonding wire is connected to.

Spacing between . Overglass layer
OVGL layer and metal2 v
exactly 6 pm or a drawn
distance of 120 2,000 (drawn)
Metal2
2,000 (drawn) Top of the wafer
or die

Overglass openin
T £ pene /| Insulator

Insulator
Insulator

Figure 3.3 Layout of a metal2 pad with pad opening for bonding connection
in a 50 nm (scale factor) CMOS process.
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3.2 Design and Layout Using the Metal Layers

As mentioned earlier, the metal layers connect the resistors, capacitors, and MOSFETs in
a CMOS integrated circuit. So far, in this book, we’ve learned about the layout layers
n-well, metal2, overglass, and pad. In this section we’ll also learn about the metall and
vial layers and the associated parasitic resistances and capacitances of these layers.

3.2.1 Metal1 and Via1

Metall is a layer of metal found directly below metal2. Figure 3.4 shows an example
layout and cross-sectional view. The vial layer connects metall and metal2. The via layer
specifies that the insulator be removed in the location indicated. Then, for example, a
tungsten “plug” is fabricated in the insulator’s opening. When the metal2 is laid down,
the plug provides a connection between the two metals. Note that if we were to use more
than two layers of metal, then via2 would connect metal2 to metal3, via3 would connect
metal3 to metald, etc.

Vial
A < > Metal2
Cross-section Cross-section
¥ / ¥
Metall Vial
= Insulator
41 == = : 1 Insulator
. = Insulator
) B FOX

p-substrate

Figure 3.4 Layout and cross-sectional views.

An Example Layout

Figure 3.5 shows an example layout using the n-well, metall, vial, and metal2 layers. It’s
important that, before proceeding, this layout and the associated cross-sectional view are
understood. For example, how would our cross-sectional view change if we moved the
cross-sectional line used in Fig. 3.5 down slightly so that it only intersects the n-well and
the metal2 layers? Answer: the cross-sectional view would be the same as seen in Fig. 3.5
except that the metall and vial layers wouldn’t be present.
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Metal |
Cross-section Cross-section
b § Y
Metal2
Metal2
n-well Metall
Vial
F < Insulator
L. - Insulator
Insulator
FOX
n-well
p-substrate

Figure 3.5 An example layout and cross-sectional view using including the n-well.

3.2.2 Parasitics Associated with the Metal Layers

Associated with the metal layers are parasitic capacitances (see Table 3.1) and resistance.
Like the n-well in the last chapter, the metal layers are characterized by a sheet resistance.
However, the sheet resistance of the metal layers is considerably lower than the sheet
resistance of the n-well. For the sake of examples in this book, we’ll use metal sheet
resistances of 0.1 Q)/square. Also, there is a finite contact resistance of the via. The
following examples illustrate some of the unwanted parasitics associated with these
layers.

Example 3.3
Estimate the resistance of a piece of metall 1 mm long and 200 nm wide. What is
the drawn size of this metal line if the scale factor is 50 nm? Also estimate the
delay through this piece of metal, treating the metal line as an RC transmission
line. Verify your answer with a SPICE simulation.

The drawn size of the metal line is 1 mm/50 nm (= 20,000) by 200/50 (= 4).
Figure 3.6 shows the layout of the metal wire (not to scale). The line consists of
1,000/0.2 = 20,000/4 = 5,000 squares of metall.

To calculate the resistance of the metal line, we use Eq. (2.3)

0.1Q 20,000
square =~ 4

R = = 0.1-5,000=500

To calculate the capacitance, we use the information in Table 3.1 and either Eq.
(B.Dor(3.2)
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Metall layout view for Ex. 3.3. One square _ i
- B L o T %1% 4
<« — >
Drawn layout 20,000
— XX —
: ; L i
: 2 P p-substrate 4,999 5,000

Figure 3.6 Layout and cross-sectional view with parasitics for the metal line
in Ex. 3.3.

C=(1,000-0.2)-23 aF +(2,000-4)-79 aF =162 fF
or the capacitance for each 200 nm by 200 nm square (4 by 4) of metall is

162 fF
quuare = 5’ 000

The delay through the metal line is, using Eqgs. (2.32) or (2.33)
ta=0.35 - Rsquare Csquare - I* = 0.35(0.1)(32 aF)(5,000)* = 28 ps

= 32 aF/square

or
ta=035RC=0.35-500- 162 fF =28 ps

The delay of a metall line (with nothing connected to it) is 28 ps/mm when the
parasitic capacitance and resistance are the limiting factors. The SPICE simulation
results are seen in Fig. 3.7. &

Intrinsic Propagation Delay

The result of this example (a metal delay of 28 ps/mm) should be compared to the
intrinsic delay of a signal propagating in a material with a relative dielectric constant, €,
(no parasitic resistance). The velocity, v, of the signal in this situation is related to the
speed of light, ¢, by

c

V= (meters/second) 3.3)

If we assume the signal is propagating in silicon dioxide (Si0,) with a relative dielectric
constant of roughly 4, then we can estimate the delay of the metal line as

ta 1 _JEr 2 _ 6.7ns

meter V.~ € T 3x10% m/s meter

(34
or a delay of 6.7 ps/mm. For any practical integrated circuit wire in bulk CMOS, the
parasitics (RC delay) dominate the propagation delays.

Note that increasing the width of the wire decreases its resistance and increases its
capacitance (resulting in the delay staying relatively constant).
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*** Figure 3.7 CMOS: Circuit Design,

=== vout — vin m
0 ¥ Layout, and Simulation ***
\ .control
8 destroy all
. 4 run
/ plot vin vout
! out .endc

.tran 1p 250p

01 Vin 0 Vout 0 TRC

1
I
!
|
(
!
0.0 s010 : 100.0 150.0 200.0 250.0
¥

i ine oS . Rload Vout 0 1G

X ) time Vin vin 0 DC 0 pulse 0 1 50p 0

P .model TRC ltra R=0.1 C=32e-18 len=5k
<> .end

28 ps

Figure 3.7 Simulating the delay through a | mm wire made using metall.

Example 3.4

Estimate the capacitance between a 10 by 10 square piece of metall and an
equal-size piece of metal2 placed exactly above the metall piece. Assume a scale
factor of 50 nm. Sketch the layout and the cross-sectional views. Also sketch the
symbol of a capacitor on the cross-sectional view.

