Recipes to Begin, Expand, and
Enbance Your Projects

G|

O'REILLY" Michael Margolis

- N \
i ' \ % \i;.::':<.;‘
y \ ‘uﬁ; \\\\ ST
! N
o ‘\‘l\\\\\\
a0 \
RS Sl
R AT
SRR v
‘ GV
G
P B = Aj
€3 ol p 23 H
3
N,
-
Y N—F

Electronics/Software Engineering/Robotics

Arduino Cookbook

Want to create devices that interact with the physical world? This
cookbook is perfect for anyone who wants to experiment with the
popular Arduino microcontroller and programming environment.
You'll find more than 200 tips and techniques for building a
variety of objects and prototypes such as toys, detectors, robots,
and interactive clothing that can sense and respond to touch,
sound, position, heat, and light.

You don’t need experience with Arduino or programming to get
started. Updated for the Arduino 1.0 release, the recipes in this
second edition include practical examples and guidance to help
you begin, expand, and enhance your projects right away—
whether you’re an artist, designer, hobbyist, student, or engineer.

B Get up to speed quickly on the Arduino board and essential
software concepts

B Learn basic techniques for reading digital and analog signals

B Use Arduino with a variety of popular input devices and
sensors

m Drive visual displays, generate sound, and control several
types of motors

B Interact with devices that use remote controls, including TVs
and appliances

B Learn techniques for handling time delays and time
measurement

B Apply advanced coding and memory handling techniques

Michael Margolis is a technologist in the field of real-time computing,

with expertise in developing hardware and software for interacting
with the environment. He has more than 30 years of experience at

senior levels with Sony, Microsoft, and Lucent/Bell Labs, and has written
libraries and core software included in the Arduino 1.0 distribution.

“Michael Margolis's

comprehensive set of
recipes is a fine gift lo the
burgeoning Arduino
community. Whatever
your background or skill,
the Cookbook provides
solutions for that project
you're wrestling with
loday and fuel for
imagining what you'll
build tomorrow. I doubt
it will ever leave my
workbench table.”

—Mikal Hart
Arduino Uno Advisory Team

]

US $44.99 CAN $47.99
ISBN: 978-1-449-31387-6

81449131387

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

SECOND EDITION

Arduino Cookbook

Michael Margolis

O’REILLY*

Beijing + Cambridge « Farnham - Kéln - Sebastopol « Tokyo

Arduino Cookbook, Second Edition
by Michael Margolis

Copyright © 2012 Michael Margolis, Nicholas Weldin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Shawn Wallace and Brian Jepson Indexer: Lucie Haskins
Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Proofreader: Kiel Van Horn Interior Designer: David Futato

lllustrator: Robert Romano

March 2011: First Edition.
December 2011: Second Edition.

Revision History for the Second Edition:
2011-12-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449313876 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Arduino Cookbook, the image of a toy rabbit, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31387-6
[LSI]
1323465788

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449313876

Table of Contents

Preface ..o Xi
1. GettingStartedc.oviiniiiiiii i i i i i e 1
1.1 Installing the Integrated Development Environment (IDE) 4
1.2 Setting Up the Arduino Board 8
1.3 Using the Integrated Development Environment (IDE) to Prepare
an Arduino Sketch 10
1.4 Uploading and Running the Blink Sketch 13
1.5 Creating and Saving a Sketch 14
1.6 Using Arduino 17
2. Making the Sketch Do YourBiddingcovvviiiiiiiiiiiiininnn.n. 23
2.1 Structuring an Arduino Program 24
2.2 Using Simple Primitive Types (Variables) 25
2.3 Using Floating-Point Numbers 27
2.4 Working with Groups of Values 29
2.5 Using Arduino String Functionality 32
2.6 Using C Character Strings 37
2.7 Splitting Comma-Separated Text into Groups 38
2.8 Converting a Number to a String 41
2.9 Converting a String to a Number 43
2.10 Structuring Your Code into Functional Blocks 45
2.11 Returning More Than One Value from a Function 49
2.12 Taking Actions Based on Conditions 52
2.13 Repeating a Sequence of Statements 53
2.14 Repeating Statements with a Counter 55
2.15 Breaking Out of Loops 58
2.16 Taking a Variety of Actions Based on a Single Variable 59
2.17 Comparing Character and Numeric Values 61
2.18 Comparing Strings 63
2.19 Performing Logical Comparisons 64

2.20 Performing Bitwise Operations
2.21 Combining Operations and Assignment

3. Using Mathematical Operators

3.1 Adding, Subtracting, Multiplying, and Dividing
3.2 Incrementing and Decrementing Values
3.3 Finding the Remainder After Dividing Two Values
3.4 Determining the Absolute Value
3.5 Constraining a Number to a Range of Values
3.6 Finding the Minimum or Maximum of Some Values
3.7 Raising a Number to a Power
3.8 Taking the Square Root
3.9 Rounding Floating-Point Numbers Up and Down
3.10 Using Trigonometric Functions
3.11 Generating Random Numbers
3.12 Setting and Reading Bits

3.13 Shifting Bits

3.14 Extracting High and Low Bytes in an int or long
3.15 Forming an int or long from High and Low Bytes

4. Serial Communications

ooo

4.1 Sending Debug Information from Arduino to Your Computer
4.2 Sending Formatted Text and Numeric Data from Arduino
4.3 Receiving Serial Data in Arduino
4.4 Sending Multiple Text Fields from Arduino in a Single Message
4.5 Receiving Multiple Text Fields in a Single Message in Arduino
4.6 Sending Binary Data from Arduino
4.7 Receiving Binary Data from Arduino on a Computer
4.8 Sending Binary Values from Processing to Arduino
4.9 Sending the Value of Multiple Arduino Pins
4.10 How to Move the Mouse Cursor on a PC or Mac
4.11 Controlling Google Earth Using Arduino
4.12 Logging Arduino Data to a File on Your Computer
4.13 Sending Data to Two Serial Devices at the Same Time
4.14 Receiving Serial Data from Two Devices at the Same Time
4.15 Setting Up Processing on Your Computer to Send
and Receive Serial Data

5. Simple Digitaland AnalogInputccoviiiiiiiiiiiiiiiiiiiieea

5.1 Using a Switch

5.2 Using a Switch Without External Resistors
5.3 Reliably Detecting the Closing of a Switch
5.4 Determining How Long a Switch Is Pressed

65
68

... 69

69
70
71
72
73
74
75
76
76
77
78
80
84
85
87

89

94

97
100
105
111
114
118
120
122
125
130
135
138
141

145

147
150
154
155
158

iv | Table of Contents

5.5
5.6
5.7
5.8
5.9
5.10
5.11

6. Getting Input from Sensors

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

7. Visual Qutput

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12

Reading a Keypad

Reading Analog Values

Changing the Range of Values

Reading More Than Six Analog Inputs

Displaying Voltages Up to 5V

Responding to Changes in Voltage

Measuring Voltages More Than 5V (Voltage Dividers)

Detecting Movement

Detecting Light

Detecting Motion (Integrating Passive Infrared Detectors)
Measuring Distance

Measuring Distance Accurately

Detecting Vibration

Detecting Sound

Measuring Temperature

Reading RFID Tags

Tracking Rotary Movement

Tracking the Movement of More Than One Rotary Encoder
Tracking Rotary Movement in a Busy Sketch

Using a Mouse

Getting Location from a GPS

Detecting Rotation Using a Gyroscope

Detecting Direction

Getting Input from a Game Control Pad (PlayStation)
Reading Acceleration

Connecting and Using LEDs

Adjusting the Brightness of an LED

Driving High-Power LEDs

Adjusting the Color of an LED

Sequencing Multiple LEDs: Creating a Bar Graph

Sequencing Multiple LEDs: Making a Chase Sequence (Knight

Rider)

Controlling an LED Matrix Using Multiplexing
Displaying Images on an LED Matrix

Controlling a Matrix of LEDs: Charlieplexing

Driving a 7-Segment LED Display

Driving Multidigit, 7-Segment LED Displays: Multiplexing

Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift

Registers

oo

ooo

163
166
168
170
173
176
177

181
183
186
187
189
193
197
198
202
206
208
211
214
216
220
225
230
235
237

241
245
248
249
252
255

258
259
262
265
271
274

276

Table of Contents | v

7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers

7.14 Increasing the Number of Analog Outputs Using PWM Extender
Chips (TLC5940)

7.15 Using an Analog Panel Meter as a Display

8. Physical QULPULoeuiii ittt ittt i i it
8.1 Controlling the Position of a Servo
8.2 Controlling One or Two Servos with a Potentiometer or Sensor
8.3 Controlling the Speed of Continuous Rotation Servos
8.4 Controlling Servos Using Computer Commands
8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
8.6 Controlling Solenoids and Relays
8.7 Making an Object Vibrate
8.8 Driving a Brushed Motor Using a Transistor
8.9 Controlling the Direction of a Brushed Motor with an H-Bridge
8.10 Controlling the Direction and Speed of a Brushed Motor with an
H-Bridge
8.11 Using Sensors to Control the Direction and Speed of Brushed
Motors (1293 H-Bridge)
8.12 Driving a Bipolar Stepper Motor
8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
8.14 Driving a Unipolar Stepper Motor (ULN2003A)

9. AudioOUEPUL ...eeneti it i ittt
9.1 Playing Tones
9.2 Playing a Simple Melody
9.3 Generating More Than One Simultaneous Tone
9.4 Generating Audio Tones and Fading an LED
9.5 Playing a WAV File
9.6 Controlling MIDI
9.7 Making an Audio Synthesizer

10. Remotely Controlling External Devicesccovvvvviiiniiniiniininnns
10.1 Responding to an Infrared Remote Control
10.2 Decoding Infrared Remote Control Signals
10.3 Imitating Remote Control Signals
10.4 Controlling a Digital Camera
10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch

11, Using Displaysoouviniiniiiiiiiiiiii it iiiiiiieiieaennennss
11.1 Connecting and Using a Text LCD Display
11.2 Formatting Text
11.3 Turning the Cursor and Display On or Off

279

281
285

289
292
294
296
298
299
300
302
304
306

309

311
317
320
323

327
329
331
333
335
338
341
344

347
348
350
354
357
359

363
364
367
370

vi | Table of Contents

11.4 Scrolling Text

11.5 Displaying Special Symbols

11.6 Creating Custom Characters

11.7 Displaying Symbols Larger Than a Single Character

11.8 Displaying Pixels Smaller Than a Single Character

11.9 Connecting and Using a Graphical LCD Display
11.10 Creating Bitmaps for Use with a Graphical Display
11.11 Displaying Text ona TV

12. UsingTimeandDatesccvviiiniiiiiiiiiieiiiiiieeneneeneneennnns
12.1 Creating Delays
12.2 Using millis to Determine Duration
12.3 More Precisely Measuring the Duration of a Pulse
12.4 Using Arduino as a Clock
12.5 Creating an Alarm to Periodically Call a Function
12.6 Using a Real-Time Clock

13. Communicating Using 12CandSPIcooviiiiiiiiiiiiiiiiiiinnne,
13.1 Controlling an RGB LED Using the BlinkM Module
13.2 Using the Wii Nunchuck Accelerometer
13.3 Interfacing to an External Real-Time Clock
13.4 Adding External EEPROM Memory
13.5 Reading Temperature with a Digital Thermometer
13.6 Driving Four 7-Segment LEDs Using Only Two Wires
13.7 Integrating an 12C Port Expander
13.8 Driving Multidigit, 7-Segment Displays Using SPI
13.9 Communicating Between Two or More Arduino Boards

14. Wireless Communicationcoiiiiiiiiiiiiiiiiiiiiiiiinennns
14.1 Sending Messages Using Low-Cost Wireless Modules
14.2 Connecting Arduino to a ZigBee or 802.15.4 Network
14.3 Sending a Message to a Particular XBee
14.4 Sending Sensor Data Between XBees
14.5 Activating an Actuator Connected to an XBee
14.6 Sending Messages Using Low-Cost Transceivers
14.7 Communicating with Bluetooth Devices

15. Ethernetand Networkingccoiviiiiiiiiiiiiiiiiiiiiiininnnnes
15.1 Setting Up the Ethernet Shield
15.2 Obtaining Your IP Address Automatically
15.3 Resolving Hostnames to IP Addresses (DNS)
15.4 Requesting Data from a Web Server
15.5 Requesting Data from a Web Server Using XML

372
375
377
379
382
385
389
391

397
397
398
402
404
412
415

1
425
430
435
437
441
445
449
451
454

459
459
465
472
475
480
486
491

495
498
500
502
504
508

Table of Contents

| vii

15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

16. Using, Modifying, and Creating Libraries

16.1
16.2
16.3
16.4
16.5
16.6

17. Advanced Coding and Memory Handling

17.1
17.2
17.3
17.4
17.5
17.6

18. Using the Controller Chip Hardware

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14

Setting Up an Arduino to Be a Web Server
Handling Incoming Web Requests

Handling Incoming Requests for Specific Pages
Using HTML to Format Web Server Responses
Serving Web Pages Using Forms (POST)
Serving Web Pages Containing Large Amounts of Data
Sending Twitter Messages

Sending and Receiving Simple Messages (UDP)
Getting the Time from an Internet Time Server
Monitoring Pachube Feeds

Sending Information to Pachube

Using the Built-in Libraries

Installing Third-Party Libraries

Modifying a Library

Creating Your Own Library

Creating a Library That Uses Other Libraries
Updating Third-Party Libraries for Arduino 1.0

Understanding the Arduino Build Process
Determining the Amount of Free and Used RAM

Storing and Retrieving Numeric Values in Program Memory

Storing and Retrieving Strings in Program Memory
Using #define and const Instead of Integers
Using Conditional Compilations

Storing Data in Permanent EEPROM Memory
Using Hardware Interrupts

Setting Timer Duration

Setting Timer Pulse Width and Duration
Creating a Pulse Generator

Changing a Timer’s PWM Frequency
Counting Pulses

Measuring Pulses More Accurately

Measuring Analog Values Quickly

Reducing Battery Drain

Setting Digital Pins Quickly

Uploading Sketches Using a Programmer
Replacing the Arduino Bootloader

Reprogram the Uno to Emulate a Native USB device

oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

511
514
517
521
525
528
535
539
545
550
556

561
561
563
565
568
574
580

583
584
587
589
592
594
595

599
603
606
609
611
614
617
620
621
624
626
627
630
632
633

viii | Table of Contents

ElectronicComponentsovuviiiiiiiiniiiinenereeneneeneneennnns 637

Using Schematic Diagrams and Data Sheetsccooevviinen.n. 643
Building and Connecting the Gircuitcooiieiiniiiiiiiiiiiiininn 651
Tips on Troubleshooting Software Problemsc.ccoveiiiitt, 655
Tips on Troubleshooting Hardware Problemscovvieniet. 659
Digitaland AnalogPinsccoviiiiiiiiii it 663
ASCll and Extended CharacterSetscovviviiiiiiiiiiiiniiinnennn. 667
Migrating to Arduino 1.0oeninii i e 671
... 677

Table of Contents | ix

Preface

This book was written by Michael Margolis with Nick Weldin to help you explore the
amazing things you can do with Arduino.

Arduino is a family of microcontrollers (tiny computers) and a software creation envi-
ronment that makes it easy for you to create programs (called sketches) that can interact
with the physical world. Things you make with Arduino can sense and respond to
touch, sound, position, heat, and light. This type of technology, often referred to as
physical computing, is used in all kinds of things from the iPhone to automobile elec-
tronics systems. Arduino makes it possible for anyone with an interest—even people
with no programming or electronics experience—to use this rich and complex
technology.

Who This Book Is For

Unlike in most technical cookbooks, experience with software and hardware is not
assumed. This book is aimed at readers interested in using computer technology to
interact with the environment. It is for people who want to quickly find the solution to
hardware and software problems. The recipes provide the information you need to
accomplish a broad range of tasks. It also has details to help you customize solutions
to meet your specific needs. There is insufficient space in a book limited to 700 pages
to cover general theoretical background, so links to external references are provided
throughout the book. See “What Was Left Out” on page xiv for some general refer-
ences for those with no programming or electronics experience.

If you have no programming experience—perhaps you have a great idea for an inter-
active project but don’t have the skills to develop it—this book will help you learn what
you need to know to write code that works, using examples that cover over 200 com-
mon tasks.

If you have some programming experience but are new to Arduino, the book will help
you become productive quickly by demonstrating how to implement specific Arduino
capabilities for your project.

Xi

People already using Arduino should find the content helpful for quickly learning new
techniques, which are explained using practical examples. This will help you to embark
on more complex projects by showing how to solve problems and use capabilities that
may be new to you.