The plate capacitance, from Table 3.1, between metall and metal2 is typically 35
aF/um?, while the fringe capacitance is typically 100 aF/um. The two layers form
a parallel plate capacitor, Fig. 3.8. The capacitance between the plates is given by
the sum of the plate capacitance and the fringe capacitance, or

C12 =100-(0.05)% - 35 aF + 40 - (0.05) - 100 aF = 209 aF

[ ]
Layout view of 10 square
metall and metal2
Metal? is the top [ | Insulator
plate of the capacitor -
and metal 1 is bottom. [ ] T Insulator
Figure 3.8 Capacitance between metall and metal2.
Example 3.5

In the previous example, estimate the voltage change on metall when metal2
changes potential from 0 to 1 V. Verify the result with SPICE.
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The capacitance from metal2 to metall was calculated as 209 aF. The capacitance
from metall to substrate is given by

Cisup =100-(0.05)% - (23) +40 - (0.05) - 79 = 164 aF

The equivalent schematic is shown in Fig. 3.9. Since charge must be conserved
we can write

Cu- (A Vmetarz — AVmelall) = Clsub * AV metal
The change in voltage on C,,, (metall) is then given by

Cn Cu 209
Vmea = Vmea . =1- = =560 mV
AV metair = AV etz - = L G = 209 + 164 "

A VmeralZ Cl 2

1 } A Vmetal 1
0 g C Lsub

Figure 3.9 Equivalent circuit used to calculate the change in metall voltage, see Ex. 3.5.

A displacement current flows through the capacitors, causing the potential on
metall to change by 560 mV. This may seem significant at first glance. However,
one must remember that most metal lines in a CMOS circuit are being driven
from a low-impedance source; that is, the metal is not floating but is being held at
some potential. This is not the case in some dynamic circuits or in circuits with
high-impedance nodes or long metal runs. Figure 3.10 shows the SPICE
simulation results and netlist. Notice how we used the “use initial conditions”
(UIC) in the transient statement. This sets all nodes that aren’t driven by a source
to, initially (at the beginning of the simulation), zero volts. Note that older
versions of SPICE don’t recognize “a” as atto so we used “e-18.” B

*** Figure 3.10 CMOS: Circuit Design,

AVieratt AV metans Layout, and Simuiation ***

— vaetal? — vmstall

.control
destroy all

/ \ run
plot vmetal2 vmetal1

.endc

/
// . .tran 10p 5n UIC

) To ) ) .:u T o vmetal2 vmetal2 0 DC 0 puise 0 1 2n 1n

C12 vmetal2 vmetal1 209e-18
C1sub vmetal1 0 164e-18

.end

Figure 3.10 Simulating the operation of the circuit in Fig. 3.9.
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3.2.3 Current-Carrying Limitations

Now that we have some familiarity with the metal layers, we need to answer the question,
“How much current can we carry on a given width or length of metal?” The factors that
limit the amount of current on a metal wire or bus are metal electromigration and the
maximum voltage drop across the wire or bus due to the resistance of the metal layer.

A conductor carrying too much current causes metal electromigration. This effect
is similar to the erosion that occurs when a river carries too much water. The result is a
change in the conductor dimensions, causing spots of higher resistance and eventually
failure. If the current density is kept below the metal migration threshold current density,
J,;» metal electromigration will not occur. Typically, for aluminum, the current threshold
for migration J,, is 1 — 2 %

Example 3.6

Assuming a scale factor of 50 nm, estimate the maximum current a piece of
metall with a drawn width of 3 can carry. Also estimate the maximum current a
100 by 100 um® bonding pad can receive from a bonding wire. Assume that the
metal wires are fabricated in aluminum.

The actual width of the metall wire in this example is 150 nm. Assuming that J,,
=1 %, the maximum current on a 0.15 pm wide aluminum conductor is given by

Ipax =J a1 - W= 10_3 -0.15=150 pA
The maximum current through a bonding pad is then 100 mA. B

Example 3.7
Estimate the voltage drop across the conductor discussed in the previous example
when the length of the conductor is 1 cm and the current flowing in the conductor

is 150 pA ().

The sheet resistance of metall is 0.1 Q/square. The voltage drop across a metall
wire that is 3 (0.15 pm) wide and 10,000 um (1 cm) long carrying 150 pA is

10, 000
0.15
or a significant voltage drop. If this conductor were used for power, we would

want to increase the width significantly; however, if the conductor is used to route
data, the size may be fine. B

Varop = (0.1 Q/square) - 1504 =1V

In general, the higher levels of metal (metal2, metal3, etc.) should be used for
power routing. Metal2 is approximately twice as thick as metall and, therefore, has a
lower sheet resistance. Metal3 is thicker than metal2, etc. When routing power, the more
metal that is used, the fewer problems, in general, that will be encountered. If possible, a
ground or power plane should be used across the entire die (entire levels of metal are used
for VDD and ground). The more capacitance between the power and ground buses, the
harder it is to induce a voltage change on the power plane; that is, the DC voltages will
not vary.
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3.2.4 Design Rules for the Metal Layers

The design rules for the metall, vial, and metal2 layers are seen in Fig. 3.11. Note that
the vial size must be exactly 1.5 by 1.5. Also note that the minimum allowable spacing
between two wires using metall is 1.5, while the spacing between wires using metal2 is
2. There isn’t a spacing rule between metall and metal2 because wires made with metall
and metal2 are isolated by an insulator (sometimes called an interlayer dielectric, ILD).

= Vial exact size 1.5 by 1.5
= <>
= — __Overlap of vial with
E Metall . < metall and metal2
5 YL — is a minimum of 0.5
B Minimum spacing 1.5
=1 4 —
= |
= Metall =N
e o | »
2| 2 |
e
|3
=
ke
<« >

Minimum width is 1.5

Figure 3.11 Design rules for the metal layers using the CMOSEDU rules.

Layout of Two Shapes or a Single Shape

When learning to do layout, one may wonder about the equivalence of the two layouts
seen in Fig. 3.12. In (a) two boxes are used while in (b) a single box is used. When the
masks are made the layouts are equivalent.

(a) Layout using two boxes (b) Layout using a single box

Figure 3.12 Equivalence of layouts drawn with a different number
of shapes.

A Layout Trick for the Metal Layers

Notice that the size of the via is exactly 1.5 by 1.5 and that the minimum metal
surrounding the via is 0.5. In order to save time when doing layout, a cell can be made
called “vial.” Instead of drawing boxes on the vial, metall, and metal2 layers each time a
connection between metall and metal2 is needed, we simply place the “vial” cell into the
layout, Fig. 3.13.
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Three boxes: a vial box that is

1.5 by 1.5, a metall box 2.5 by
. 2.5, and a metal2 box directly
placed on the metall box that
is 2.5 by 2.5.

Cross-sectional ] Insulator
view of the vial .

cell | Insulator

Figure 3.13 Vial cell with a rank of 1.

3.2.5 Contact Resistance

Associated with any contact to metal (or any other layer in a CMOS process for that
matter) is an associated contact resistance. For the examples using metal layers in this
book, we’ll use a contact resistance of 10 /contact. Consider the following example.

Example 3.8

Sketch the equivalent electrical schematic for the layout depicted in Fig. 3.14a
showing the via contact resistance. Estimate the voltage drop across the contact
resistance of the via when 1 mA flows through the via. Repeat for the layout
shown in Fig. 3.14b.

M2 &

M1 Minimum via spacing, 1.5”

(a) (b)

Figure 3.14 Layouts used in Ex. 3.8.

The equivalent schematics are shown in Fig, 3.15a and (b) for the layouts in Figs.
3.14a and (b) respectively. If the via contact resistance is 10 €2, and 1 mA flows
through the via in (a), then a voltage drop of 10 mV results. Further, the reliability
of the single via will be poor with 1 mA flowing through it due to
electromigration effects. A “rule-of-thumb” is to allow no more than 100 pA of
current flow per via. The four vias shown in Fig. 3.14(b) give an effective contact
resistance of 10/4 or 2.5 Q because the contact resistances of each of the vias are
in parallel. The voltage drop across the vias decreases to 2.5 mV with 1 mA
flowing in the wires. Increasing the metal overlap and the number of vias will
further decrease the voltage drop (and electromigration effects). ®
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M2

Ml

(a) The contact resistance
of the via in Fig. 3.14a.

M2

10510 10510

Ml

(b) The contact resistance
of the four vias in Fig. 3.14b.

Figure 3.15 The schematics of the contact resistances for
the layouts in Fig. 3.14.

3.3 Crosstalk and Ground Bounce

Crosstalk is a term used to describe an unwanted interference from one conductor to
another. Between two conductors there exists mutual capacitance and inductance, which
give rise to signal feedthrough. Ground bounce (and VDD droop) are terms describing
local variations in the power and ground supplies at a circuit. While crosstalk is only a
problem for time-varying signals in a circuit, ground bounce can be problematic for both
time varying and DC signals.

3.3.1 Crosstalk

Consider the two metal wires shown in Fig. 3.16. A signal voltage propagating on one of
the conductors couples current onto the conductor. This current can be estimated using

v,
dt

where C_ is the mutual capacitance, I is the coupled current, and ¥, is the signal voltage
on the source conductor. Treating the capacitance between the two conductors in this

In=Cn (3.5)

Insulator ’
FOX
p-sub

Layout view Angled view

Figure 3.16 Conductors used to illustrate crosstalk.
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simple manner is useful in most cases. Determining C, experimentally proceeds by
applying a step voltage to one conductor while measuring the coupled voltage on the
adjacent conductor. Since we know the capacitance of any conductor to substrate (see
Table 3.1), we can write

C

AV=V, —2—
4 Cm+Clsub

(3.6)
where AV is the coupled noise voltage to the adjacent conductor and C,,, is the
capacitance of the adjacent conductor (in this case metall) to ground (the substrate).

The adjacent metal lines shown in Fig. 3.16 also exhibit a mutual inductance. The
effect can be thought of as connecting a miniature transformer between the two
conductors. A current flowing on one of the conductors induces a voltage on the other
conductor. Measuring the mutual inductance begins by injecting a current into one of the
conductors. The voltage on the other conductor is measured. The mutual inductance is
determined using

dl,
Vip=Ln—= .
I 3.7
where [, is the injected (time-varying) current (the input signal), ¥, is the induced voltage

(the output signal), and L , is the mutual inductance.

Crosstalk can be reduced by increasing the distance between adjacent conductors.
In many applications (e.g., DRAM), the design engineer has no control over the spacing
(pitch) between conductors. The circuit designer then attempts to balance the signals on
adjacent conductors (see, for example, the open and folded architectures in Ch. 16
concerning DRAM design).

3.3.2 Ground Bounce
DC Problems

Consider the schematic seen in Fig. 3.17a. In this schematic a circuit is connected to VDD
and ground through two wires measuring 10,000 pm (10 mm) by 150 nm (with a
resistance of 6.67 kQ2). Next consider, in (b), what happens if the circuit starts to pull a
DC current of 50 pA. Instead of the circuit being connected to a VDD of 1 V the actual
VDD drops to 667 mV. Further, the actual “ground” connected to the circuit increases to
333 mV. The voltage dropped across the circuit is the difference between the applied
VDD and ground or only 333 mV (considerably less than the ideal 1 V). The obvious
solution to making the supplied ¥DD and ground move closer to the ideal values is to
increase the widths of the conductors supplying and returning currents to the circuit. This
reduces the series resistance. The key point here is that ¥DD and ground are not fixed
values; rather, they can vary depending how the circuit is laid out.

AC Problems

It is common, in CMOS circuit design, for a CMOS circuit to draw practically zero
current in a static state (not doing anything). This is why, for example, it’s possible to use
solar power in a CMOS-based calculator. In this situation, conductors with small widths,
as those in Fig. 3.17, may be fine. However, consider what happens if the circuit, for a
short time, pulls 50 pA. As discussed above, the ground bounces up and VDD droops
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Ideally VDD
10 mm ofmetall 150 nm wide ’—l/
VDD
Circuit (a)
ground
\
10 mm of metall 150 nm wide Ideally ground (= 0 V)
50 pA
o 667 mV (not 1 V)
667k [
VDD :
Circuit =7 ()]
ground '
7k T\ 333 mV (not 0 V)
50 pA

Figure 3.17 Illustrating problems with incorrectly sized conductors.

down during this short time. The average current supplied by VDD may be well under a
microamp; however, the occasional need for 50 pA still creates or causes problems. To
circumvent these, consider adding an on-chip decoupling capacitor physically at the
circuit between VDD and ground (see dotted lines in Fig. 3.17b). The added capacitor
supplies the needed charge during the transient times and keeps the voltage applied across
the circuit at ¥DD. Note that a decoupling capacitor should be used external to the chip as
well. The capacitor is placed across the VDD and ground pins of the chip.