Experienced C/C++ programmers will find examples of how to use the low-level AVR
resources (interrupts, timers, 12C, Ethernet, etc.) to build applications using the
Arduino environment.

How This Book Is Organized

The book contains information that covers the broad range of the Arduino’s capabili-
ties, from basic concepts and common tasks to advanced technology. Each technique
is explained in a recipe that shows you how to implement a specific capability. You do
not need to read the content in sequence. Where a recipe uses a technique covered in
another recipe, the content in the other recipe is referenced rather than repeating details
in multiple places.

Chapter 1, Getting Started, introduces the Arduino environment and provides help on
getting the Arduino development environment and hardware installed and working.

The next couple of chapters introduce Arduino software development. Chapter 2,
Making the Sketch Do Your Bidding, covers essential software concepts and tasks, and
Chapter 3, Using Mathematical Operators, shows how to make use of the most common
mathematical functions.

Chapter 4, Serial Communications, describes how to get Arduino to connect and com-
municate with your computer and other devices. Serial is the most common method
for Arduino input and output, and this capability is used in many of the recipes
throughout the book.

Chapter 5, Simple Digital and Analog Input, introduces a range of basic techniques for
reading digital and analog signals. Chapter 6, Getting Input from Sensors, builds on this
with recipes that explain how to use devices that enable Arduino to sense touch, sound,
position, heat, and light.

Chapter 7, Visual Output, covers controlling light. Recipes cover switching on one or
many LEDs and controlling brightness and color. This chapter explains how you can
drive bar graphs and numeric LED displays, as well as create patterns and animations
with LED arrays. In addition, the chapter provides a general introduction to digital and
analog output for those who are new to this.

Chapter 8, Physical Output, explains how you can make things move by controlling
motors with Arduino. A wide range of motor types is covered: solenoids, servo motors,
DC motors, and stepper motors.

xii | Preface

Chapter 9, Audio Output, shows how to generate sound with Arduino through an out-
put device such as a speaker. It covers playing simple tones and melodies and playing
WAV files and MIDI.

Chapter 10, Remotely Controlling External Devices, describes techniques that can be
used to interact with almost any device that uses some form of remote controller, in-
cluding TV, audio equipment, cameras, garage doors, appliances, and toys. It builds
on techniques used in previous chapters for connecting Arduino to devices and
modules.

Chapter 11, Using Displays, covers interfacing text and graphical LCD displays. The
chapter shows how you can connect these devices to display text, scroll or highlight
words, and create special symbols and characters.

Chapter 12, Using Time and Dates, covers built-in Arduino time-related functions and
introduces many additional techniques for handling time delays, time measurement,
and real-world times and dates.

Chapter 13, Communicating Using 12C and SPI, covers the Inter-Integrated Circuit
(I2C) and Serial Peripheral Interface (SPI) standards. These standards provide simple
ways for digital information to be transferred between sensors and Arduino. This chap-
ter shows how to use I2C and SPI to connect to common devices. It also shows how to
connect two or more Arduino boards, using 12C for multiboard applications.

Chapter 14, Wireless Communication, covers wireless communication with XBee and
other wireless modules. This chapter provides examples ranging from simple wireless
serial port replacements to mesh networks connecting multiple boards to multiple
Sensors.

Chapter 15, Ethernet and Networking, describes the many ways you can use Arduino
with the Internet. It has examples that demonstrate how to build and use web clients
and servers and shows how to use the most common Internet communication protocols
with Arduino.

Arduino software libraries are a standard way of adding functionality to the Arduino
environment. Chapter 16, Using, Modifying, and Creating Libraries, explains how to
use and modify software libraries. It also provides guidance on how to create your own
libraries.

Chapter 17, Advanced Coding and Memory Handling, covers advanced programming
techniques, and the topics here are more technical than the other recipes in this book
because they cover things that are usually concealed by the friendly Arduino wrapper.
The techniques in this chapter can be used to make a sketch more efficient—they can
help improve performance and reduce the code size of your sketches.

Chapter 18, Using the Controller Chip Hardware, shows how to access and use hard-
ware functions that are not fully exposed through the documented Arduino language.
It covers low-level usage of the hardware input/output registers, timers, and interrupts.

Preface | xiii

Appendix A, Electronic Components, provides an overview of the components used
throughout the book.

Appendix B, Using Schematic Diagrams and Data Sheets, explains how to use schematic
diagrams and data sheets.

Appendix C, Building and Connecting the Circuit, provides a brief introduction to using
a breadboard, connecting and using external power supplies and batteries, and using
capacitors for decoupling.

Appendix D, Tips on Troubleshooting Software Problems, provides tips on fixing com-
pile and runtime problems.

Appendix E, Tips on Troubleshooting Hardware Problems, covers problems with elec-
tronic circuits.

Appendix F, Digital and Analog Pins, provides tables indicating functionality provided
by the pins on standard Arduino boards.

Appendix G, ASCII and Extended Character Sets, provides tables showing ASCII
characters.

Appendix H, Migrating to Arduino 1.0, explains how to modify code written for pre-
vious releases to run correctly with Arduino 1.0.

What Was Left Qut

There isn’t room in this book to cover electronics theory and practice, although guid-
ance is provided for building the circuits used in the recipes. For more detail, readers
may want to refer to material that is widely available on the Internet or to books such
as the following:

* Make: Electronics by Charles Platt (O’Reilly; search for it on oreilly.com)

* Getting Started in Electronics by Forrest M. Mims III (Master Publishing)

* Physical Computing by Dan O’Sullivan and Tom Igoe (Cengage)

* Practical Electronics for Inventors by Paul Scherz (McGraw-Hill)
This cookbook explains how to write code to accomplish specific tasks, but it is not an
introduction to programming. Relevant programming concepts are briefly explained,
but there is insufficient room to cover the details. If you want to learn more about
programming, you may want to refer to the Internet or to one of the following books:

* Practical C Programming by Steve Oualline (O’Reilly; search for it on oreilly.com)

* A Book on C by Al Kelley and Ira Pohl (Addison-Wesley)

xiv | Preface

http://oreilly.com/catalog/9780596153755/
http://oreilly.com/
http://oreilly.com/catalog/9781565923065/
http://oreilly.com/

My favorite, although not really a beginner’s book, is the book I used to learn
C programming;:

* The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall)

Code Style (About the Code)

The code used throughout this book has been tailored to clearly illustrate the topic
covered in each recipe. As a consequence, some common coding shortcuts have been
avoided, particularly in the early chapters. Experienced C programmers often use rich
but terse expressions that are efficient but can be a little difficult for beginners to read.
For example, the early chapters increment variables using explicit expressions that are
easy for nonprogrammers to read:

result = result + 1; // increment the count
Rather than the following, commonly used by experienced programmers, that does the
same thing:
result++; // increment using the post increment operator

Feel free to substitute your preferred style. Beginners should be reassured that there is
no benefit in performance or code size in using the terse form.

Some programming expressions are so common that they are used in their terse form.
For example, the loop expressions are written as follows:

for(int i=0; i < 4; i++)
This is equivalent to the following:

int i;
for(i=0; i < 4; i = i+1)

See Chapter 2 for more details on these and other expressions used throughout the

book.

Good programming practice involves ensuring that values used are valid (garbage in
equals garbage out) by checking them before using them in calculations. However, to
keep the code focused on the recipe topic, very little error-checking code has been
included.

Arduino Platform Release Notes

This edition has been updated for Arduino 1.0. All of the code has been tested with the
latest Arduino 1.0 release candidate at the time of going to press (RC2). The download
code for this edition will be updated online if necessary to support the final 1.0 release,
so check the book’s website to get the latest code. The download contains a file named
changelog.txt that will indicate code that has changed from the published edition.

Preface | xv

http://shop.oreilly.com/product/0636920022244.do

Although many of the sketches will run on earlier Arduino releases, you need to change
the extension from .ino to .pde to load the sketch into a pre-1.0 IDE. If you have not
migrated to Arduino 1.0 and have good reason to stick with an earlier release, you can
use the example code from the first edition of this book (available at http://shop.oreilly
.com/product/9780596802486.do), which has been tested with releases from 0018 to
0022. Note that many recipes in the second edition have been enhanced, so we en-
courage you to upgrade to Arduino 1.0. If you need help migrating older code, see
Appendix H.

There’s also a link to errata on that site. Errata give readers a way to let us know about
typos, errors, and other problems with the book. Errata will be visible on the page
immediately, and we’ll confirm them after checking them out. O’Reilly can also fix
errata in future printings of the book and on Safari, making for a better reader experi-
ence pretty quickly.

If you have problems making examples work, check the changelog.txt file in the latest
code download to see if the sketch has been updated. If that doesn’t fix the problem,
see Appendix D, which covers troubleshooting software problems. The Arduino forum
is a good place to post a question if you need more help: http://www.arduino.cc.

If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness or other comments. You can also
leave reviews at the O’Reilly site for the book.

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined

Constant width
Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags

Constant width bold
Indicates emphasis in program code lines

Constant width italic
Indicates text that should be replaced with user-supplied values

W

- This icon signifies a tip, suggestion, or general note.
as
[ONY ™

T

xvi | Preface

http://shop.oreilly.com/product/9780596802486.do
http://shop.oreilly.com/product/9780596802486.do
http://www.arduino.cc

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you make things with Arduino. In general, you may use the
code in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Arduino Cookbook, Second Edition, by
Michael Margolis with Nick Weldin (O’Reilly). Copyright 2012 Michael Margolis,
Nicholas Weldin, 978-1-4493-1387-6.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Saf Safari Books Online is an on-demand digital library that lets you easily
ararl oe..ch over 7,500 technology and creative reference books and videos to

find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made a few mistakes!).

Preface | xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022244.do
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Nick Weldin’s contribution was invaluable for the completion of this book. It was
90 percent written when Nick came on board—and without his skill and enthusiasm,
it would still be 90 percent written. His hands-on experience running Arduino work-
shops for all levels of users enabled us to make the advice in this book practical for our
broad range of readers. Thank you, Nick, for your knowledge and genial, collaborative
nature.

Simon St. Laurent was the editor at O’Reilly who first expressed interest in this book.
And in the end, he is the man who pulled it together. His support and encouragement
kept us inspired as we sifted our way through the volumes of material necessary to do
the subject justice.

Brian Jepson helped me get started with the writing of this book. His vast knowledge
of things Arduino and his concern and expertise for communicating about technology
in plain English set a high standard. He was an ideal guiding hand for shaping the book
and making technology readily accessible for readers. We also have Brian to thank for
the XBee content in Chapter 14.

Brian Jepson and Shawn Wallace were technical editors for this second edition and
provided excellent advice for improving the accuracy and clarity of the content.

xviii | Preface

http://shop.oreilly.com/product/0636920022244.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Audrey Doyle worked tirelessly to stamp out typos and grammatical errors in the initial
manuscript and untangle some of the more convoluted expressions.

Philip Lindsay collaborated on content for Chapter 15 in the first edition. Adrian
McEwen, the lead developer for many of the Ethernet enhancements in Release 1.0,
provided valuable advice to ensure this Chapter reflected all the changes in that release.

Mikal Hart wrote recipes covering GPS and software serial. Mikal was the natural
choice for this—not only because he wrote the libraries, but also because he is a fluent
communicator, an Arduino enthusiast, and a pleasure to collaborate with.

Arduino is possible because of the creativity of the core Arduino development team:
Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis. On
behalf of all Arduino users, [wish to express our appreciation for their efforts in making
this fascinating technology simple and their generosity in making it free.

Special thanks to Alexandra Deschamps-Sonsino, whose Tinker London workshops
provided important understanding of the needs of users. Thanks also to Peter Knight,
who has provided all kinds of clever Arduino solutions as well as the basis of a number
of recipes in this book.

On behalf of everyone who has downloaded user-contributed Arduino libraries, I
would like to thank the authors who have generously shared their knowledge.

The availability of a wide range of hardware is a large part of what makes Arduino
exciting—thanks to the suppliers for stocking and supporting a broad range of great
devices. The following were helpful in providing hardware used in the book: SparkFun,
Maker Shed, Gravitech, and NKC Electronics. Other suppliers that have been helpful
include Modern Device, Liquidware, Adafruit, MakerBot Industries, Mindkits,
Oomlout, and SK Pang.

Nick would like to thank everyone who was involved with Tinker London, particularly
Alexandra, Peter, Brock Craft, Daniel Soltis and all the people who assisted on work-
shops over the years.

Nick’s final thanks go to his family, Jeanie, Emily, and Finn, who agreed to let him do
this over their summer holiday, and of course, much longer after that than they origi-
nally thought, and to his parents, Frank and Eva, for bringing him up to take things
apart.

Last but not least, I express thanks to the following people:

Joshua Noble for introducing me to O’Reilly. His book, Programming Interactivity, is
highly recommended for those interested in broadening their knowledge in interactive
computing.

Robert Lacy-Thompson for offering advice early on with the first edition.

Mark Margolis for his support and help as a sounding board in the book’s conception
and development.

Preface | xix

http://oreilly.com/catalog/9780596154158/

[thank my parents for helping me to see that the creative arts and technology were not
distinctive entities and that, when combined, they can lead to extraordinary results.

And finally, this book would not have been started or finished without the support of
my wife, Barbara Faden. My grateful appreciation to her for keeping me motivated and
for her careful reading and contributions to the manuscript.

Notes on the Second Edition

The second edition of this book has followed relatively quickly from the first, prompted
by the release of Arduino 1.0. The stated purpose of 1.0 is to introduce significant
change that will smooth the way for future enhancements but break some code written
for older software. These have necessitated changes to code in many of the chapters of
this book. Most changed are Chapter 15, Ethernet and Networking, and Chapter 13,
Communicating Using I12C and SPI, but all of the recipes in this edition have been mi-
grated to 1.0, with many being updated to use features new in this release. If you are
using a release prior to Arduino 1.0, then you can download code from the first edition
of this book. See “Arduino Platform Release Notes” on page xv for download details.

Appendix H, Migrating to Arduino 1.0, has been added to describe the changes intro-
duced by Arduino Release 1.0. This describes how to update older code to use with
Arduino 1.0.

Recipes for devices that are no longer widely available have been updated to use current
replacements and some new sensors and wireless devices have been added.

Errata posted on the O’Reilly site has been corrected, thanks to readers taking the time
to notify us of these.

We think you will like the improvements made in Arduino 1.0 as well as the enhance-
ments made to this edition of the Arduino Cookbook. The first edition was well received;
the constructive criticism being divided between people that wanted more technical
content and those that preferred less. In a book that we limited to only 700 or so pages
(to keep it affordable and portable), that seems to indicate that the right balance has
been achieved.

xx | Preface

CHAPTER1
Getting Started

1.0 Introduction

The Arduino environment has been designed to be easy to use for beginners who have
no software or electronics experience. With Arduino, you can build objects that can
respond to and/or control light, sound, touch, and movement. Arduino has been used
to create an amazing variety of things, including musical instruments, robots, light
sculptures, games, interactive furniture, and even interactive clothing.

If you’re not a beginner, please feel free to skip ahead to recipes that
interest you.

Arduino is used in many educational programs around the world, particularly by de-
signers and artists who want to easily create prototypes but do not need a deep under-
standing of the technical details behind their creations. Because it is designed to be used
by nontechnical people, the software includes plenty of example code to demonstrate
how to use the Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the same level of
sophistication that engineers employ to build embedded devices. People already work-
ing with microcontrollers are also attracted to Arduino because of its agile development
capabilities and its facility for quick implementation of ideas.

Arduino is best known for its hardware, but you also need software to program that
hardware. Both the hardware and the software are called “Arduino.” The combination
enables you to create projects that sense and control the physical world. The software
is free, open source, and cross-platform. The boards are inexpensive to buy, or you can
build your own (the hardware designs are also open source). In addition, there is an
active and supportive Arduino community that is accessible worldwide through the
Arduino forums and the wiki (known as the Arduino Playground). The forums and the

wiki offer project development examples and solutions to problems that can provide
inspiration and assistance as you pursue your own projects.

The recipes in this chapter will get you started by explaining how to set up the devel-
opment environment and how to compile and run an example sketch.

W
o Source code containing computer instructions for controlling Arduino
"‘) functionality is usually referred to as a sketch in the Arduino community.
T WUsy The word sketch will be used throughout this book to refer to Arduino

program code.

The Blink sketch, which comes with Arduino, is used as an example for recipes in this
chapter, though the last recipe in the chapter goes further by adding sound and col-
lecting input through some additional hardware, not just blinking the light built into
the board. Chapter 2 covers how to structure a sketch for Arduino and provides an
introduction to programming.