Example 3.9

Suppose that the circuit in Fig. 3.17b needs 50 pA of current for 10 ns. Estimate
the size of the decoupling capacitor required if the voltage across the circuit
should change by no more than 10 mV during this time.

We can write the charge supplied by the capacitor as
Q=1-Ar=(50 pd)- 10 ns = 500 x 107'* Coulumbs
The decoupling capacitor must supply this charge

Q9 _I-Ar_500x107"
AV AV 10 mV

A reasonably large capacitor. B

AV-C=Q0—>C2-%

- C250pF (3.8)
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Example 3.10
To drive off-chip loads, an output buffer (see Ch. 11) is usually placed in between
the on-chip logic and the large off-chip load, Fig. 3.18. If ¥DD is 1 V and it is
desirable to drive the 30 pF off-chip load in Fig. 3.18 to 900 mV in 1 ns, estimate
the size of the decoupling capacitor required. Assume that ground variations are
not a concern.

VDD Decoupling C

On-chip I_ ) _:_ é :/ Off-chip
In Buffer> Out 1
{ ! g 30 pF

Figure 3.18 Estimating the decoupling capacitance needed in an output buffer.

The charge supplied to the 30 pF capacitor (the load capacitance) by the output
buffer is

Q= (900 mV)- (30 pF) =27 pC

This charge is supplied by the decoupling capacitor (assuming that the conductors
powering the buffer are narrow). Initially, the decoupling capacitor is charged to
VDD (1 V). If VDD (actually the voltage across the decoupling capacitor) drops to
900 mV, then using Eq. (3.8) we can calculate the size of decoupling capacitor as

S 27 pC
T 100 mV

Not a practical value for an on-chip capacitor in most situations. The solution to
this problem is to supply VDD and ground to the output buffers through wide
conductors. Often separate power and ground pads (and very wide wires) are used
to power the output buffers separately from the other on-chip circuitry. Using
separate pads reduces the size of the decoupling capacitor required and eliminates
the noise (ground bounce and ¥DD droop) from interfering with the operation of
the other circuitry in the chip. Off-chip decoupling capacitors should still be used
across the power and ground pins for the output buffers.

Note that if this buffer is running at 500 MHz (a clock period of 2 ns), the
average current supplied to the load is

=270 pF 1!

27 pC
2ns

A significant value for a single chip output. B

g = =13.5m4

A Final Comment

It should be clear that some thought needs to go into the sizing of the metal layers and the
number of vias used when transitioning from one metal layer to the next. Ignoring the
parasitics associated with the wires used in an IC is an invitation for disaster.
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3.4 Layout Examples

In this section we provide some additional layout examples. In the first section we discuss
laying out a pad and a padframe. In the following section we discuss laying out test
structures to measure the parasitics associated with the metal layers.

3.4.1 Laying out the Pad Il

Let’s say we want to lay out a chip in a 50 nm process. Further let’s say that the final die
size (chip size) must be approximately 1 mm on a side with a pad size of 100 um square
(again, the pads can be smaller depending on the process). From the MOSIS design rules,
the distance between pads must be at least 30 pum. Further let’s assume a two-metal
process (so metal2 is the top layer of metal the bonding wire drops down on). Table 3.2
summarizes the final and scaled sizes for our pads.

Table 3.2 Sizes for an example 1 mm square chip with a scale factor of 50 nm.

Final size Scaled size
Pad size 100 pm by 100 ym 2,000 by 2,000
Pad spacing 130 um 2,600
(center to center)
Number of pads on a 6 6
side (corners empty)
Total number of pads 24 24
Overglass opening 88 pum by 88 um 1,760 by 1,760

Let’s start out by laying out a cell called “vial” like the one seen in Fig, 3.13. The
resulting cell is seen in Fig. 3.19. We’ll use this cell in our pad to connect metall to
metal2. The bond wire will touch the top metal2. However, we’ll place metall directly
beneath the metal2 so that we can connect to the pad using either metall or metal2. The
layout of the pad is seen in Fig. 3.20. The spacing between the pads is a minimum of 30
pm. We use an outline layer (no fabrication significance) to help when we place the pads
together to form a padframe. We’ve assumed the distance from the pad metal to the edge
of the chip is 15 um.

Figure 3.21 shows the detail of how the overglass layer is placed in the pad metal
area. Also seen in Fig. 3.21 is the placement of the vial cell in Fig. 3.19 around the
perimeter of the pad. This ensures metall is solidly shorted to metal2, Fig. 3.22.

Next let’s calculate, assuming we want a chip size of approximately | mm on a
side, the number of pads we can fit on the chip. The size of the pad in Fig. 3.20 is 130 ym
square. To determine the number of pads we take the length of a side and divide by the
size of a pad or

_ 1lmm _
# of pads = 130 ~8 3.9

However, the corners don’t contain a pad so the actual number of pads on a side is six as
seen in Fig. 3.23. The CMOS circuits are placed in the area inside the padframe, while
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Layout view

2

15

A
A

2.5

Figure 3.19 Layout of a Vial cell.

outside the padframe, the scribe, gets cut up when the chips are separated as seen in Fig.
1.2. Note that while this discussion assumed a two metal CMOS process it can be
extended to a CMOS process with any number of metals.

The procedure to lay out probe pads, those pads that are not connected to a
bonding wire but rather used for probing signals in, generally, unpackaged chips, follows
basically the same procedure. The differences are that probe pads can reside anywhere on
the chip and that they are smaller than bonding pads.

utline

Both metall and metal2 - . - x w w sl
A)?ayer

A

-Overglass
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S
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-2,000 (100 um) -

Figure 3.20 Layout of the bonding pad.
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Zoomed in corner showing vias

Overglass layer

Figure 3.21 Corner detail for the pad in Fig. 3.20.

Overglass openin
Metal2 : e £t Insulator
Metall *‘\ Insulator
\‘{{. Insulator
1al

Figure 3.22 Simplified cross-sectional view of the bonding pad discussed in
this section.
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Figure 3.23 The layout of a padframe.
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3.4.2 Laying Out Metal Test Structures

To characterize the sheet resistance, plate capacitance, fringe capacitance, and mutual
capacitance associated with the metal layers, layouts called "test structures" are used.
These layouts take one of two basic shapes. The first is the serpentine pattern seen in Fig.
3.24a (long perimeter while minimizing the area). This pattern is used for measuring
sheet resistance or, with two serpentine layouts, mutual capacitance (see Figs. 3.16 and
3.24c). While it can be better to use a very long, straight, length of metal to measure
resistance instead of a serpentine pattern (to avoid corners) the length of metal is
generally limited by the chip size. By "snaking" the layout the length of metal can be
made quite long. The layout seen in Fig. 3.24b, large area minimizing the perimeter, is
useful for measuring plate capacitance. We don't use this type of layout to measure
resistance because of the error associated with the connections to the metal.

To understand this last statement in more detail consider making a connection to
points A and B in (a) to measure the line's resistance. A current is sent flowing in the
metal line (say from A to B) and the voltage drop across the line is measured (hence why
we can't use too short of a line [resistor], that is, the voltage drop would then be difficult
to measure). At the source of current contact point, A, the current will spread out and then
flow uniformly down the line where it converges to collection at the receiving contact
point, B. In figure (b) the same thing happens; however, the height of the metal line is
larger and thus allows for larger spreading/contraction resulting in more measurement
error. Also, the wider width in (b) decreases the resistance, between points A and B,
lowering the measured voltage and increasing the difficulty of the measurement.

Al ‘
— |

B s : ‘

(a) A serpentine pattern

Ar e
=

Br | (b) Rectangular pattern
X |

“ A S | B
e = = _

[ I

. . d) Measuring plate capacitance
(c) Using two serpentine patterns to (@ Epa S
measure mutual capacitance

Figure 3.24 Showing the layout of various patterns for measuring parasitics.
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In Fig. 3.24¢ two serpentine patterns are laid out adjacent to each other. This test
structure is used to measure the mutual capacitance between like layers (as seen in Fig.
3.16). Again, a serpentine pattern is used to increase the measured variable (capacitance)
between points A and B. Minimum spacing is used between the metal lines to maximize
the capacitance and because this is the spacing where mutual capacitance has the most
influence. To measure the capacitance a low frequency AC voltage is applied between A
and B while the displacement current is measured. We need to use a low frequency source
to avoid the distributed effects of the metal lines (the delay through the metal lines). Note
that at low frequencies points x and y are at the same potential. The result is that the
current we measure is restricted to (only) the displacement current between conductors A
and B.

The test structure seen in Fig. 3.24d can be used to measure plate capacitance (the
capacitance is measured between points A and B). Again large area structures are used to
minimize the effects of the perimeter (fringe) capacitance. The test structure can be drawn
so that both layers are the same size. To measure the fringe capacitance between two
layers the rectangles in (d) are replaced with serpentine structures.

SEM View of Metal

Figure 3.25 shows an SEM image of a portion, a layout view, of a CMOS memory chip.
The brighter areas of the image are metall while the bright, and circular-shaped, objects
are contacts (discussed in the next chapter). Notice that none of the sections of metal or
contacts are square or rectangular. While the layout can be square or rectangular the
actual fabricated metal layers show rounding (tools such as optical proximity correction,
OPC, are used for corrections). If the reader looks closely at the image, the misalignment
between the metal and the contacts is seen (hence the reason for design rules).

Figure 3.25 SEM photo showing patterned metal layers.
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ADDITIONAL READING

[1] R. S. Muller, T. I. Kamins, and M. Chan, Device Electronics for Integrated
Circuits, John Wiley and Sons Publishers, 2002. ISBN 0-471-59398-2

[2] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology,
Fundamentals, Practice, and Modeling, Prentice-Hall Publishers, 2000. ISBN
0-13-085037-3

PROBLEMS

Unless otherwise indicated, use the data from Table 3.1, a metal sheet resistance of 0.1
CY/square, and a metal contact resistance of 10 Q.

3.1 Redraw the layout and cross-sectional views of a pad, similar to Fig. 3.2, if the
final pad size is 50 um by 75 pm with a scale factor of 100 nm.

3.2  Estimate the capacitance to ground of the pad in Fig. 3.20 made with both metall
and metal2.

33 Suppose a parallel plate capacitor was made by placing a 100 um square piece of
metall directly below the metal2 in Fig. 3.2. Estimate the capacitance between the
two plates of the capacitor (metall and metal2). Estimate the capacitance from
metall to substrate. The unwanted parasitic capacitance from metall to substrate
is often called the bottom plate parasitic.

3.4  Sketch the cross-sectional view for the layout seen in Fig. 3.26.

Overglass layer

Metall

Figure 3.26 Layout used in Problem 3.4.

3.5  Sketch the cross-sectional view, at the dashed line, for the layout seen in Fig. 3.27.
What is the contact resistance between metal3 and metal2?

Metall Vial- _ Via2

Metal2 Metal3

Figure 3.27 Layout for Problem 3.5.
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3.6

3.7
3.8

3.9

3.10

The insulator used between the metal layers (the interlayer dielectric, ILD) can
have a relative dielectric constant well under the relative dielectric constant of
Si0, (= 4). Estimate the intrinsic propagation delay through a metal line
encapsulated in an ILD with a relative dielectric constant of 1.5. What value of
metal sheet resistance, using the values from Ex. 3.3, would be required if the RC
delay through the metal line is equal to the intrinsic delay?

Using C¥V = Q, rederive the results in Ex. 3.5.

For the layout seen in Fig. 3.28, sketch the cross-sectional view (along the dotted
line) and estimate the resistance between points A and B. Remember that a via is
sized 1.5 by 1.5.

Metall Metall
A § i g
o ‘.

Metal2
_ Metal2

N-well

-

Figure 3.28 Layout for Problem 3.8.