W
- If you already know your way around Arduino basics, feel free to jump
"‘:‘ forward to later chapters. If you're a first-time Arduino user, patience
T+ Qi8¢ in these early recipes will pay off with smoother results later.
Arduino Software

Software programs, called sketches, are created on a computer using the Arduino inte-
grated development environment (IDE). The IDE enables you to write and edit code
and convert this code into instructions that Arduino hardware understands. The IDE
also transfers those instructions to the Arduino board (a process called uploading).

Arduino Hardware

The Arduino board is where the code you write is executed. The board can only control
and respond to electricity, so specific components are attached to it to enable it to
interact with the real world. These components can be sensors, which convert some
aspect of the physical world to electricity so that the board can sense it, or actuators,
which get electricity from the board and convert it into something that changes the
world. Examples of sensors include switches, accelerometers, and ultrasound distance
sensors. Actuators are things like lights and LEDs, speakers, motors, and displays.

There are a variety of official boards that you can use with Arduino software and a wide
range of Arduino-compatible boards produced by members of the community.

The most popular boards contain a USB connector that is used to provide power and
connectivity for uploading your software onto the board. Figure 1-1 shows a basic board
that most people start with, the Arduino Uno.

2 | Chapter1: Getting Started

Figure 1-1. Basic board: the Arduino Uno. Photograph courtesy todo.to.it.

The Arduino Uno has a second microcontroller onboard to handle all USB communi-
cation; the small surface-mount chip (the ATmega8U2) is located near the USB socket
on the board. This can be programmed separately to enable the board to appear as
different USB devices (see Recipe 18.14 for an example). The Arduino Leonardo board
replaces the ATmega8U2 and the ATmega328 controllers with a single ATmega32u4
chip that implements the USB protocol in software. The Arduino-compatible Teensy
and Teensy+ boards from PJRC (http://www.pjrc.com/teensy/) are also capable of em-
ulating USB devices. Older boards, and most of the Arduino-compatible boards, use a
chip from the FTDI company that provides a hardware USB solution for connection to
the serial port of your computer.

You can get boards as small as a postage stamp, such as the Arduino Mini and Pro Mini;
larger boards that have more connection options and more powerful processors, such
as the Arduino Mega; and boards tailored for specific applications, such as the LilyPad
for wearable applications, the Fio for wireless projects, and the Arduino Pro for em-
bedded applications (standalone projects that are often battery-operated).

Recent additions to the range include the Arduino ADK, which has a USB host socket
on it and is compatible with the Android Open Accessory Development Kit, the offi-
cially approved method of attaching hardware to Android devices. The Leonardo board
uses a controller chip (the ATmega32u4) that is able to present itself as various HID

1.0 Introduction | 3

http://www.pjrc.com/teensy/

devices. The Ethernet board includes Ethernet connectivity, and has a Power Over
Ethernet option, so it is possible to use a single cable to connect and power the board.

Other Arduino-compatible boards are also available, including the following:
* Arduino Nano, a tiny board with USB capability, from Gravitech (http://store.grav
itech.us/arna30wiatn.html)

* Bare Bones Board, a low-cost board available with or without USB capability, from
Modern Device (http://www.moderndevice.com/products/bbb-kit)

* Boarduino, a low-cost breadboard-compatible board, from Adafruit Industries
(http://www.adafruit.com/)

¢ Seeeduino, a flexible variation of the standard USB board, from Seeed Studio
Bazaar (hitp://www.seeedstudio.com/)

* Teensy and Teensy++, tiny but extremely versatile boards, from PJRC (http://www
.pjrc.comfteensy/)

A list of Arduino-compatible boards is available at http://www.freeduino.org/.

See Also
An overview of Arduino boards: http://www.arduino.cc/en/Main/Hardware.

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://'www.arduino.cc/playground/Learning/Linux for Linux.

A list of over a hundred boards that can be used with the Arduino development envi-
ronment can be found at: http://jmsarduino.blogspot.com/2009/03/comprehensive-ardu
ino-compatible.html

1.1 Installing the Integrated Development Environment (IDE)

Problem

You want to install the Arduino development environment on your computer.

Solution

The Arduino software for Windows, Mac, and Linux can be downloaded from http:/
arduino.cc/en/Main/Software.

The Windows download is a ZIP file. Unzip the file to any convenient directory—
Program Files/Arduino is a sensible place.

4 | Chapter1: Getting Started

http://store.gravitech.us/arna30wiatn.html
http://store.gravitech.us/arna30wiatn.html
http://www.moderndevice.com/products/bbb-kit
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.pjrc.com/teensy/
http://www.pjrc.com/teensy/
http://www.freeduino.org/
http://www.arduino.cc/en/Main/Hardware
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://jmsarduino.blogspot.com/2009/03/comprehensive-arduino-compatible.html
http://jmsarduino.blogspot.com/2009/03/comprehensive-arduino-compatible.html
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

A free utility for unzipping files, called 7-Zip, can be downloaded from
http:/lwww.7-zip.org/.

Unzipping the file will create a folder named Arduino-00<nn> (where <nn> is the ver-
sion number of the Arduino release you downloaded). The directory contains the
executable file (named Arduino.exe), along with various other files and folders. Double-
click the Arduino.exe file and the splash screen should appear (see Figure 1-2), followed
by the main program window (see Figure 1-3). Be patient, as it can take some time for
the software to load.

.. arduino-1.0 “* Name

. drivers
| examples
. hardware
L java

. lib

. libraries

. reference
\ src

. tools

€9 arduino.exe
cygiconv-2.dll
cygwinl.dll
libusb.dll
revisions. bt
reteSerial.dil

m

@[T @ & & €

0.0,

ARDUINO

AN OPEN PROJECT WRITTEN, DEBUGGED AND SUPPORTED
OC arduino.exe 10 BANZI, DAVID CUARTIELLES, TOM IGOE,
Application CIA MARTINO AND DAVID MELLIS

BASED ON PROCESSIMG BY CASEY REAS AND BEN FRY

Figure 1-2. Arduino splash screen (Version 1.0 in Windows 7)

The Arduino download for the Mac is a disk image (.dmg); double-click the file when
the download is complete. The image will mount (it will appear like a memory stick

1.1 Installing the Integrated Development Environment (IDE) | 5

http://www.7-zip.org/

800

00 BHEA

sketch_oct05a

sketch_oct05a | Arduino 1.0

Arduino Uno on fdev/tty.usbmodemfal3l

Figure 1-3. IDE main window (Arduino 1.0 on a Mac)

on the desktop). Inside the disk image is the Arduino application. Copy this to
somewhere convenient—the Applications folder is a sensible place. Double-click the
application once you have copied it over (it is not a good idea to run it from the disk
image). The splash screen will appear, followed by the main program window.

Linux installation varies depending on the Linux distribution you are using. See the
Arduino wiki for information (http://'www.arduino.cc/playground/Learning/Linux).

To enable the Arduino development environment to communicate with the board, you
need to install drivers.

On Windows, use the USB cable to connect your PC and the Arduino board and wait
for the Found New Hardware Wizard to appear. If you are using an Uno board, let the
wizard attempt to find and install drivers. It will fail to do this (don’t worry, this is the
expected behavior). To fix it you now need to go to Start Menu—Control Panel-System

6 | Chapter1: Getting Started

http://www.arduino.cc/playground/Learning/Linux

and Security. Click on System, and then open Device Manager. In the listing that is
displayed find the entry in COM and LPT named Arduino UNO (COM nn). nn will be the
number Windows has assigned to the port created for the board. You will see a warning
logo next to this because the appropriate drivers have not yet been assigned. Right click
on the entry and select Update Driver Software. Choose the “Browse my computer for
driver software” option, and navigate to the Drivers folder inside the Arduino folder
you just unzipped. Select the ArduinoUNO. inf file and windows should then complete
the installation process.

If you are using an earlier board (any board that uses FTDI drivers) with Windows Vista
or Windows 7 and are online, you can let the wizard search for drivers and they will
install automatically. On Windows XP (or if you don’t have Internet access), you should
specify the location of the drivers. Use the file selector to navigate to the FTDI USB
Drivers directory, located in the directory where you unzipped the Arduino files. When
this driver has installed, the Found New Hardware Wizard will appear again, saying a
new serial port has been found. Follow the same process as before.

W

- It is important that you go through the sequence of steps to install the
"‘) drivers two times, or the software will not be able to communicate with
T 9l the board.

On the Mac, the latest Arduino boards, such as the Uno, can be used without additional
drivers. When you first plug the board in a notification will pop up saying a new net-
work port has been found, you can dismiss this. If you are using earlier boards (boards
that need FTDI drivers), you will need to install driver software. There is a package
named FTDIUSBSerialDriver, with a range of numbers after it, inside the disk image.
Double-click this and the installer will take you through the process. You will need to
know an administrator password to complete the process.

On Linux, most distributions have the driver already installed, but follow the Linux
link given in this chapter’s introduction for specific information for your distribution.

Discussion

If the software fails to start, check the troubleshooting section of the Arduino website,
http://arduino.cc/en/Guide/Troubleshooting, for help solving installation problems.

See Also

Online guides for getting started with Arduino are available at hitp://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

1.1 Installing the Integrated Development Environment (IDE) | 7

http://arduino.cc/en/Guide/Troubleshooting
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux

1.2 Setting Up the Arduino Board

Problem

You want to power up a new board and verify that it is working.

Solution

Plug the board in to a USB port on your computer and check that the green LED power
indicator on the board illuminates. Standard Arduino boards (Uno, Duemilanove, and
Mega) have a green LED power indicator located near the reset switch.

An orange LED near the center of the board (labeled “Pin 13 LED” in Figure 1-4) should
flash on and off when the board is powered up (boards come from the factory preloaded
with software to flash the LED as a simple check that the board is working).

0000000p00000000
ST D =E
UsB —+ - .
Connector O A rd U | n 0

/ J W—-Power LED
[oXe]
[oXe]

Serial ‘_ 00

LEDs \Reset

Switch
Power (onnecror S &=
///guu
Additional Pins

(Unorev3)

ANALOG

O — N < N

eoccolleceees

Figure 1-4. Basic Arduino board (Duemilanove and Uno)

New boards such as Leonardo have the LEDs located near the USB connector; see
Figure 1-5. Recent boards have duplicate pins for use with 12C (marked SCL and SDA).
These boards also have a pin marked IOREF that can be used to determine the operating
voltage of the chip.

8 | Chapter1: Getting Started

Reset Switch—@ EEEQEQQ
i

-1003

00 00CC000aa
DIGTAL(PWM) — =

GXD LEONARDO

ARDUINO

1(eo) | ICSP
Serial LEDS—E E(r)?]gnr:(rPong
Pin 13 LED——]
Power LED——

P ANALOG IN
ExternalD(Power- DDD EE; ﬁ‘)‘,i’e;
o o000

colleceoee

USB Connector+

Figure 1-5. Leonardo Board

A
Og The latest boards have three additional connections in the new standard
for connector layout on the board. This does not affect the use of older
" 9lae shields (they will all continue to work with the new boards, just as they
" did with earlier boards). The new connections provide a pin (IOREF)
for shields to detect the analog reference voltage (so that analog input
values can be calibrated to the supply voltage), SCL and SDA pins to
enable a consistent connection for I2C devices (the location of the I12C
pins has differed on previous boards due to different chip configura-
tions). Shields designed for the new layout should work on any board
that uses the new pin locations. An additional pin (next to the IOREF
pin) is not being used at the moment, but enables new functionality to
be implemented in the future without needing to change the pin layout

again.

Discussion

If the power LED does not illuminate when the board is connected to your computer,
the board is probably not receiving power.

The flashing LED (connected to digital output pin 13) is being controlled by code
running on the board (new boards are preloaded with the Blink example sketch). If the
pin 13 LED is flashing, the sketch is running correctly, which means the chip on the
board is working. If the green power LED is on but the pin 13 LED is not flashing, it
could be that the factory code is not on the chip; follow the instructions in Rec-
ipe 1.3 to load the Blink sketch onto the board to verify that the board is working. If
you are not using a standard board, it may not have a built-in LED on pin 13, so check
the documentation for details of your board. The Leonardo board fades the LED up
and down (it looks like the LED is “breathing”) to show that the board is working.

1.2 Setting Up the Arduino Board | 9

See Also

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

A troubleshooting guide can be found at http://arduino.cc/en/Guide/Troubleshooting.

1.3 Using the Integrated Development Environment (IDE) to
Prepare an Arduino Sketch

Problem

You want to get a sketch and prepare it for uploading to the board.

Solution

Use the Arduino IDE to create, open, and modify sketches that define what the board
will do. You can use buttons along the top of the IDE to perform these actions (shown
in Figure 1-6), or you can use the menus or keyboard shortcuts (shown in Figure 1-7).

The Sketch Editor area is where you view and edit code for a sketch. It supports com-
mon text-editing keys such as Ctrl-F (88+F on a Mac) for find, Ctrl-Z (88+Z on a Mac)
for undo, Ctrl-C (88+C on a Mac) to copy highlighted text, and Ctrl-V (%+V on a Mac)
to paste highlighted text.

Figure 1-7 shows how to load the Blink sketch (the sketch that comes preloaded on a
new Arduino board).

After you've started the IDE, go to the File=Examples menu and select 1. Basics—Blink,
as shown in Figure 1-7. The code for blinking the built-in LED will be displayed in the
Sketch Editor window (refer to Figure 1-6).

Before the code can be sent to the board, it needs to be converted into instructions that
can be read and executed by the Arduino controller chip; this is called compiling. To
do this, click the compile button (the top-left button with a tick inside), or select
Sketch—Verify/Compile (Ctrl-R; $+R on a Mac).

You should see a message that reads “Compiling sketch...” and a progress bar in the
message area below the text-editing window. After a second or two, a message that
reads “Done Compiling” will appear. The black console area will contain the following
additional message:

Binary sketch size: 1026 bytes (of a 32256 byte maximum)

The exact message may differ depending on your board and Arduino version; it is telling
you the size of the sketch and the maximum size that your board can accept.

10 | Chapter1: Getting Started

http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://arduino.cc/en/Guide/Troubleshooting

New sketch

Upload to board | Open existing sketch

Compile Save sketch Serial monitor

(&) sketch_oct05a | Arduino 1.0

O

sketch_oct05a Tab button

Script Editor

Text console
(status and
error messages)

Arduino Uno on /dev/tty.usbmodemfal31

Figure 1-6. Arduino IDE

Discussion

Source code for Arduino is called a sketch. The process that takes a sketch and converts
itinto a form that will work on the board is called compilation. The IDE uses a number
of command-line tools behind the scenes to compile a sketch. For more information
on this, see Recipe 17.1.

The final message telling you the size of the sketch indicates how much program space
is needed to store the controller instructions on the board. If the size of the compiled

1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch | 11

Edit Sketch Tools
New

Open...
Sketchbook

1.Basics
Close 2 .Digital
Save 3.Analog
Save As... 4.Communication
Upload 5.Control
Upload Using Programmer 6.Sensors
7.Display
: 8.5trings
bk ArduinolSP

AnalogReadSerial
BareMinimum

DigitalReadSerial
Fade

vy v vwvyhl

Page Setup

EEPROM

Ethernet

Firmata

LiquidCrystal

Mouse

SD

Servo

SoftwareSerial
sketch_oct05a Spl

Stepper

Wire

TV VyVyVyVVVYFVYYY

Figure 1-7. IDE menu (selecting the Blink example sketch)

sketch is greater than the available memory on the board, the following error message
is displayed:

Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshooting#size
for tips on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on the board,
or get a board with higher capacity.

If there are errors in the code, the compiler will print one or more error messages in the
console window. These messages can help identify the erro—see Appendix D on soft-
ware errors for troubleshooting tips.

To prevent accidental overwriting of the examples, the Arduino IDE
does not allow you to save changes to the provided example sketches.
%5 You must rename them using the Save As menu option. You can save
sketches you write yourself with the Save button (see Recipe 1.5).

As you develop and modify a sketch, you should also consider using the File»Save As
menu option and using a different name or version number regularly so that as you
implement each bit, you can go back to an older version if you need to.

12 | Chapter1: Getting Started

W
=% Code uploaded onto the board cannot be downloaded back onto your
"‘:‘ computer. Make sure you save your sketch code on your computer. You
T Q8 cannot save changes back to the example files; you need to use Save As
" and give the changed file another name.

See Also

Recipe 1.5 shows an example sketch. Appendix D has tips on troubleshooting software
problems.

1.4 Uploading and Running the Blink Sketch

Problem

You want to transfer your compiled sketch to the Arduino board and see it working.

Solution

Connect your Arduino board to your computer using the USB cable. Load the Blink
sketch into the IDE as described in Recipe 1.3.

Next, select Tools—Board from the drop-down menu and select the name of the board
you have connected (if it is the standard Uno board, it is probably the first entry in the
board list).