Laying out two metal wires directly next to each other, and with minimum
spacing, for a long distance increases the capacitance between the two conductors,

C,.. If the two conductors are VDD and ground, is this a good idea? Why or why
not?

Consider the schematic seen in Fig. 3.29. This circuit can be used to model
ground bounce and VDD droop. Show, using SPICE, that a decoupling capacitor

can be used to reduce these effects for various amplitude and duration current
pulses.

Idealty VDD
5k
ANA
VDD =— Decoupling capacitor
1v
5k AN
% VWV * ™ Current pulse used
to model a circuit
Resistance of the wires pulling current.
Ideally ground

Figure 3.29 Circuit used to show the benefits of a decoupling capacitor.
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311

3.12

Lay out the padframe specified by the information in Table 3.2. Assume a 3 metal
CMOS process is used. Comment on how the scale factor affects the (drawn)
layout size.

Propose, and lay out, a test structure to measure the sheet resistance of metal3.
Comment on the trade-offs between accuracy and layout size. Using your test
structure provide a numerical example of calculating sheet resistance for metal3.



Chapter

The Active and Poly Layers

The active, n-select, p-select, and poly layers are used to form n-channel and p-channel
MOSFETs (NMOS and PMOS respectively) and so metall can make an ohmic contact to
the substrate or well. The active layer, in a layout program, defines openings in the silicon
dioxide covering the substrate (see Figs. 2.3 and 2.4). The n-select and p-select layers
indicate where to implant n-type or p-type atoms, respectively. The active and select
layers are always used together. The active defines an opening in the oxide and the select
then dopes the semiconductor in the opening either n-type or p-type.

The poly layer forms the gate of the MOSFETs. Poly is a short name for
polysilicon (not to be confused with the poly, or polygon, object in a layout program).
Polysilicon is made up of small crystalline regions of silicon. Therefore, in the strictest
sense, poly is not amorphous silicon (randomly organized atoms), and it is not crystalline
silicon (an orderly arrangement of atoms in the material) such as the wafer.

4.1 Layout using the Active and Poly Layers

We’ve covered the following fabrication layers in Chs. 2 and 3: n-well, metall, vial,
metal2, and overglass. In this section we cover the following additional fabrication layers:
active, n-select, p-select, polyl, silicide block, and contact.

The Active Layer

Examine the layout of a box and the corresponding angled view (the fabrication results)
seen in Fig. 4.1. The box is drawn on the active layer and indicates where to open a hole
in the field oxide (FOX). These openings are called active areas. The field area (the area
that isn’t the active area, which is the area where the FOX is grown) is used for routing
wires (connecting the circuit together). The MOSFETSs are fabricated in the bulk (the
p-substrate or the n-well) in these active openings. The FOX is used to isolate the devices
from one another (the active areas are isolated by the FOX). Note that there will be some
resistive connection between active areas (either through the substrate or the n-well).
However, the FOX is grown thick enough to keep the interactions between adjacent
active areas to a minimum.
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Box on the active layer.

SiO; FOX & /’f
P-substrate i /
/

Figure 4.1 How the active layer specifies where to open holes in the field oxide (FOX).

The P- and N-Select Layers

Surrounding the active layer with either the n-select or p-select layers dopes the
semiconductor n- or p-type. Figure 4.2 shows several combinations of selects, n-well, and
active layers. In (a) and (b) for example, the opening in the FOX is implanted p-type (in
the location determined by the p-select mask). When learning to do design and layout, it’s
important to be able to see a layout and then visualize the corresponding cross-sectional
views.

Also seen in this figure (see 4.2i and j) is how a single layer (called the n+ layer)
can be used instead of two layers (the active and n-select layers). The n+ layer in (j) is
used directly for the active mask (openings in the FOX) in (i). The n-select in (i) is a
derived mask. It is derived by bloating the size of the n+ layer. The n-select mask must be
larger than the active mask due to misalignment. If the implant (select) isn’t aligned
directly over the active opening in the FOX, then the semiconductor exposed in the active
opening won’t get doped. If the select and active masks could be aligned perfectly, the
select layers wouldn’t need to be larger than the active layer. Also note that using a select
without active causes the implant to bombard the FOX. Since the FOX is thick, it keeps
the implanted atoms from reaching the substrate.
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p-select

Active

(a) Layout

n-select

Active

(c) Layout

FOX pt FOX

p-substrate

(b) Cross-sectional view for (a)

FOX FOX

p-substrate

(d) Cross-sectional view for (c)

Active
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Figure 4.2 Combinations of active, selects, and n-wells.
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The Poly Layer

The poly layer is used for MOSFET formation. Consider the layout seen in Fig. 4.3a.
Drawing poly over active produces a MOSFET layout. If we see a complicated layout, it
is straightforward to determine the number of MOSFETs in the layout simply by counting
how many times poly crosses active. Note that the gate of the MOSFET is formed with
the polysilicon, and the source and drain of the MOSFET are formed with the n+ implant.
Further note that the source and drain of an integrated MOSFET (in a general CMOS
process) are interchangeable. We are not showing the (required) contact to the substrate
(the body of the MOSFET). The body connection will be covered in a moment (the
MOSFET is a four-terminal device).

Self-Aligned Gate

Notice how, Fig. 4.3b or c, the area under the poly gate isn’t doped n+. After the opening
in the FOX is formed with the active mask, a thin insulating oxide is grown over the
opening. This is the MOSFET’s gate oxide (GOX), Fig. 4.3b. Next, the poly mask
specifies where to deposit the polysilicon gate material. This is followed by applying the
implant in the areas specified by the n-select mask. The implant easily penetrates through
the thin GOX into the source and drain areas. However, the polysilicon gate acts like a
mask to keep the n+ atoms from penetrating under the MOSFET’s gate (the poly is made
thick enough to ensure the implant doesn’t reach the GOX). Also, the drain and gate
become self-aligned to the source/drain of the MOSFET. This is important because we
know we can’t perfectly align the poly mask to the active masks.

Example 4.1
Comment on the problems with the MOSFET layout seen in Fig. Ex4.1.

In Fig. Ex4.1a the active layer defines an opening in the field oxide. The select
masks are placed exactly where the desired n+ implants will occur, as seen in Fig.
4.3. However, due to shifts in the select mask, relative to the poly mask, the area
directly next to the gate will not get implanted. (Redraw Fig. Ex. 4.1b with the
poly layer shifted left or right.) Notice how the incorrect layout in Fig. Ex4.1b
looks exactly the same as the correct layout in Fig. 4.3a. B

(a) Drawing active and select for a
MOSFET (bad). (b) Placing poly over the layout in (a)} (bad).

Figure Ex4.1 Bad layout examples (what NOT to do).
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Figure 4.3 Layout and cross-sectional views of a MOSFET.
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The Poly Wire

The poly layer can also be used, like metall, as a wire. Poly is routed on top of the FOX.
The main limitation when using the poly layer for interconnection is its sheet resistance.
As we saw in the last chapter, the sheet resistance of the metal layers is approximately 0.1
Q/square. The sheet resistance of the doped poly can be on the order of 200 €2/square.
The capacitance to substrate is also larger for poly simply because it is closer to the
substrate (see Table 3.1). Therefore, the delay through a poly line can be considerably
longer than the delay through a metal line. To reduce the sheet resistance of poly (and of
the implanted active regions), a silicide (a material that is a mixture of silicon and a
refractory metal like tungsten) is deposited over the MOSFET and field region, Fig. 4.4.
The silicide and poly gate sandwich is called a polycide.

Silicide

. FOX

P-substrate |

Figure 4.4 How the gate and drain/source of a MOSFET are
silicided to reduce sheet resistance.

Table 4.1 gives some typical values of sheet resistance, R,,,., for well, poly, n+,
and p+ in a nm CMOS process. When we use the poly as a mask to self-align the source
and drain regions of the MOSFET to the gate, Fig. 4.3, we dope the poly either n-type (for
an NMOS device) or p-type (for a PMOS device). Silicide is then used to avoid forming a
pn-junction (diode) when the PMOS and NMOS polysilicon gates are connected together
in the field region (the silicide electrically shorts the n- and p-type poly gates together).
The other specifications seen in the table will be discussed in the next chapter.

Table 4.1 Typical properties of resistive materials in a nm CMOS process.

R TCR1 TCR2 VCR1 VCR2 Mis-
Sili- Resistor | (ohms/sq) (ppmv/C) (ppm/C?) (ppm/V) (ppm/V?) match %
cide type AVG. AVG. AVG. AVG. AVG. AR/R

N/A well | 500+ 10 | 2400 + 50 7+0.5 8000 +200 | 500+ 50 <0.1
No |n+poly| 2001 20+£10 | 0.6+0.03 700 £+ 50 150+ 15 <0.5
No |ptpoly| 400+£5 ) 16010 | 0.8+0.03 | 600+50 150 £ 15 <02
No n+ 100+£2 | 1500+ 10 | 0.04+0.1 | 2500+ 50 350+ 20 <04
No pt+ 125+3 | 1400+20 | 0.4+ 0.1 80 £ 80 100+ 25 <0.6
Yes |ntpoly| 5+03 | 330090 [ 1.0+0.2 | 2500+ 125 | 3800+400 | <04
Yes |ptpoly | 7+0.1 |3600+50 | 1.0+02 | 2500 +400 | 5500250 [ <0.7
Yes n+ 10+0.1 | 3700+ 50 | 1.0+0.2 350+ 150 600 = 60 <1.0
Yes pt 20+ 0.1 | 3800+40 | 1.0+0.2 150 £ 50 800+ 40 <1.0
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Silicide Block

In some situations (as in making a resistor), it is desirable to keep from depositing the
silicide on the gate poly or source/drain regions. A layer called the silicide block can be
used for this purpose. Consider the following example.

Example 4.2

Estimate the delay through the poly wire in Fig. 4.5 with and without silicide. The
width of the wire is 1 and the length is 1,000. Use a scale factor of 50 nm and the
values for capacitance in Table 3.1. Simulate the delay using SPICE.

[
N-select Silicide block

Figure 4.5 Estimating the delay through a polysilicon line with and without
a silicide.

The capacitance of the poly wire to substrate doesn’t depend on the presence or
absence of the silicide. Using the data from Table 3.1, we can estimate the
capacitance of the poly wire to substrate as

Cpoty = Cplate * @reaarawm - (scale)? + Cpinge - perimeter arawn - scale 4.1)
or

Cpoiy = (58 aF) - (1,000) - (0.05)* + (88 aF) - (2,002) - (0.05) = 9 fF
The resistance of the poly wire is calculated using

R= quuare : LW (42)

From the data in Table 4.1, the resistance of the wire is either 200k (no silicide) or
5k (with silicide). The delays are then calculated as
ta=0.35-9 fF-200k=630 ps and t;=0.35-9 fF-5k=16 ps

The simulation results are seen in Fig. 4.6. In the simulation netlist we divided the
line up into 1,000 squares. The capacitance/square is 9 aF (remembering SPICE
doesn’t recognize “a” so we use e-18). The resistance/square is either 200 Q (no
silicide) or 5 Q (with a silicide). H

Note that the silicide block layer should not be placed under (surround) a contact
to polysilicon or active else a rectifying contact may form (this is important).
4.1.1 Process Flow

A generic CMOS process flow is seen in Fig. 4.7. The fabrication of both PMOS and
NMOS devices is detailed in this figure. This figure doesn’t show the initial steps taken
to fabricate the n-well (and/or p-well) but rather starts with the wells already fabricated.
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Figure 4.6 Simulated delay through poly wires.

The first step, Fig. 4.7a, is to grow a thin pad oxide on top of the entire wafer.
This is followed by depositing nitride (the pad oxide is used as a cushion for the nitride)
and photoresist layers. The photoresist is then patterned using the active mask. The
remaining photoresist, seen in Fig. 4.7a, ultimately defines the openings in the FOX.

In Fig. 4.7b the areas not covered by the photoresist are etched. The etching
extends down into the wafer so that shallow trenches are formed. In (c) the shallow
trenches are filled with SiO,. These trenches isolate the active areas and form the field
regions (FOX). This type of device isolation is called shallow trench isolation (STI).

In (d) two separate implants are performed to adjust the threshold voltages of the
devices. A photoresist is patterned (twice) to select the areas for threshold voltage adjust.