Now select Tools—Serial Port. You will get a drop-down list of available serial ports on
your computer. Each machine will have a different combination of serial ports, de-
pending on what other devices you have used with your computer.

On Windows, they will be listed as numbered COM entries. If there is only one entry,
select it. If there are multiple entries, your board will probably be the last entry.
On the Mac, your board will be listed twice if it is an Uno board:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

Click on the upload button (in Figure 1-6, it’s the second button from the left), or
choose File-Upload to I/O board (Ctrl-U, $+U on a Mac).

The software will compile the code, as in Recipe 1.3. After the software is compiled, it
is uploaded to the board. If you look at your board, you will see the LED stop flashing,
and two lights (labeled as Serial LEDs in Figure 1-4) just below the previously flashing

1.4 Uploading and Running the Blink Sketch | 13

LED should flicker for a couple of seconds as the code uploads. The original light should
then start flashing again as the code runs.

Discussion

For the IDE to send the compiled code to the board, the board needs to be plugged in
to the computer, and you need to tell the IDE which board and serial port you are using.

When an upload starts, whatever sketch is running on the board is stopped (if you were
running the Blink sketch, the LED will stop flashing). The new sketch is uploaded to
the board, replacing the previous sketch. The new sketch will start running when the
upload has successfully completed.

W
o Older Arduino boards and some compatibles do not automatically in-
"‘:‘ terrupt the running sketch to initiate upload. In this case, you need to
T+ iy press the Reset button on the board just after the software reports that
" it is done compiling (when you see the message about the size of the
sketch). It may take a few attempts to get the timing right between the
end of the compilation and pressing the Reset button.

The IDE will display an error message if the upload is not successful. Problems are
usually due to the wrong board or serial port being selected or the board not being
plugged in. The currently selected board and serial port are displayed in the status bar
at the bottom of the Arduino window

If you have trouble identifying the correct port on Windows, try unplugging the board
and then selecting Tools—Serial Port to see which COM portis no longer on the display
list. Another approach is to select the ports, one by one, until you see the lights on the
board flicker to indicate that the code is uploading.

See Also
The Arduino troubleshooting page: http://www.arduino.cc/en/Guide/Troubleshooting.

1.5 Creating and Saving a Sketch

Problem

You want to create a sketch and save it to your computer.

Solution

To open an editor window ready for a new sketch, launch the IDE (see Recipe 1.3), go
to the File menu, and select New. Paste the following code into the Sketch Editor win-
dow (it’s similar to the Blink sketch, but the blinks last twice as long):

14 | Chapter1: Getting Started

http://www.arduino.cc/en/Guide/Troubleshooting

const int ledPin = 13; // LED connected to digital pin 13
void setup()

pinMode(ledPin, OUTPUT);

void loop()
{

digitalWrite(ledPin, HIGH); // set the LED on

delay(2000); // wait for two seconds
digitalWrite(ledPin, LOW); // set the LED off
delay(2000); // wait for two seconds

Compile the code by clicking the compile button (the top-left button with a triangle
inside), or select Sketch—Verify/Compile (see Recipe 1.3).

Upload the code by clicking on the upload button, or choose File-~Upload to I/O board
(see Recipe 1.4). After uploading, the LED should blink, with each flash lasting two
seconds.

You can save this sketch to your computer by clicking the Save button, or select
File»Save.

You can save the sketch using a new name by selecting the Save As menu option. A
dialog box will open where you can enter the filename.

Discussion

When you save a file in the IDE, a standard dialog box for the operating system will
open. It suggests that you save the sketch to a folder called Arduino in your My Docu-
ments folder (or your Documents folder on a Mac). You can replace the default sketch
name with a meaningful name that reflects the purpose of your sketch. Click Save to
save the file.

WA

The default name is the word sketch followed by the current date. Se-

quential letters starting from a are used to distinguish sketches created

W on the same day. Replacing the default name with something meaning-

" ful helps you to identify the purpose of a sketch when you come back
to it later.

If you use characters that the IDE does not allow (e.g., the space character), the IDE
will automatically replace these with valid characters.

Arduino sketches are saved as plain text files with the extension .ino. Older versions of
the IDE used the .pde extension, also used by Processing. They are automatically saved
in a folder with the same name as the sketch.

1.5 Creating and Saving a Sketch | 15

You can save your sketches to any folder on your computer, but if you use the default
folder (the Arduino folder in your Documents folder) your sketches will automatically
appear in the Sketchbook menu of the Arduino software and be easier to locate.

W

If you have edited one of the examples from the Arduino download, you
will not be able to save the changed file using the same filename. This
s preserves the standard examples intact. If you want to save a modified
" example, you will need to select another location for the sketch.

After you have made changes, you will see a dialog box asking if you want to save the
sketch when a sketch is closed.

W
A

The § symbol following the name of the sketch in the top bar of the IDE
window indicates that the sketch code has changes that have not yet

%" been saved on the computer. This symbol is removed when you save the
" sketch.

The Arduino software does not provide any kind of version control, so if you want to
be able to revert to older versions of a sketch, you can use Save As regularly and give
each revision of the sketch a slightly different name.

Frequent compiling as you modify or add code is a good way to check for errors as you
write your code. It will be easier to find and fix any errors because they will usually be
associated with what you have just written.

B
)

Once a sketch has been uploaded onto the board there is no way to
download it back to your computer. Make sure you save any changes
%" to your sketches that you want to keep.

If you try and save a sketch file that is not in a folder with the same name as the sketch,
the IDE will inform you that this can’t be opened as is and suggest you click OK to
create the folder for the sketch with the same name.

W

Sketches must be located in a folder with the same name as the sketch.
The IDE will create the folder automatically when you save a new sketch.
~ “‘{
4% Sketches made with older versions of Arduino software have a different
file extension (.pde). The IDE will open them, when you save the sketch
it will create a file with the new extension (.ino). Code written for early
versions of the IDE may not be able to compile in version 1.0. Most of
the changes to get old code running are easy to do. See Appendix H for

more details.

16 | Chapter1: Getting Started

See Also

The code in this recipe and throughout this book use the const int expression to
provide meaningful names (ledPin) for constants instead of numbers (13). See
Recipe 17.5 for more on the use of constants.

1.6 Using Arduino

Problem

You want to get started with a project that is easy to build and fun to use.

Solution

This recipe provides a taste of some of the techniques that are covered in detail in later
chapters.

The sketch is based on the LED blinking code from the previous recipe, but instead of
using a fixed delay, the rate is determined by a light-sensitive sensor called a light de-
pendent resistor or LDR (see Recipe 6.2). Wire the LDR as shown in Figure 1-8.

000 000000aa

Qoo M~ ‘_O

DIGITAL =

130
120
11[]

—

=

Arduino s
ANALOG

i ®

[FDDDDD

=
OO0 &5

o NNOO

(0000

OVin

Figure 1-8. Arduino with light dependent resistor

If you are not familiar with building a circuit from a schematic, see
Appendix B for step-by-step illustrations on how to make this circuit on
~ Qs a breadboard.

1.6 Using Arduino | 17

The following sketch reads the light level of an LDR connected to analog pin 0. The
light level striking the LDR will change the blink rate of the internal LED connected to
pin 13:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

void setup()
{

pinMode(ledPin, OUTPUT); // enable output on the led pin

void loop()
{

int rate = analogRead(sensorPin); // read the analog input
digitalWrite(ledPin, HIGH); // set the LED on
delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);
}
Discussion

The value of the 4.7K resistor is not critical. Anything from 1K to 10K can be used. The
light level on the LDR will change the voltage level on analog pin 0. The analogRead
command (see Chapter 6) provides a value that ranges from around 200 when the LDR
is dark to 800 or so when it is very bright. This value determines the duration of the
LED on and off times, so the blink time increases with light intensity.

You can scale the blink rate by using the Arduino map function as follows:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()

pinMode(ledPin, OUTPUT); // enable output on the led pin

void loop()
{

int rate = analogRead(sensorPin); // read the analog input

// the next line scales the blink rate between the min and max values

rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
rate = constrain(rate, minDuration,maxDuration); // constrain the value

18 | Chapter1: Getting Started

digitalWrite(ledPin, HIGH); // set the LED on

delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);

}

Recipe 5.7 provides more details on using the map function to scale values. Recipe 3.5
has details on using the constrain function to ensure values do not exceed a given range.

If you want to view the value of the rate variable on your computer, you can print this
to the Arduino Serial Monitor as shown in the revised loop code that follows. The
sketch will display the blink rate in the Serial Monitor. You open the Serial Monitor
window in the Arduino IDE by clicking on the icon on the right of the top bar (see
Chapter 4 for more on using the Serial Monitor):

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()

pinMode(ledPin, OUTPUT); // enable output on the led pin
Serial.begin(9600); // initialize Serial
}

void loop()
{
int rate = analogRead(sensorPin); // read the analog input

// the next line scales the blink rate between the min and max values
rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate

rate = constrain(rate, minDuration,maxDuration); // constrain the value
Serial.println(rate); // print rate to serial monitor
digitalWrite(ledPin, HIGH); // set the LED on
delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);

}

You can use the LDR to control the pitch of a sound by connecting a small speaker to
the pin, as shown in Figure 1-9.

1.6 Using Arduino | 19

__JS1e

Speaker or
JJ Piezo

Oooooho Dooooood Transducer
OO INONTNT O
=5 DIGITAL ==

Resistor
(fixed or variable)

Arduino e

0 o

B oo ANALOG 4K
[0/@[0@0[e] TDODOD
Light

Dependent
Resistor

Figure 1-9. Connections for a speaker with the LDR circuit

You will need to increase the on/off rate on the pin to a frequency in the audio spectrum.
This is achieved, as shown in the following code, by decreasing the min and max

durations:

const int outputPin
const int sensorPin =

const int minDuration
const int maxDuration

void setup()
{

9; // Speaker connected to digital pin 9
0; // connect sensor to analog input 0

=1; // ims on, ims off (500 Hz)
= 10; // 10ms on, 10ms off (50 hz)

pinMode(outputPin, OUTPUT); // enable output on the led pin

void loop()
{

int sensorReading =

analogRead(sensorPin); // read the analog input

int rate = map(sensorReading, 200,800,minDuration, maxDuration);
rate = constrain(rate, minDuration,maxDuration); // constrain the value

digitalWrite(outputPin, HIGH); // set the LED on

delay(rate);

// wait duration dependent on light level

digitalWrite(outputPin, LOW); // set the LED off

delay(rate);

20 | Chapter1: Getting Started

See Also
See Recipe 3.5 for details on using the constrain function.
See Recipe 5.7 for a discussion on the map function.

If you are interested in creating sounds, see Chapter 9 for a full discussion on audio
output with Arduino.

1.6 Using Arduino | 21

CHAPTER 2

Making the Sketch Do Your Bidding

2.0 Introduction

Though much of an Arduino project will involve integrating the Arduino board with
supporting hardware, you need to be able to tell the board what to do with the rest of
your project. This chapter introduces core elements of Arduino programming, shows
nonprogrammers how to use common language constructs, and provides an overview
of the language syntax for readers who are not familiar with C or C++, the language
that Arduino uses.

Since making the examples interesting requires making Arduino do something, the
recipes use physical capabilities of the board that are explained in detail in later chap-
ters. If any of the code in this chapter is not clear, feel free to jump forward, particularly
to Chapter 4 for more on serial output and Chapter 5 for more on using digital and
analog pins. You don’t need to understand all the code in the examples, though, to see
how to perform the specific capabilities that are the focus of the recipes. Here are some
of the more common functions used in the examples that are covered in the next few
chapters:

Serial.println(value);
Prints the value to the Arduino IDE’s Serial Monitor so you can view Arduino’s
output on your computer; see Recipe 4.1.
pinMode(pin, mode);
Configures a digital pin to read (input) or write (output) a digital value; see the
introduction to Chapter 5.
digitalRead(pin);
Reads a digital value (HIGH or LOW) on a pin set for input; see Recipe 5.1.
digitalWrite(pin, value);
Writes the digital value (HIGH or LOW) to a pin set for output; see Recipe 5.1.

23

2.1 Structuring an Arduino Program

Problem

You are new to programming and want to understand the building blocks of an Arduino
program.

Solution

Programs for Arduino are usually referred to as sketches; the first users were artists and
designers and sketch highlights the quick and easy way to have an idea realized. The
terms sketch and program are interchangeable. Sketches contain code—the instructions
the board will carry out. Code that needs to run only once (such as to set up the board
for your application) must be placed in the setup function. Code to be run continuously
after the initial setup has finished goes into the loop function. Here is a typical sketch:

const int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts
void setup()

pinMode(ledPin, OUTPUT); // initialize the digital pin as an output
// the loop() method runs over and over again,
void loop()

digitalWrite(ledPin, HIGH); // turn the LED on

delay(1000); // wait a second
digitalWrite(ledPin, LOW); // turn the LED off
delay(1000); // wait a second

When the Arduino IDE finishes uploading the code, and every time you power on the
board after you’ve uploaded this code, it starts at the top of the sketch and carries out
the instructions sequentially. It runs the code in setup once and then goes through the
code in loop. When it gets to the end of loop (marked by the closing bracket, }) it goes
back to the beginning of loop.

Discussion

This example continuously flashes an LED by writing HIGH and LOW outputs to a pin.
See Chapter 5 to learn more about using Arduino pins. When the sketch begins, the
code in setup sets the pin mode (so it’s capable of lighting an LED). After the code in
setup is completed, the code in loop is repeatedly called (to flash the LED) for as long
as the Arduino board is powered on.

24 | Chapter2: Making the Sketch Do Your Bidding

You don’t need to know this to write Arduino sketches, but experienced C/C++ pro-
grammers may wonder where the expected main() entry point function has gone. It’s
there, but it’s hidden under the covers by the Arduino build environment. The build
process creates an intermediate file that includes the sketch code and the following
additional statements:

int main(void)
init();
setup();

for (53)
Loop();

return 0;

}

The first thing that happens is a call to an init() function that initializes the Arduino
hardware. Next, your sketch’s setup() function is called. Finally, your loop() function
is called over and over. Because the for loop never terminates, the return statement is
never executed.

See Also
Recipe 1.4 explains how to upload a sketch to the Arduino board.

Chapter 17 and http://www.arduino.cc/en/Hacking/BuildProcess provide more on the
build process.

2.2 Using Simple Primitive Types (Variables)

Problem

Arduino has different types of variables to efficiently represent values. You want to
know how to select and use these Arduino data types.

Solution

Although the int (short for integer, a 16-bit value in Arduino) data type is the most
common choice for the numeric values encountered in Arduino applications, you can
use Table 2-1 to determine the data type that fits the range of values your application
expects.

2.2 Using Simple Primitive Types (Variables) | 25

http://www.arduino.cc/en/Hacking/BuildProcess

Table 2-1. Arduino data types

Numeric types Bytes Range Use

int 2 -32768 to 32767 Represents positive and negative integer values.

unsigned int 2 01065535 Represents only positive values; otherwise, similar to int.

long 4 —2147483648 to Represents a very large range of positive and negative values.
2147483647

unsigned 4 4294967295 Represents a very large range of positive values.

long

float 4 3.4028235E+38 t0 — Represents numbers with fractions; use to approximate real-
3.4028235E+-38 world measurements.

double 4 Sameas float In Arduino, double is just another name for f1loat.

boolean 1 false (0) or true (1) Represents true and false values.

char 1 1280127 Represents a single character. Can also represent a signed value

between —128 and 127.

byte 1 0t0255 Similar to char, but for unsigned values.

Other types Use

String Represents arrays of chaxrs (characters) typically used to contain text.

void Used only in function declarations where no value is returned.

Discussion

Except in situations where maximum performance or memory efficiency is required,
variables declared using int will be suitable for numeric values if the values do not
exceed the range (shown in the first row in Table 2-1) and if you don’t need to work
with fractional values. Most of the official Arduino example code declares numeric
variables as int. But sometimes you do need to choose a type that specifically suits your
application.

Sometimes you need negative numbers and sometimes you don’t, so numeric types
come in two varieties: signed and unsigned. unsigned values are always positive. Vari-
ables without the keyword unsigned in front are signed so that they can represent neg-
ative and positive values. One reason to use unsigned values is when the range of
signed values will not fit the range of the variable (an unsigned variable has twice the
capacity of a signed variable). Another reason programmers choose to use unsigned
types is to clearly indicate to people reading the code that the value expected will never
be a negative number.

boolean types have two possible values: true or false. They are commonly used for
things like checking the state of a switch (if it’s pressed or not). You can also use HIGH
and LOW as equivalents to true and false where this makes more sense; digital
Write(pin, HICH) is a more expressive way to turn on an LED than digitalWrite(pin,
true) or digitalWrite(pin,1), although all of these are treated identically when the

26 | Chapter2: Making the Sketch Do Your Bidding

sketch actually runs, and you are likely to come across all of these forms in code posted
on the Web.

See Also

The Arduino reference at http://www.arduino.cc/en/Reference/HomePage provides de-
tails on data types.

2.3 Using Floating-Point Numbers

Problem

Floating-point numbers are used for values expressed with decimal points (this is the
way to represent fractional values). You want to calculate and compare these values in
your sketch.

Solution

The following code shows how to declare floating-point variables, illustrates problems
you can encounter when comparing floating-point values, and demonstrates how to
overcome them:
/*
* Floating-point example
* This sketch initialized a float value to 1.1

* It repeatedly reduces the value by 0.1 until the value is 0
*/

float value = 1.1;
void setup()
{

Serial.begin(9600);

void loop()
{

value = value - 0.1; // reduce value by 0.1 each time through the loop
if(value == 0)
Serial.println("The value is exactly zero");
else if(almostEqual(value, 0))
{
Serial.print("The value ");
Serial.print(value,7); // print to 7 decimal places
Serial.println(" is almost equal to zero");

else
Serial.println(value);

delay(100);

2.3 Using Floating-Point Numbers | 27

http://www.arduino.cc/en/Reference/HomePage

}

// returns true if the difference between a and b is small
// set value of DELTA to the maximum difference considered to be equal
boolean almostEqual(float a, float b)

{

const float DELTA = .00001; // max difference to be almost equal
if (a == 0) return fabs(b) <= DELTA;
if (b == 0) return fabs(a) <= DELTA;
return fabs((a - b) / max(fabs(a), fabs(b))) <= DELTA ;
}

Discussion

Floating-point math is not exact, and values returned can have a small approximation
error. The error occurs because floating-point values cover a huge range, so the internal
representation of the value can only hold an approximation. Because of this, you need
to test if the values are within a range of tolerance rather than exactly equal.

The Serial Monitor output from this sketch is as follows:

[y

.00
.90
.80
.70
.60
.50
.40
.30
.20
0.10
The value -0.0000001 is almost equal to zero
-0.10
-0.20

O OO0 OO0 O OoOOo

The output continues to produce negative numbers.

You may expect the code to print "The value is exactly zero" after value is 0.1 and
then 0.1 is subtracted from this. But value never equals exactly zero; it gets very close,
but that is not good enough to pass the test: if (value == 0). This is because the only
memory-efficient way that floating-point numbers can contain the huge range in values
they can represent is by storing an approximation of the number.

The solution to this is to check if a variable is close to the desired value, as shown in
this recipe’s Solution.

The almostEqual function tests if the variable value is within 0.00001 of the desired
target and returns true if so. The acceptable range is set with the constant DELTA, you
can change this to smaller or larger values as required. The function named fabs (short
for floating-point absolute value) returns the absolute value of a floating-point variable
and this is used to test the difference between the given parameters.

28 | Chapter2: Making the Sketch Do Your Bidding

Floating point approximates numbers because it only uses 32 bits to
hold all values within a huge range. Eight bits are used for the decimal
* Qlsr multiplier (the exponent), and that leaves 24 bits for the sign and
" value—only enough for seven significant decimal digits.

Although float and double are exactly the same on Arduino, doubles do
% have a higher precision on many other platforms. If you are importing

code that uses float and double from another platform, check that there
is sufficient precision for your application.

See Also

The Arduino reference for float: http://www.arduino.cc/en/Reference/Float.

2.4 Working with Groups of Values

Problem

You want to create and use a group of values (called arrays). The arrays may be a simple
list or they could have two or more dimensions. You want to know how to determine
the size of the array and how to access the elements in the array.

Solution

This sketch creates two arrays: an array of integers for pins connected to switches and
an array of pins connected to LEDs, as shown in Figure 2-1:

/*

array sketch

an array of switches controls an array of LEDs

see Chapter 5 for more on using switches

see Chapter 7 for information on LEDs

*/

int inputPins[] = {2,3,4,5}; // create an array of pins for switch inputs
int ledPins[] = {10,11,12,13}; // create array of output pins for LEDs
void setup()

{ for(int index = 0; index < 4; index++)

pinMode(ledPins[index], OUTPUT); // declare LED as output
pinMode(inputPins[index], INPUT); // declare pushbutton as input

digitalWrite(inputPins[index],HICH); // enable pull-up resistors
// (see Recipe 5.2)

2.4 Working with Groups of Values | 29

http://www.arduino.cc/en/Reference/Float

void loop(){
for(int index = 0; index < 4; index++)

{
int val = digitalRead(inputPins[index]); // read input value
if (val == LOW) // check if the switch is pressed
digitalWrite(ledPins[index], HIGH); // turn LED on if switch is pressed
else
digitalWrite(ledPins[index], LOW); // turn LED off
}
}
7
7n
An \ \ \ \
7

Arduino

ANALOG

O — N N < i

coecollececee

-QQ

[JReser

Figure 2-1. Connections for LEDs and switches

30 | Chapter2: Making the Sketch Do Your Bidding

Discussion

Arrays are collections of consecutive variables of the same type. Each variable in the
collection is called an element. The number of elements is called the size of the array.

The Solution demonstrates a common use of arrays in Arduino code: storing a collec-
tion of pins. Here the pins connect to switches and LEDs (a topic covered in more detail
in Chapter 5). The important parts of this example are the declaration of the array and
access to the array elements.

The following line of code declares (creates) an array of integers with four elements and

initializes each element. The first element is set equal to 2, the second to 3, and so on:
int inputPins[] = {2,3,4,5};

If you don’t initialize values when you declare an array (for example, when the values

will only be available when the sketch is running), you must change each element in-
dividually. You can declare the array as follows:

int inputPins[4];
This declares an array of four elements with the initial value of each element set to zero.
The number within the square brackets ([]) is the size, and this sets the number of
elements. This array has a size of four and can hold, at most, four integer values. The
size can be omitted if array declaration contains initializers (as shown in the first ex-
ample) because the compiler figures out how big to make the array by counting the
number of initializers.
The first element of the array is element[0]:

int firstElement = inputPins[0]; // this is the first element

inputPins[0] = 2; // set the value of this element equal to 2
The last element is one less than the size, so in the preceding example, with a size of
four, the last element is element 3:

int lastElement = inputPins[3]; // this is the last element
It may seem odd that an array with a size of four has the last element accessed using
array[3], but because the first element is array[0], the four elements are:

inputPins[0],inputPins[1],inputPins[2],inputPins[3]
In the previous sketch, the four elements are accessed using a for loop:

for(int index = 0; index < 4; index++)

//get the pin number by accessing each element in the pin arrays
pinMode(ledPins[index], OUTPUT); // declare LED as output

pinMode(inputPins[index], INPUT); // declare pushbutton as input
}

This loop will step through the variable index with values starting at 0 and ending at
3. It is a common mistake to accidentally access an element that is beyond the actual

2.4 Working with Groups of Values | 31

size of the array. This is a bug that can have many different symptoms and care must
be taken to avoid it. One way to keep your loops under control is to set the size of an
array by using a constant as follows:

const int PIN_COUNT = 4; // define a constant for the number of elements
int inputPins[PIN_COUNT] = {2,3,4,5};

for(int index = 0; index < PIN_COUNT; index++)
pinMode(inputPins[index], INPUT);

The compiler will not report an error if you accidentally try to store or
: read beyond the size of the array. You must be careful that you only
access elements that are within the bounds you have set. Using a con-

stant to set the size of an array and in code referring to its elements helps
your code stay within the bounds of the array.

Another use of arrays is to hold a string of text characters. In Arduino code, these are
called character strings (strings for short). A character string consists of one or more
characters, followed by the null character (the value 0) to indicate the end of the string.

W N

The null at the end of a character string is not the same as the character
0. The null has an ASCII value of 0, whereas 0 has an ASCII value of 48.

Methods to use strings are covered in Recipes 2.5 and 2.6.

See Also
Recipe 5.2; Recipe 7.1

2.5 Using Arduino String Functionality

Problem

You want to manipulate text. You need to copy it, add bits together, and determine
the number of characters.

Solution

The previous recipe mentioned how arrays of characters can be used to store text: these
character arrays are usually called strings. Arduino has a capability called String that
adds rich functionality for storing and manipulating text.

32 | Chapter2: Making the Sketch Do Your Bidding

The word String with an uppercase S refers to the Arduino text capability
provided by the Arduino Stringlibrary. The word string with alowercase
' Qlar s refers to the group of characters rather than the Arduino String
" functionality.

This recipe demonstrates how to use Arduino Strings.

The String capability was introduced in version 0019 alpha (older than
1.0) of Arduino. If you are using an older version, you can use the Text-
* Qlsn String library; see the link at the end of this recipe.

Load the following sketch onto your board, and open the Serial Monitor to view the
results:
/¥
Basic_Strings sketch

*/

String text1l = "This string";
String text2 = " has more text";
String text3; // to be assigned within the sketch

void setup()
{
Serial.begin(9600);

Serial.print(text1);

Serial.print(" is ");
Serial.print(text1.length());
Serial.println(" characters long.");

Serial.print("text2 is ");
Serial.print(text2.length());
Serial.println(" characters long.");

textl.concat(text2);
Serial.println("textl now contains: ");
Serial.println(text1);

}

void loop()
{
}

Discussion

This sketch creates three variables of type String, called text1, text2, and text3. Vari-
ables of type String have built-in capabilities for manipulating text. The statement

2.5 Using Arduino String Functionality | 33

text1.length() returns (provides the value of) the length (number of characters) in the
string text1.

text1.concat(text2) combines the contents of strings; in this case, it appends the con-
tents of text2 to the end of text1 (concat is short for concatenate).
The Serial Monitor will display the following:

This string is 11 characters long.
text2 is 14 characters long.
text1l now contains:

This string has more text

Another way to combine strings is to use the string addition operator. Add these two
lines to the end of the setup code:

text3 = text1 + " and more";
Serial.println(text3);

The new code will result in the Serial Monitor adding the following line to the end of
the display:

This is a string with more text and more

You can use the index0f and lastIndex0f functions to find an instance of a particular
character in a string.

W N

Because the String class is a recent addition to Arduino, you will come
across a lot of code that uses arrays of characters rather than the
Wse String type. See Recipe 2.6 for more on using arrays of characters with-
out the help of the Arduino String functionality.

If you see a line such as the following;:

char oldString[] = "this is a character array";

the code is using C-style character arrays (see Recipe 2.6). If the declaration looks like
this:

String newString = "this is a string object";
the code uses Arduino Strings. To convert a C-style character array to an Arduino
String, just assign the contents of the array to the String object:

char oldString[] = "I want this character array in a String object";
String newString = oldString;

To use any of the functions listed in Table 2-2, you need to invoke them upon an existing
string object, as in this example:

int len = myString.length();

34 | Chapter2: Making the Sketch Do Your Bidding

Table 2-2. Brief overview of Arduino String functions

charAt(n) Returns the nth character of the String

compareTo(S2) Compares the String to the given String 52

concat(S2) Returns a new String thatis the combination of the String and 52
endsWith(S2) Returns true if the String ends with the characters of S2

equals(S2) Returns true if the String is an exact match for S2 (case-sensitive)
equalsIgnoreCase(S2) Same as equals butis not case-sensitive

getBytes(buffer,len) Copies Len(gth) characters into the supplied byte buffer

index0f(S) Returns the index of the supplied String (or character) or —1if not found
lastIndex0f(S) Same as indexOf but starts from the end of the String

length() Returns the number of characters in the String

replace(A,B) Replaces all instances of String (or character) A with B

setCharAt(index,c) Stores the character cin the String at the given index

startsWith(S2) Returns true if the String starts with the characters of S2

substring(index) Returns a String with the characters starting from index to the end of the String
substring(index,to) Same as above, but the substring ends at the character location before the ‘to’ position

toCharArray(buffer,len) Copiesup o len characters of the String to the supplied buffer

toInt() Returns the integer value of the numeric digits in the String
toLowerCase() Returns a String with all characters converted to lowercase
toUpperCase() Returns a String with all characters converted to uppercase
trim() Returns a String with all leading and trailing whitespace removed

See the Arduino reference pages for more about the usage and variants for these
functions.

Choosing between Arduino Strings and C character arrays

Arduino’s built-in String datatype is easier to use than C character arrays, but this is
achieved through complex code in the String library, which makes more demands on
your Arduino, and is, by nature, more prone to problems.

The String datatype is so flexible because it makes use of dynamic memory allocation.
That is, when you create or modify a String, Arduino requests a new region of memory
from the Clibrary, and when you’re done using a String, Arduino needs to release that
memory. This usually works smoothly, but in practice there are many cracks through
which memory can leak. Bugs in the String library can result in some or all of the
memory not being returned properly. When this happens, the memory available to
Arduino will slowly decrease (until you reboot the Arduino). And even if there were no
memory leaks, it’s complicated to write code to check if a String request failed due to
insufficient memory (the String functions mimic those in Processing, but unlike that

2.5 Using Arduino String Functionality | 35

platform, Arduino does not have runtime error exception handling). Running out of
dynamic memory is a bug that can be very difficult to track down because the sketch
can run without problems for days or weeks before it starts misbehaving through in-
sufficient memory.

If you use C character arrays, you are in control of memory usage: you’re allocating a
fixed (static) amount of memory at compile time so you don’t get memory leaks. Your
Arduino sketch will have the same amount of memory available to it all the time it’s
running. And if you do try to allocate more memory than available, finding the cause
is easier because there are tools that tell you how much static memory you have allo-
cated (see the reference to avr-objdump in Recipe 17.1).

However, with C character arrays, it’s easier for you to have another problem: C will
not prevent you from modifying memory beyond the bounds of the array. So if you
allocate an array as myString[4], and assign myString[4] = 'A' (remember,
myString[3] is the end of the array), nothing will stop you from doing this. But who
knows what piece of memory myString[4] refers to? And who knows whether assigning
'A' to that memory location will cause you a problem? Most likely, it will cause your
sketch to misbehave.

So, Arduino’s built-in String library, by virtue of using dynamic memory, runs the risk
of eating up your available memory. C’s character arrays require care on your part to
ensure that you do not exceed the bounds of the arrays you use. So use Arduino’s built-
in String library if you need rich text handling capability and you won’t be creating and
modifying Strings over and over again. If you need to create and modify them in a loop
that is constantly repeating, you're better off allocating a large C character array and
writing your code carefully so you don’t write past the bounds of that array.

Another instance where you may prefer C character arrays over Arduino Strings is in
large sketches that need most of the available RAM or flash. The Arduino String
ToInt example code uses almost 2 KB more flash than equivalent code using a C char-
acter array and atoi to convert to an int. The Arduino String version also requires a
little more RAM to store allocation information in addition to the actual string.

If you do suspect that the String library, or any other library that makes use of dynam-
ically allocated memory, might be leaking memory, you can determine how much
memory is free at any given time; see Recipe 17.2. Check the amount of RAM when
your sketch starts, and monitor it to see whether it’s decreasing over time. If you suspect
a problem with the String library, search the list of open bugs (http://code.google.com/
plarduinol/issues/list) for “String.”

See Also
The Arduino distribution provides String example sketches (File=Examples—Strings).

The String reference page can be found at http://arduino.cc/en/Reference/StringObject.

36 | Chapter2: Making the Sketch Do Your Bidding

http://code.google.com/p/arduino/issues/list
http://code.google.com/p/arduino/issues/list
http://arduino.cc/en/Reference/StringObject

Tutorials for the new String library are available at hitp://arduino.cc/en/Tutorial/Home
Page, and a tutorial for the original String library (only needed if you are using a version
of Arduino older than 0019 alpha) is available at http://'www.arduino.cc/en/Tutorial/
TextString.

2.6 Using C Character Strings

Problem

You want to understand how to use raw character strings: you want to know how to
create a string, find its length, and compare, copy, or append strings. The core C lan-
guage does not support the Arduino-style String capability, so you want to understand
code from other platforms written to operate with primitive character arrays.

Solution

Arrays of characters are sometimes called character strings (or simply strings for short).
Recipe 2.4 describes Arduino arrays in general. This recipe describes functions that
operate on character strings.