Figure 4.7e shows the results after the deposition and patterning of polysilicon
(for the MOSFET gate material). This is followed by several implants. In (f) we see a
shallow implant to form the MOSFET’s lightly doped drains (LDD). The LDD implants
prevent the electric field directly next to the source/drain regions from becoming too high
(this is discussed further in Ch. 6). Note that the poly gate is used as a mask during this
step.

The next step is to grow a spacer oxide on the sides of the gate poly, Fig. 4.7g.
After the spacer is grown, the n+/p+ implants are performed. This implant dopes the areas
used for the source/drain of the MOSFETs as well as the gate poly. The last step is to
silicide the source and drain regions of the MOSFET. This is important for reducing the
sheet resistances of the polysilicon and n+/p+ materials, as indicated in Table 4.1.

Finally, note that the process sequence seen in Fig. 4.7 is often called, in the
manufacturing process, the front-end of the line (FEOL). The fabrication of the metal
layers and associated contacts/vias is called the back-end of the line (BEOL).

Damascene Process Steps

The process of: 1) making a trench, 2) (over) filling the trench with a material, and 3)
grinding the material down until the top of the wafer is flat is called a Damascene process
(a technique used, and invented, by craftsman in the city of Damascus to inlay gold or
silver in swords). The STI process just described is a Damascene process. More often,
though, the Damascene process is associated with the metal layers in a CMOS process.
Trenches are formed in the insulators. Copper, for example, is then deposited in the
trenches. The top of the wafer is then ground down until it is flat.
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Figure 4.7 General CMOS process flow.
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4.2 Connecting Wires to Poly and Active

In the last section we discussed how to lay out active areas and polysilicon. Here, in this
section, let’s discuss how to connect metal wires to poly and active. The contact layer
connects metall to either active (n+/p+) or poly. Unless we want to form a rectifying
contact (a Schottky diode), we never connect metal directly to the substrate or well.
Further, we won’t connect metal to poly without having the silicide in place. Never put a
silicide block around a contact to poly.

Figure 4.8a shows a layout and corresponding cross-sectional view of the layers
metall, contact, and poly (a contact to poly). Figure 4.8b shows a connection to n+ and
p+. Note that, like we did with the via cell in Fig. 3.13, we can layout contact cells to
poly, n+, and p+. Further note that metall is connected to either metal2 (through vial) or
poly/active. Metal2 can’t be connected to active/poly without first connecting to metall
and a contact.

/ Insulator
[ ]y' Insulator
- —— N Insulator

FOX

p-substrate

(a) Metall connecting to poly through a contact.
n-select p-select
— B [y
Active r \Metall

' Insulator
| | ~ 1 Insulator
l l Insulator

o - T FOX
p-substrate

(b) Contacts to active.

Figure 4.8 How metall is connected to poly and active.
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When etching an opening for a contact to poly or active, an etchant stop layer is
used. The etchant stop is put down directly on top of the FOX prior to depositing the
insulator,

Connecting the P-Substrate to Ground

So far, throughout the book, we’ve said that the p-substrate is at ground potential.
However, we haven’t actually said how we connect the substrate to ground (the substrate
must be connected to the ground pad through a wire). The substrate, as seen in Fig. 4.4, is
the body of the NMOS devices and is common to all NMOS devices fabricated on the
chip (assuming an n-well process, see Fig. 2.24). Towards connecting the substrate to
ground, consider the layout seen in Fig. 4.9. Again note that we only connect metall to p+
(or nt/poly) and not directly to the substrate. Further notice that poly sits on the FOX
while metall sits on the insulator above FOX.

An important consideration when “tying down the substrate” is the number of
places, around the chip, the substrate is tied to ground. We don’t just connect the
substrate to ground with one connection, like the one seen in Fig. 4.9, and assume that the
entire chip’s substrate is grounded. The reason for this is that the substrate is a resistive
material. The circuitry fabricated in the substrate (in the bulk) has leakage currents (DC
and AC) that flow in the p-type semiconductor of the substrate. The result is an increase
in the substrate’s potential above ground in localized regions of the chip. Ideally, the
current flowing in the substrate is zero. In reality it won’t be zero but will have some
value that depends on the location and the activity of the on-chip circuitry. A substrate
connection provides a place to remove this substrate current (a point of exit), keeping the
substrate potential at ground. In practice, substrate connections are used wherever
possible (more on this topic when we cover standard cell frames later in the chapter).

The body for the PMOS devices is the n-well. The n-well must also be tied to a
known voltage through n+ and metall. For the PMOS’s body connection, an n+ region is
placed in the n-well and connected with a metall wire to (for digital design) VDD. If an
n-well is laid out and used to make a resistor or for the body of a PMOS device, then
there must be n+ in the n-well.

P-select
Metall
Connected to the ground pad.

Insulator

[ Insulator

Insulator

FOX pt | FOX

p-substrate

Figure 4.9 Connecting the substrate to ground.
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Layout of an N-Well Resistor

The layout of an n-well resistor is seen in Fig. 4.10. On each side of the resistor, nt
regions are implanted so that we can drop metall down and make a connection. We aren’t
showing the silicide in the cross-sectional view (Fig. 4.4). Further, after reviewing Table
4.1, we see that the sheet resistance of the nt+ regions is small compared to the sheet
resistance of the n-well. When we calculate the number of squares, we measure between
edges of active as seen in the figure. This results in a small error in the measured
resistance compared to the actual resistance. The variation in the sheet resistance with
process shifts (say 20%) makes this error insignificant. The next chapter will discuss the
layout of resistors in more detail.

Notice that if the substrate is at ground, we can’t apply a potential on either side of
the wire less than, say, —0.5 V for fear of turning on the n-well to substrate parasitic
diode. These parasitics, as discussed in Ch. 2, are an important concern when laying out
resistors.

N-select N-select

- -

FOX nt FOX ot FOX

p-substrate

Figure 4.10 Layout of an n-well resistor and the corresponding cross-sectional view.

Example 4.3

Consider the layout for a metall connection to an n-well resistor seen in Fig. 4.11.
Will the extension of the n+ beyond the n-well affect the resistor’s operation?
Why or why not?

The cross-sectional view along the dotted line in the layout is also seen in the
figure. The n+ active forms a diode with the p-substrate. As long as this diode