You declare strings like this:

char stringA[8]; // declare a string of up to 7 chars plus terminating null

char stringB[8] = "Arduino"; // as above and init(ialize) the string to "Arduino"
char stringC[16] = "Arduino"; // as above, but string has room to grow
char stringD[] = "Arduino"; // the compiler inits the string and calculates size

Use strlen (short for string length) to determine the number of characters before the
terminating null:

int length = strlen(string); // return the number of characters in the string
length will be O for stringA and 7 for the other strings shown in the preceding code.
The null that indicates the end of the string is not counted by strlen.
Use strepy (short for string copy) to copy one string to another:

strcpy(destination, source); // copy string source to destination
Use strncpy to limit the number of characters to copy (useful to prevent writing more
characters than the destination string can hold). You can see this used in Recipe 2.7:

// copy up to 6 characters from source to destination
strncpy(destination, source, 6);

Use strcat (short for string concatenate) to append one string to the end of another:

// append source string to the end of the destination string
strcat(destination, source);

2.6 Using C Character Strings | 37

http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Tutorial/HomePage
http://www.arduino.cc/en/Tutorial/TextString
http://www.arduino.cc/en/Tutorial/TextString

Always make sure there is enough room in the destination when copying
or concatenating strings. Don’t forget to allow room for the terminating
~ e null.

Use stremp (short for string compare) to compare two strings. You can see this used in
Recipe 2.7:
if(stremp(str, "Arduino") == 0)
// do something if the variable str is equal to "Arduino"

Discussion

Text is represented in the Arduino environment using an array of characters called
strings. A string consists of a number of characters followed by a null (the value 0). The
null is not displayed, but it is needed to indicate the end of the string to the software.

See Also

See one of the many online C/C++ reference pages, such as http://www.cplusplus.com/
reference/clibrary/cstring/ and http://www.cppreference.com/wiki/string/c/start.

2.7 Splitting Comma-Separated Text into Groups

Problem

You have a string that contains two or more pieces of data separated by commas (or
any other separator). You want to split the string so that you can use each individual
part.

Solution
This sketch prints the text found between each comma:

/*
* SplitSplit sketch
* split a comma-separated string

*/
String text = "Peter,Paul,Mary"; // an example string
String message = text; // holds text not yet split
int commaPosition; // the position of the next comma in the string
void setup()
{
Serial.begin(9600);

Serial.println(message); // show the source string
do

{

38 | Chapter2: Making the Sketch Do Your Bidding

http://www.cplusplus.com/reference/clibrary/cstring/
http://www.cplusplus.com/reference/clibrary/cstring/
http://www.cppreference.com/wiki/string/c/start

commaPosition = message.index0f(',");
if(commaPosition != -1)

{

Serial.println(message.substring(0,commaPosition));
message = message.substring(commaPosition+1, message.length());

}

else
{ // here after the last comma is found
if(message.length() > 0)
Serial.println(message); // if there is text after the last comma,
// print it
}

while(commaPosition >=0);

}

void loop()
{

}

The Serial Monitor will display the following:

Peter,Paul,Mary
Peter

Paul

Mary

Discussion

This sketch uses String functions to extract text from between commas. The following
code:

commaPosition = message.index0f(',"');

sets the variable commaPosition to the position of the first comma in the String named
message (it will be set to —1 if no comma is found). If there is a comma, the substring
function is used to print the text from the beginning of the string up to, but excluding,
the comma. The text that was printed, and its trailing comma, are removed from
message in this line:

message = message.substring(commaPosition+1, message.length());

substring returns a string starting from commaPosition+1 (the position just after the first
comma) up to the length of the message. This results in that message containing only
the text following the first comma. This is repeated until no more commas are found
(commaPosition will be equal to —1).

If you are an experienced programmer, you can also use the low-level functions that
are part of the standard C library. The following sketch has similar functionality to the
preceding one using Arduino strings:
/*
* SplitSplit sketch
* split a comma-separated string

*/

2.7 Splitting Comma-Separated Text into Groups | 39

const int MAX_STRING_LEN = 20; // set this to the largest string
// you will process

char stringlist[] = "Peter,Paul,Mary"; // an example string
char stringBuffer[MAX_STRING_LEN+1]; // a static buffer for computation and output
void setup()

Serial.begin(9600);

}
void loop()
{
char *str;
char *p;
strncpy(stringBuffer, stringlist, MAX STRING LEN); // copy source string
Serial.println(stringBuffer); // show the source string
for(str = strtok r(stringBuffer, ",", 8p); // split using comma
str; // loop while str is not null
str = strtok_r(NULL, ",", &p) // get subsequent tokens
)
{

Serial.println(str);

delay(5000);

The core functionality comes from the function named strtok_r (the name of the ver-
sion of strtok that comes with the Arduino compiler). The first time you call
strtok_r, you pass it the string you want to tokenize (separate into individual values).
But strtok_r overwrites the characters in this string each time it finds a new token, so
it’s best to pass a copy of the string as shown in this example. Each call that follows
uses a NULL to tell the function that it should move on to the next token. In this example,
each token is printed to the serial port.

If your tokens consist only of numbers, see Recipe 4.5. This shows how to extract
numeric values separated by commas in a stream of serial characters.

See Also

See http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html for more on
C string functions such as strtok_r and strcmp.

Recipe 2.5; online references to the C/C++ functions strtok_r and strcmp.

40 | Chapter2: Making the Sketch Do Your Bidding

http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html

2.8 Converting a Number to a String

Problem

You need to convert a number to a string, perhaps to show the number on an LCD or
other display.

Solution

The String variable will convert numbers to strings of characters automatically. You
can use literal values, or the contents of a variable. For example, the following code
will work:

String myNumber = 1234;
As will this:

int value = 127;
String myReadout = "The reading was ";
myReadout. concat(value);

Or this:

int value = 127;
String myReadout = "The reading was ";
myReadout += value;

Discussion

If you are converting a number to display as text on an LCD or serial device, the simplest
solution is to use the conversion capability built in to the LCD and Serial libraries (see
Recipe 4.2). But perhaps you are using a device that does not have this built-in support
(see Chapter 13) or you want to manipulate the number as a string in your sketch.

The Arduino String class automatically converts numerical values when they are as-
signed to a String variable. You can combine (concatenate) numeric values at the end
of a string using the concat function or the string + operator.

W8

The + operator is used with number types as well as strings, but it be-
haves differently with each.

The following code results in number having a value of 13:

int number = 12;
number += 1;

With a String, as shown here:

String textNumber = "12";
textNumber += 1;

2.8 Converting a Numbertoa String | 41

textNumber is the text string "121".

Prior to the introduction of the String class, it was common to find Arduino code using
the itoa or 1toa function. The names come from “integer to ASCII” (itoa) and “long
to ASCII” (1toa). The String version described earlier is easier to use, but the following
can be used if you prefer working with C character arrays as described in Recipe 2.6.

itoa or 1ltoa take three parameters: the value to convert, the buffer that will hold the
output string, and the number base (10 for a decimal number, 16 for hex, and 2 for
binary).

The following sketch illustrates how to convert numeric values using 1toa:
/*

* NumberToString
* Creates a string from a given number

*/
void setup()

Serial.begin(9600);

char buffer[12]; // long data type has 11 characters (including the
// minus sign) and a terminating null
void loop()

long value = 12345;
1toa(value, buffer, 10);
Serial.print(value);
Serial.print(" has ");
Serial.print(strlen(buffer));
Serial.println(" digits");
value = 123456789;
1toa(value, buffer, 10);
Serial.print(value);
Serial.print(" has ");
Serial.print(strlen(buffer));
Serial.println(" digits");
delay(1000);

}

Your buffer must be large enough to hold the maximum number of characters in the
string. For 16-bit base 10 (decimal) integers, that is seven characters (five digits, a pos-
sible minus sign, and a terminating O that always signifies the end of a string); 32-bit
long integers need 12 character buffers (10 digits, the minus sign, and the terminating
0). No warning is given if you exceed the buffer size; this is a bug that can cause all
kinds of strange symptoms, because the overflow will corrupt some other part of mem-
ory that may be used by your program. The easiest way to handle this is to always use
a 12-character buffer and always use 1toa because this will work on both 16-bit and
32-bit values.

42 | Chapter2: Making the Sketch Do Your Bidding

2.9 Converting a String to a Number

Problem

You need to convert a string to a number. Perhaps you have received a value as a string
over a communication link and you need to use this as an integer or floating-point value.

Solution

There are a number of ways to solve this. If the string is received as serial data, it can
be converted on the fly as each character is received. See Recipe 4.3 for an example of
how to do this using the serial port.

Another approach to converting text strings representing numbers is to use the C lan-
guage conversion function called atoi (for int variables) or atol (for long variables).

This code fragment terminates the incoming digits on any character that is not a digit
(or if the buffer is full). For this to work, though, you’ll need to enable the newline
option in the Serial Monitor or type some other terminating character:

/*

* StringToNumber

* Creates a number from a string

*/
const int ledPin = 13; // pin the LED is connected to

int blinkDelay; // blink rate determined by this variable
char strValue[6]; // must be big enough to hold all the digits and the
// 0 that terminates the string
int index = 0; // the index into the array storing the received digits

void setup()

Serial.begin(9600);
pinMode(ledPin,OUTPUT); // enable LED pin as output

void loop()
{

if(Serial.available())
{

char ch = Serial.read();
if(index < 5 && isDigit(ch)){

strvalue[index++] = ch; // add the ASCII character to the string;
}

else

// here when buffer full or on the first non digit

strValue[index] = 0; // terminate the string with a 0
blinkDelay = atoi(strValue); // use atoi to convert the string to an int
index = 0;

}

2.9 Converting a String toa Number | 43

}
blink();
}

void blink()

{
digitalWrite(ledPin, HIGH);
delay(blinkDelay/2); // wait for half the blink period
digitalWrite(ledPin, LOW);
delay(blinkDelay/2); // wait for the other half
}

Discussion

The obscurely named atoi (for ASCII to int) and atol (for ASCII to long) functions
convert a string into integers or long integers. To use them, you have to receive and
store the entire string in a character array before you can call the conversion function.
The code creates a character array named strValue that can hold up to five digits (it’s
declared as char strValue[6] because there must be room for the terminating null). It
fills this array with digits from Serial.read until it gets the first character that is not a
valid digit. The array is terminated with a null and the atoi function is called to convert
the character array into the variable blinkRate.

A function called blink is called that uses the value stored in blinkDelay.

As mentioned in the warning in Recipe 2.4, you must be careful not to exceed the bound
of the array. If you are not sure how to do that, see the Discussion section of that recipe.
Arduino release 22 added the toInt method to convert a String to an integer:

String aNumber = "1234";
int value = aNumber.toInt();

Arduino 1.0 added the parseInt method that can be used to get integer values from
Serial and Ethernet (or any object that derives from the Stream class). The following
fragment will convert sequences of numeric digits into numbers. It is similar to the
solution fragment but does not need a buffer (and does not limit the number of digits
to 5):

int blinkDelay; // blink rate determined by this variablevoid loop()
if(Serial.available())
blinkRate = Serial.parselnt();

}
blink();
}

44 | Chapter2: Making the Sketch Do Your Bidding

Stream-parsing methods such as parseInt use a timeout to return con-
trol to your sketch if data does not arrive within the desired interval.

The default timeout is one second but this can be changed by calling
" the setTimeout method:

Serial.setTimeout(1000 * 60); // wait up to one minute

parseInt (and all other stream methods) will return whatever value was
obtained prior to the timeout if no delimiter was received. The return
value will consist of whatever values were collected; if no digits were
received, the return will be zero. Arduino 1.0 does not have a way to
determine if a parse method has timed out, but this capability is planned
for a future release.

See Also

Documentation for atoi can be found at: http://www.nongnu.org/avr-libc/user-manual/
group__avr__stdlib.html.

There are many online C/C++ reference pages covering these low-level functions, such
as http://www.cplusplus.com/reference/clibrary/cstdlib/atoi/ or http://www.cppreference
.com/wiki/string/c/atoi.

See Recipe 4.3 and Recipe 4.5 for more about using parseInt with Serial.

2.10 Structuring Your Code into Functional Blocks

Problem

You want to know how to add functions to a sketch, and the correct amount of func-
tionality to go into your functions. You also want to understand how to plan the overall
structure of the sketch.

Solution

Functions are used to organize the actions performed by your sketch into functional
blocks. Functions package functionality into well-defined inputs (information given to
a function) and outputs (information provided by a function) that make it easier to
structure, maintain, and reuse your code. You are already familiar with the two func-
tions that are in every Arduino sketch: setup and loop. You create a function by
declaring its return type (the information it provides), its name, and any optional pa-
rameters (values) that the function will receive when it is called.

2.10 Structuring Your Code into Functional Blocks | 45

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html
http://www.cplusplus.com/reference/clibrary/cstdlib/atoi/
http://www.cppreference.com/wiki/string/c/atoi
http://www.cppreference.com/wiki/string/c/atoi

The terms functions and methods are used to refer to well-defined blocks
of code that can be called as a single entity by other parts of a program.
s+ The C language refers to these as functions. Object-oriented languages
" such as C++ that expose functionality through classes tend to use the
term method. Arduino uses a mix of styles (the example sketches tend
to use C-like style, libraries tend to be written to expose C++ class
methods). In this book, the term function is usually used unless the code
is exposed through a class. Don’t worry; if that distinction is not clear
to you, treat both terms as the same.

Here is a simple function that just blinks an LED. It has no parameters and doesn’t
return anything (the void preceding the function indicates that nothing will be
returned):

// blink an LED once
void blink1()
{

digitalWrite(13,HIGH); // turn the LED on

delay(500); // wait 500 milliseconds
digitalWrite(13,LOW); // turn the LED off
delay(500); // wait 500 milliseconds

The following version has a parameter (the integer named count) that determines how
many times the LED will flash:

// blink an LED the number of times given in the count parameter
void blink2(int count)

while(count > 0) // repeat until count is no longer greater than zero

digitalWrite(13,HICH);

delay(500);

digitalWrite(13,LOW);

delay(500);

count = count -1; // decrement count

Experienced programmers will note that both functions could be blink
because the compiler will differentiate them by the type of values used
* 9lae for the parameter. This behavior is called function overloading. The Ar-
duino print discussed in Recipe 4.2 is a common example. Another
example of overloading is in the discussion of Recipe 4.6.

That version checks to see if the value of count is 0. If not, it blinks the LED and then
reduces the value of count by one. This will be repeated until count is no longer greater
than o.

46 | Chapter2: Making the Sketch Do Your Bidding

A parameter is sometimes referred to as an argument in some documen-

tation. For practical purposes, you can treat these terms as meaning the
N .

s same thing.

Here is an example sketch that takes a parameter and returns a value. The parameter
determines the length of the LED on and off times (in milliseconds). The function
continues to flash the LED until a button is pressed, and the number of times the LED
flashed is returned from the function:
/*
blink3 sketch
Demonstrates calling a function with a parameter and returning a value.

Uses the same wiring as the pull-up sketch from
Recipe 5.2

The LED flashes when the program starts and stops when a switch connected
to digital pin 2 is pressed.
The program prints the number of times that the LED flashes.

*/
const int ledPin = 13; // output pin for the LED
const int inputPin = 2; // input pin for the switch

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HICH); // use internal pull-up resistor (Recipe 5.2)
Serial.begin(9600);
}

void loop(){
Serial.println("Press and hold the switch to stop blinking");
int count = blink3(250); // blink the LED 250ms on and 250ms off
Serial.print("The number of times the switch blinked was ");
Serial.println(count);

// blink an LED using the given delay period
// return the number of times the LED flashed
int blink3(int period)
{
int result = 0;
int switchVal = HIGH; //with pull-ups, this will be high when switch is up

while(switchVal == HIGH) // repeat this loop until switch is pressed
// (it will go low when pressed)
{

digitalWrite(13,HICH);

delay(period);

digitalWrite(13,LO0W);

delay(period);

result = result + 1; // increment the count

2.10 Structuring Your Code into Functional Blocks | 47

switchval = digitalRead(inputPin); // read input value

// here when switchVal is no longer HICGH because the switch is pressed
return result; // this value will be returned

}

Discussion

The code in this recipe’s Solution illustrates the three forms of function call that you
will come across. blink1 has no parameter and no return value. Its form is:

void blink1()
{

// implementation code goes here...

blink2 takes a single parameter but does not return a value:

void blink2(int count)

// implementation code goes here...

blink3 has a single parameter and returns a value:
int blink3(int period)

// implementation code goes here...

}

The data type that precedes the function name indicates the return type (or no return
type if void). When declaring the function (writing out the code that defines the function
and its action), you do not put a semicolon following the parenthesis at the end. When
you use (call) the function, you do need a semicolon at the end of the line that calls the
function.

Most of the functions you come across will be some variation on these forms. For
example, here is a function that takes a parameter and returns a value:

int sensorPercent(int pin)

{

int percent;

int val = analogRead(pin); // read the sensor (ranges from 0 to 1023)
percent = map(val,0,1023,0,100); // percent will range from 0 to 100.
return percent;

}

The function name is sensorPercent. It is given an analog pin number to read and
returns the value as a percent (see Recipe 5.7 for more on analogRead and map). The
int in front of the declaration tells the compiler (and reminds the programmer) that
the function will return an integer. When creating functions, choose the return type
appropriate to the action the function performs. This function returns an integer value
from 0 to 100, so a return type of int is appropriate.

48 | Chapter2: Making the Sketch Do Your Bidding

It is recommended that you give your functions meaningful names, and

it is a common practice to combine words by capitalizing the first letter

W of each word, except for the first word. Use whatever style you prefer,

" but it helps others who read your code if you keep your naming style
consistent.

sensorPercent has a parameter called pin (when the function is called, pin is given the
value that is passed to the function).

The body of the function (the code within the brackets) performs the action you want—
here it reads a value from an analog input pin and maps it to a percentage. In the
preceding example, the percentage is temporarily held in a variable called percent. The
following statement causes the value held in the temporary variable percent to be re-
turned to the calling application:

return percent;

The same functionality can be achieved without using the percent temporary variable:

int sensorPercent(int pin)

{
int val = analogRead(pin); // read the sensor (ranges from 0 to 1023)
return map(val,0,1023,0,100); // percent will ranges from 0 to 100.

}

Here is how the function can be called:

// print the percent value of 6 analog pins
for(int sensorPin = 0; sensorPin < 6; sensorPin++)

{

Serial.print("Percent of sensor on pin ");
Serial.print(sensorPin);

Serial.print(" is ");

int val = sensorPercent(sensorPin);
Serial.print(val);

}

See Also

The Arduino function reference page: http://www.arduino.cc/en/Reference/FunctionDe
claration

2.11 Returning More Than One Value from a Function

Problem

You want to return two or more values from a function. Recipe 2.10 provided examples
for the most common form of a function, one that returns just one value or none at all.
But sometimes you need to modify or return more than one value.

2.11 Returning More Than One Value from a Function | 49

http://www.arduino.cc/en/Reference/FunctionDeclaration
http://www.arduino.cc/en/Reference/FunctionDeclaration

Solution

There are various ways to solve this. The easiest to understand is to have the function
change some global variables and not actually return anything from the function:
/*
swap sketch
demonstrates changing two values using global variables

*/

int x; // x and y are global variables
int y;

void setup() {
Serial.begin(9600);

void loop(){
x = random(10); // pick some random numbers
y = random(10);

Serial.print("The value of x and y before swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap();

Serial.print("The value of x and y after swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();
delay(1000);

// swap the two global values
void swap()

int temp;
temp = x;

X =y;
y = temp;

The swap function changes two values by using global variables. Global variables are
easy to understand (global variables are values that are accessible everywhere and any-
thing can change them), but they are avoided by experienced programmers because it’s
easy to inadvertently modify the value of a variable or to have a function stop working
because you changed the name or type of a global variable elsewhere in the sketch.

A safer and more elegant solution is to pass references to the values you want to change
and let the function use the references to modify the values. This is done as follows:
/*
functionReferences sketch
demonstrates returning more than one value by passing references

*/

50 | Chapter2: Making the Sketch Do Your Bidding

void setup() {
Serial.begin(9600);

void loop(){
int x = random(10); // pick some random numbers
int y = random(10);

Serial.print("The value of x and y before swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap(x,y);

Serial.print("The value of x and y after swapping are: ");
Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

delay(1000);
}

// swap the two given values
void swap(int 8valuei, int &value2)

int temp;

temp = valuel;
valuel = value2;
value2 = temp;

}

Discussion

The swap function is similar to the functions with parameters described in Rec-
ipe 2.10, but the ampersand (&) symbol indicates that the parameters are references.
This means changes in values within the function will also change the value of the
variable that is given when the function is called. You can see how this works by first
running the code in this recipe’s Solution and verifying that the parameters are swap-
ped. Then modify the code by removing the two ampersands in the function definition.

The changed line should look like this:

void swap(int value1, int value2)

Running the code shows that the values are not swapped—changes made within the
function are local to the function and are lost when the function returns.

N

If you are using Arduino release 21 or earlier, you will need to create a
function declaration to inform the compiler that your function is using
W references. The sketch for this recipe in the download for the first edition
of this book shows how to create the function declaration:

// functions with references must be declared before use
// The declaration goes at the top, before your setup and loop code

2.11 Returning More Than One Value from a Function | 51

// note the semicolon at the end of the declaration
void swap(int &valuel, int &value2);

A function declaration is a prototype—a specification of the name, the
types of values that may be passed to the function, and the function’s
return type. The Arduino build process usually creates the declarations
for you under the covers. But when you use nonstandard (for Arduino
21 and earlier, anyhow) syntax, the build process will not create the
declaration and you need to add it to your code yourself, as done with
the line just before setup.

A function definition is the function header and the function body. The
function header is similar to the declaration except it does not have a
semicolon at the end. The function body is the code within the brackets
that is run to perform some action when the function is called.

2.12 Taking Actions Based on Conditions

Problem

You want to execute a block of code only if a particular condition is true. For example,
you may want to light an LED if a switch is pressed or if an analog value is greater than
some threshold.

Solution

The following code uses the wiring shown in Recipe 5.1:

/*
Pushbutton sketch
a switch connected to digital pin 2 lights the LED on pin 13

*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)
void setup() {
pinMode(ledPin, OUTPUT); // declare LED pin as output
pinMode(inputPin, INPUT); // declare pushbutton pin as input

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HICH

digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed

52 | Chapter2: Making the Sketch Do Your Bidding

Discussion

The if statement is used to test the value of digitalRead. An if statement must have a
test within the parentheses that can only be true or false. In the example in this recipe’s
Solution, it’s val == HIGH, and the code block following the if statement is only exe-
cuted if the expression is true. A code block consists of all code within the brackets (or
if you don’t use brackets, the block is just the next executable statement terminated by
a semicolon).

If you want to do one thing if a statement is true and another if it is false, use the
if...else statement:
/*
Pushbutton sketch
a switch connected to pin 2 lights the LED on pin 13

*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)
void setup() {
pinMode(ledPin, OUTPUT); // declare LED pin as output
pinMode(inputPin, INPUT); // declare pushbutton pin as input

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HIGH

// do this if val is HIGH
digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed

else

// else do this if val is not HIGH
digitalWrite(ledPin, LOW); // turn LED off

}
See Also

See the discussion on Boolean types in Recipe 2.2.
2.13 Repeating a Sequence of Statements

Problem

You want to repeat a block of statements while an expression is true.

2.13 Repeating a Sequence of Statements | 53

Solution

A while loop repeats one or more instructions while an expression is true:

/*
* Repeat

* blinks while a condition is true

*/

const int ledPin = 13; // digital pin the LED is connected to

const int sensorPin = 0; // analog input 0
void setup()

Serial.begin(9600);
pinMode(ledPin,OUTPUT); // enable LED pin as output

void loop()
while(analogRead(sensorPin) > 100)

blink(); // call a function to turn an LED on and off
Serial.print(".");

Serial.println(analogRead(sensorPin)); // this is not executed until after
// the while loop finishes!!!
}

void blink()

digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

This code will execute the statements in the block within the brackets, {}, while the
value from analogRead is greater than 100. This could be used to flash an LED as an
alarm while some value exceeded a threshold. The LED is off when the sensor value is
100 or less; it flashes continuously when the value is greater than 100.

aa
: The {} symbols that define a block of code are given various names,

including brackets, curly braces, and braces. This book refers to them
% as brackets.

as
(R

Discussion

Brackets define the extent of the code block to be executed in a loop. If brackets are
not used, only the first line of code will be repeated in the loop:

54 | Chapter2: Making the Sketch Do Your Bidding

while(analogRead(sensorPin) > 100)
blink(); // line immediately following the loop expression is executed

non

Serial.print("."); // this is not executed until after the while loop finishes!!!

W

Loops without brackets can behave unexpectedly if you have more than
one line of code.

The do. . .while loop is similar to the while loop, but the instructions in the code block
are executed before the condition is checked. Use this form when you must have the
code executed at least once, even if the expression is false:

do
blink(); // call a function to turn an LED on and off

while (analogRead(sensorPin) > 100);

The preceding code will flash the LED at least once and will keep flashing as long as
the value read from a sensor is greater than 100. If the value is not greater than 100, the
LED will only flash once. This code could be used in a battery-charging circuit, if it
were called once every 10 seconds or so: a single flash shows that the circuit is active,
whereas continuous flashing indicates the battery is charged.

Only the code within a while or do loop will run until the conditions

‘&’@ permit exit. If your sketch needs to break out of a loop in response to
some other condition such as a timeout, sensor state, or other input,
you can use break:

while(analogRead(sensorPin) > 100)
blink();

if(Serial.available())
break; // any serial input breaks out of the while loop

See Also
Chapters 4 and 5

2.14 Repeating Statements with a Counter

Problem

You want to repeat one or more statements a certain number of times. The for loop is
similar to the while loop, but you have more control over the starting and ending
conditions.

2.14 Repeating Statements with a Counter | 55

Solution

This sketch counts from zero to three by printing the value of the variable i in a for loop:
/*
ForLoop sketch
demonstrates for loop

*/

void setup() {
Serial.begin(9600);}

void loop(){
Serial.printIn("for(int i=0; i < 4; i++)");
for(int i=0; i < 4; i++)

Serial.println(i);

}

The Serial Monitor output from this is as follows (it will be displayed over and over):
for(int i=0; i < 4; i++)
0

1
2
3

Discussion

A for loop consists of three parts: initialization, conditional test, and iteration (a state-
ment that is executed at the end of every pass through the loop). Each part is separated
by a semicolon. In the code in this recipe’s Solution, int i=0; initializes the variable
ito0;1 < 4; tests the variable to see if it’s less than 4; and i++ increments i.

A for loop can use an existing variable, or it can create a variable for exclusive use inside
the loop. This version uses the value of the variable j created earlier in the sketch:

int j;

Serial.println("for(j=0; j < 4; j++)");

for(j=0; j < 4; j++)

Serial.println(j);
}

This is almost the same as the earlier example, but it does not have the int keyword in
the initialization part because the variable j was already defined. The output of this
version is similar to the output of the earlier version:

for(j=0; i < 4; i++)
0

1
2
3

56 | Chapter2: Making the Sketch Do Your Bidding

You can leave out the initialization part completely if you want the loop to use the value
of a variable defined earlier. This code starts the loop with j equal to 1:

int j = 1;

Serial.println("for(; j < 4; j++)");
for(; j < 4; j++)

{

Serial.println(j);
}

The preceding code prints the following;:

for(; j < 4; j++)
1
2
3

You control when the loop stops in the conditional test. The previous examples test
whether the loop variable is less than 4 and will terminate when the condition is no
longer true.

W

If your loop variable starts at 0 and you want it to repeat four times,
your conditional statement should test for a value less than 4. The loop
W' repeats while the condition is true and there are four values that are less
" than 4 with a loop starting at 0.

The following code tests if the value of the loop variable is less than or equal to 4. It
will print the digits from 0 to 4:

Serial.println("for(int i=0; i <= 4; i++)");
for(int i=0; i <= 4; i++)

Serial.println(i);
}
The third part of a for loop is the iterator statement that gets executed at the end of
each pass through the loop. This can be any valid C/C++ statement. The following
increases the value of i by two on each pass:

Serial.println("for(int i=0; i < 4; i+= 2)");
for(int i=0; i < 4; i+=2)

Serial.println(i);

}
That expression only prints the values 0 and 2.
The iterator expression can be used to cause the loop to count from high to low, in this
case from 3 to O:

Serial.println("for(int i=3; i > = 0 ; i--)");
for(int i=3; i »= 0 ; i--)

{

2.14 Repeating Statements with a Counter | 57

Serial.println(i);

Like the other parts of a for loop, the iterator expression can be left blank (you must
always have the two semicolons separating the three parts even if they are blank).

This version only increments i when an input pin is high. The for loop does not change
the value of i; it is only changed by the if statement after Serial.print—you’ll need
to define inPin and set it to INPUT with pinMode():

Serial.println("for(int i=0; i < 4;)");
for(int i=0; i < 4;)
{
Serial.println(i);
if(digitalRead(inPin) == HIGH) {
i++; // only increment the value if the input is high

}
}

See Also

Arduino reference for the for statement: http://www.arduino.cc/en/Reference/For

2.15 Breaking Out of Loops

Problem

You want to terminate a loop early based on some condition you are testing.

Solution

Use the following code:

while(analogRead(sensorPin) > 100)
if(digitalRead(switchPin) == HIGH)
break; //exit the loop if the switch is pressed

flashLED(); // call a function to turn an LED on and off
}

Discussion

This code is similar to the one using while loops, but it uses the break statement to exit
the loop if a digital pin goes high. For example, if a switch is connected on the pin as
shown in Recipe 5.1, the loop will exit and the LED will stop flashing even if the con-
dition in the while loop is true.

58 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/For

See Also

Arduino reference for the break statement: http://www.arduino.cc/en/Reference/Break

2.16 Taking a Variety of Actions Based on a Single Variable

Problem

You need to do different things depending on some value. You could use multiple if
and else if statements, but the code soon gets complex and difficult to understand or
modify. Additionally, you may want to test for a range of values.

Solution

The switch statement provides for selection of a number of alternatives. It is function-
ally similar to multiple if/else if statements but is more concise:
/*
SwitchCase sketch
example showing switch statement by switching on chars from the serial port

*
*
*
* sending the character 1 blinks the LED once, sending 2 blinks twice
* sending + turns the LED on, sending - turns it off

* any other character prints a message to the Serial Monitor

*/

const int ledPin = 13; // the pin the LED is connected to

void setup()

Serial.begin(9600); // Initialize serial port to send and
// receive at 9600 baud
pinMode(ledPin, OUTPUT);

void loop()
{

if (Serial.available()) // Check to see if at least one
// character is available
{

char ch = Serial.read();
switch(ch)

case '1':
blink();
break;
case '2':
blink();
blink();
break;
case '+':
digitalWrite(ledPin,HICH);
break;

2.16 Taking a Variety of Actions Based on a Single Variable | 59

http://www.arduino.cc/en/Reference/Break

case '-':
digitalWrite(ledPin,LOW);
break;
default :
Serial.print(ch);
Serial.println(" was received but not expected");
break;

}
}
}

void blink()

digitalWrite(ledPin,HICH);
delay(500);
digitalWrite(ledPin,LOW);
delay(500);

Discussion

The switch statement evaluates the variable ch received from the serial port and
branches to the label that matches its value. The labels must be numeric constants (you
can use strings in a case statement) and no two labels can have the same value. If you
don’t have a break statement following each expression, the execution will fall
through into the statement:

case '1':
blink(); // no break statement before the next label
case '2':
blink(); // case '1' will continue here
blink();
break; // break statement will exit the switch expression

If the break statement at the end of case '1': was removed (as shown in the preceding
code), when ch is equal to the character 1 the blink function will be called three times.
Accidentally forgetting the break is a common mistake. Intentionally leaving out the
break is sometimes handy; it can be confusing to others reading your code, so it’s a
good practice to clearly indicate your intentions with comments in the code.

If your switch statement is misbehaving, check to ensure that you have
not forgotten the break statements.

The default: label is used to catch values that don’t match any of the case labels. If
there is no default label, the switch expression will not do anything if there is no match.

60 | Chapter2: Making the Sketch Do Your Bidding

See Also

Arduino reference for the switch and case statements: hitp://www.arduino.cc/en/Refer
ence/SwitchCase

2.17 Comparing Character and Numeric Values

Problem

You want to determine the relationship between values.
Solution
Compare integer values using the relational operators shown in Table 2-3.

Table 2-3. Relational and equality operators

Operator Test for Example

== Equal to 2 == 3 // evaluates to false
1= Not equal to 2 1= 3 // evaluates to true
> Greater than 2 > 3 // evaluates to false
< Less than 2 < 3 // evaluates to true
>= Greaterthanorequalto 2 >= 3 // evaluates to false
<= Less than or equal to 2 <= 3 // evaluates to true

The following sketch demonstrates the results of using the comparison operators:
/*
* RelationalExpressions sketch
* demonstrates comparing values

*/

int i = 1; // some values to start with
int j = 2;

void setup() {
Serial.begin(9600);

void loop(){
Serial.print("i = ");
Serial.print(i);
Serial.print(" and j = ");
Serial.println(j);

if(i < j)
Serial.println(" i is less than j");
if(i <= j)
Serial.println(" i is less than or equal to j");

2.17 Comparing Character and Numeric Values | 61

http://www.arduino.cc/en/Reference/SwitchCase
http://www.arduino.cc/en/Reference/SwitchCase

if(i 1= j)
Serial.println(" i is not equal to j");
if(i == j)
Serial.println(" i is equal to j");
if(i >= j)
Serial.println(" i is greater than or equal to j");
if(i > j)
Serial.println(" i is greater than j");

Serial.println();

i=

i+ 1;

if(i>j+1)
delay(10000);

Here is the output:

iis
iis
iis

and j = 2
less than j
less than or
not equal to

and j = 2
less than or
equal to j
greater than

and j = 2

not equal to
greater than
greater than

Discussion

Note that the equality operator is the double equals sign, ==. One of the most common
programming mistakes is to confuse this with the assignment operator, which uses a
single equals sign.

// long delay after i is no longer close to j

equal to j

J

equal to j

or equal to j
j

or equal to j
j

The following expression will compare the value of i to 3. The programmer intended

this:

if(i == 3) // test if i equals 3

But he put this in the sketch:

if(i = 3) // single equals sign used by mistake!!!!

This will always return true, because i will be set to 3, so they will be equal when
compared.

62 | Chapter2: Making the Sketch Do Your Bidding

A tip to help avoid that trap when comparing variables to constants (fixed values) is to
put the constant on the left side of the expression:

if(3 = 1) // single equals sign used by mistake!!!!

The compiler will tell you about this error because it knows that you can’t assign a
different value to a constant.

\

W

The error message is the somewhat unfriendly “value required as left
operand of assignment.” If you see this message, the compiler is telling
Wls" you that you are trying to assign a value to something that cannot be
" changed.

See Also

Arduino reference for conditional and comparison operators: http://www.arduino.cc/
en/Reference/lf

2.18 Comparing Strings

Problem

You want to see if two character strings are identical.

Solution
There is a function to compare strings, called stremp (short for string compare). Here
is a fragment showing its use:

char stringi[] = "left";
char string2[] = "right";

if(stremp(stringl, string2) == 0)
Serial.print("strings are equal)

Discussion

stremp returns the value 0 if the strings are equal and a value greater than zero if the
first character that does not match has a greater value in the first string than in the
second. It returns a value less than zero if the first nonmatching character in the first
string is less than in the second. Usually you only want to know if they are equal, and
although the test for zero may seem unintuitive at first, you’ll soon get used to it.

2.18 Comparing Strings | 63

http://www.arduino.cc/en/Reference/If
http://www.arduino.cc/en/Reference/If

Bear in mind that strings of unequal length will not be evaluated as equal even if the
shorter string is contained in the longer one. So:

stremp("left", "leftcenter") == 0) // this will evaluate to false
You can compare strings up to a given number of characters by using the strncmp func-

tion. You give strncmp the maximum number of characters to compare and it will stop
comparing after that many characters:

strncmp("left"”, "leftcenter", 4) == 0) // this will evaluate to true

Unlike character strings, Arduino Strings can be directly compared as follows:

String stringOne = String("this");

if (stringOne == "this")
Serial.println("this will be true");

if (stringOne == "that")
Serial.println("this will be false");

A tutorial on Arduino String comparison is at hitp://arduino.cc/en/Tutorial/StringCom
parisonOperators.
See Also

More information on stremp is available at http://www.cplusplus.com/reference/clibrary/
cstring/strempl/.

See Recipe 2.5 for an introduction to the Arduino String.

2.19 Performing Logical Comparisons

Problem

You want to evaluate the logical relationship between two or more expressions. For
example, you want to take a different action depending on the conditions of an if
statement.

Solution

Use the logical operators as outlined in Table 2-4.

Table 2-4. Logical operators

Symbol Function Comments
&& Logical And Evaluates as true if the conditions on both sides of the && operator are true
[Logical Or Evaluates as true if the condition on at least one side of the | | operator is true

! Not Evaluates as true if the expression is false, and false if the expression is true

64 | Chapter2: Making the Sketch Do Your Bidding

http://arduino.cc/en/Tutorial/StringComparisonOperators
http://arduino.cc/en/Tutorial/StringComparisonOperators
http://www.cplusplus.com/reference/clibrary/cstring/strcmp/
http://www.cplusplus.com/reference/clibrary/cstring/strcmp/

Discussion

Logical operators return true or false values based on the logical relationship. The ex-
amples that follow assume you have sensors wired to digital pins 2 and 3 as discussed
in Chapter 5.

The logical And operator 8& will return true if both its two operands are true, and
false otherwise:

if(digitalRead(2) &3 digitalRead(3))
blink(); // blink of both pins are HIGH

The logical Or operator || will return true if either of its two operands are true, and
false if both operands are false:

if(digitalRead(2) || digitalRead(3))
blink(); // blink of either pins is HIGH

The Not operator ! has only one operand, whose value is inverted—it results in
false if its operand is true and true if its operand is false:

if(!digitalRead(2))
blink(); // blink of the pin is not HIGH

2.20 Performing Bitwise Operations

Problem

You want to set or clear certain bits in a value.
Solution
Use the bit operators as outlined in Table 2-5.

Table 2-5. Bit operators

Symbol Function Result Example
& Bitwise And Sets bits in each place to 1if both bits are 1; otherwise, 3 & 1equals1
bits are set to 0.

(11 & 01equalso1)
| Bitwise Or Sets bits in each place to 1if either bit s 1. 3 | 1equals3

(11 | o1equals11)

A Bitwise Exclusive Sets bits in each place to 1 only if one of the two bits 3 " 1equals2

Or is 1. (11 ~ 01 equals 10)

~ Bitwise Negation Inverts the value of each bit. The result dependsonthe ~ ~1 equals 254

number of bits in the data type. (00000001 equals 11111110)

2.20 Performing Bitwise Operations | 65

Here is a sketch that demonstrates the example values shown in Table 2-5:
/*
* bits sketch
* demonstrates bitwise operators

*/

void setup() {
Serial.begin(9600);

void loop(){
Serial.print("3 & 1 equals "); // bitwise And 3 and 1
Serial.print(3 & 1); // print the result
Serial.print(" decimal, or in binary: ");
Serial.println(3 & 1 , BIN); // print the binary representation of the result

Serial.print("3 | 1 equals "); // bitwise Or 3 and 1

Serial.print(3 | 1);

Serial.print(" decimal, or in binary: ");

Serial.println(3 | 1 , BIN); // print the binary representation of the result

Serial.print("3 ~ 1 equals "); // bitwise exclusive or 3 and 1

Serial.print(3 ~ 1);

Serial.print(" decimal, or in binary: ");

Serial.println(3 ~ 1, BIN); // print the binary representation of the result

byte byteval = 1;
int intval = 1;

byteval = ~byteval; // do the bitwise negate
intVal = ~intVal;

Serial.print("~byteval (1) equals "); // bitwise negate an 8 bit value
Serial.println(byteVal, BIN); // print the binary representation of the result
Serial.print("~intVal (1) equals "); // bitwise negate a 16 bit value
Serial.println(intval, BIN); // print the binary representation of the result

delay(10000);
}

This is what is displayed on the Serial Monitor:

3 & 1 equals 1 decimal, or in binary: 1

3 | 1 equals 3 decimal, or in binary: 11

3 " 1 equals 2 decimal, or in binary: 10

~bytevVal (1) equals 11111110

~intval (1) equals 11111111111111111111111111111110

Discussion

Bitwise operators are used to set or test bits. When you “And” or “Or” two values, the
operator works on each individual bit. It is easier to see how this works by looking at
the binary representation of the values.

66 | Chapter2: Making the Sketch Do Your Bidding

Decimal 3 is binary 00000011, and decimal 1 is 00000001. Bitwise And operates on
each bit. The rightmost bits are both 1, so the result of And-ing these is 1. Moving to
the left, the next bits are 1 and 0; And-ing these results in 0. All the remaining bits are
0, so the bitwise result of these will be 0. In other words, for each bit position where
there is a 1 in both places, the result will have a 1; otherwise, it will have a 0. So, 11 &
01 equals 1.

Tables 2-6, 2-7, and 2-8 should help to clarify the bitwise And, Or, and Exclusive Or
values.

Table 2-6. Bitwise And
Bit 1 Bit 2 Bit 1 and Bit 2

0 0 0
0 1 0
1 0 0

1 1 1

Table 2-7. Bitwise Or

Bit 1 Bit2 Bit 1 or Bit 2
0 0 0
0 1 1
1 0 1
1 1 1

Table 2-8. Bitwise Exclusive Or
Bit 1 Bit 2 Bit 1 A Bit2
0 0 0
0 1 1
1 0 1
1 1 0

All the bitwise expressions operate on two values, except for the negation operator.
This simply flips each bit, so 0 becomes 1 and 1 becomes 0. In the example, the byte
(8-bit) value 00000001 becomes 11111110. The int value has 16 bits, so when each is
flipped, the result is 15 ones followed by a single zero.

See Also

Arduino reference for the bitwise And, Or, and Exclusive Or operators: http://www
.arduino.cc/en/Reference/Bitwise

2.20 Performing Bitwise Operations | 67

http://www.arduino.cc/en/Reference/Bitwise
http://www.arduino.cc/en/Reference/Bitwise

2.21 Combining Operations and Assignment

Problem

You want to understand and use compound operators. It is not uncommon to see
published code that uses expressions that do more than one thing in a single statement.
You want to understand a += b, a >>= b, and a &= b.

Solution

Table 2-9 shows the compound assignment operators and their equivalent full
expression.

Table 2-9. Compound operators

Operator Example Equivalent expression
4= value += 5; value = value + 5; // add 5 to value

-= value -= 4; value = value - 4; // subtract 4 from value

*= value *= 3; value = value * 3; // multiply value by 3

/= value /= 2; value = value / 2; // divide value by 2

>>= value >>= 2; value = value >> 2; // shift value right two places

<= value <<= 2; value = value << 2; // shift value left two places

&= mask &= 2; mask = mask & 2; // binary-and mask with 2

|= mask |= 2; mask = mask | 2; // binary-or mask with 2
Discussion

These compound statements are no more efficient at runtime than the equivalent full
expression, and if you are new to programming, using the full expression is clearer.
Experienced coders often use the shorter form, so it is helpful to be able to recognize
the expressions when you run across them.

See Also

See http://www.arduino.cc/en/Reference/HomePage for an index to the reference pages
for compound operators.

68 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/HomePage

CHAPTER 3
Using Mathematical Operators

3.0 Introduction

Almost every sketch uses mathematical operators to manipulate the value of variables.
This chapter provides a brief overview of the most common mathematical operators.
As the preceding chapter is, this summary is primarily for nonprogrammers or pro-
grammers who are not familiar with C or C++. For more details, see one of the
C reference books mentioned in the Preface.

3.1 Adding, Subtracting, Multiplying, and Dividing

Problem

You want to perform simple math on values in your sketch. You want to control the
order in which the operations are performed and you may need to handle different
variable types.

Solution

Use the following code:

int myValue;

myValue = 1 + 2; // addition

myValue = 3 - 2; // subtraction

myValue = 3 * 2; // multiplication

myValue = 3 / 2; // division (the result is 1)

Discussion

Addition, subtraction, and multiplication for integers work much as you expect.

69

Make sure your result will not exceed the maximum size of the desti-
nation variable. See Recipe 2.2.

Integer division truncates the fractional remainder in the division example shown in
this recipe’s Solution; myValue will equal 1 after the division (see Recipe 2.3 if your
application requires fractional results):

int value = 1+ 2 * 3 + 4;

Compound statements, such as the preceding statement, may appear ambiguous, but
the precedence (order) of every operator is well defined. Multiplication and division
have a higher precedence than addition and subtraction, so the result will be 11. It’s
advisable to use brackets in your code to make the desired calculation precedence clear.
int value = 1 + (2 * 3) + 4; produces the same result but is easier to read.

Use parentheses if you need to alter the precedence, as in this example:
int value = ((1 + 2) * 3) + 4;

The result will be 13. The expression in the inner parentheses is calculated first, so 1
gets added to 2, this then gets multiplied by 3, and finally is added to 4, yielding 13.

See Also
Recipe 2.2; Recipe 2.3

3.2 Incrementing and Decrementing Values

Problem

You want to increase or decrease the value of a variable.

Solution

Use the following code:

int myValue = 0;

myValue = myvalue + 1; // this adds one to the variable myValue
myValue += 1; // this does the same as the above

myValue = myvalue - 1; // this subtracts one from the variable myValue
myValue -= 1; // this does the same as the above

myValue = myvalue + 5; // this adds five to the variable myValue
myValue += 5; // this does the same as the above

70 | Chapter3: Using Mathematical Operators

Discussion

Increasing and decreasing the values of variables is one of the most common program-
ming tasks, and the Arduino board has operators to make this easy. Increasing a value
by one is called incrementing, and decreasing it by one is called decrementing. The
longhand way to do this is as follows:

myValue = myvalue + 1; // this adds one to the variable myValue

But you can also combine the increment and decrement operators with the assign op-
erator, like this:

myValue += 1; // this does the same as the above

See Also
Recipe 3.1

3.3 Finding the Remainder After Dividing Two Values

Problem

You want to find the remainder after you divide two values.

Solution

Use the % symbol (the modulus operator) to get the remainder:

20 % 10; // get the modulus(remainder) of 20 divided by 10
21 % 10; // get the modulus(remainder) of 21 divided by 10

int myValueO
int myValue1

myValueo equals 0 (20 divided by 10 has a remainder of 0). myValuel equals 1 (21 divided
by 10 has a remainder of 1).

Discussion

The modulus operator is surprisingly useful, particularly when you want to see if a
value is a multiple of a number. For example, the code in this recipe’s Solution can be
enhanced to detect when a value is a multiple of 10:

int myValue;

//... code here to set the value of myValue
if (myValue % 10 == 0)

Serial.println("The value is a multiple of 10");

}

The preceding code takes the modulus of the myValue variable and compares the result
to zero (see Recipe 2.17). If the result is zero, a message is printed saying the value is a
multiple of 10.

3.3 Finding the Remainder After Dividing Two Values | 71

Here is a similar example, but by using 2 with the modulus operator, the result can be
used to check if a value is odd or even:
int myValue;

//... code here to set the value of myValue
if (myValue % 2 == 0)

Serial.println("The value is even");

}

else

{
Serial.println("The value is odd");

}

This example calculates the hour on a 24-hour clock for any given number of hours
offset:

void printOffsetHour(int hourNow, int offsetHours)

{
Serial.println((hourNow + offsetHours) % 24);

}
void printOffsetHour(int hourNow, int offsetHours)
{

Serial.println((hourNow + offsetHours) % 24);
}

See Also

Arduino reference for % (the modulus operator): hitp://www.arduino.cc/en/Reference/
Modulo

3.4 Determining the Absolute Value

Problem

You want to get the absolute value of a number.

Solution

abs(x) computes the absolute value of x. The following example takes the absolute
value of the difference between readings on two analog input ports (see Chapter 5 for
more on analogRead()):
int x
int y

analogRead(0);
analogRead(1);

if (abs(x-y) > 10)

Serial.println("The analog values differ by more than 10");

72 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Modulo
http://www.arduino.cc/en/Reference/Modulo

Discussion

abs(x-y); returns the absolute value of the difference between x and y. It is used for
integer (and long integer) values. To return the absolute value of floating-point values,
see Recipe 2.3.

See Also

Arduino reference for abs: http://'www.arduino.cc/en/Reference/Abs

3.5 Constraining a Number to a Range of Values

Problem

You want to ensure that a value is always within some lower and upper limit.

Solution

constrain(x, min, max) returns a value that is within the bounds of min and max:

myConstrainedValue = constrain(myValue, 100, 200);

Discussion

myConstrainedValue is set to a value that will always be greater than or equal to 100 and
less than or equal to 200. If myValue is less than 100, the result will be 100; if it is more
than 200, it will be set to 200.

Table 3-1 shows some example output values using a min of 100 and a max of 200.

Table 3-1. Output from constrain with min = 100 and max = 200

myValue (the input value) constrain(myValue, 100, 200)
9 100
100 100
150 150
200 200
201 200
See Also
Recipe 3.6

3.5 Constraining a Number to a Range of Values | 73

http://www.arduino.cc/en/Reference/Abs

3.6 Finding the Minimum or Maximum of Some Values

Problem

You want to find the minimum or maximum of two or more values.

Solution

min(x,y) returns the smaller of two numbers. max(x,y) returns the larger of two
numbers:

myValue = analogRead(0);
myMinValue = min(myValue, 200); // myMinValue will be the smaller of
// myval or 200

myMaxValue = max(myValue, 100); // myMaxValue will be the larger of
// myval or 100

Discussion

Table 3-2 shows some example output values using a min of 200. The table shows that
the output is the same as the input (myValue) until the value becomes greater than 200.

Table 3-2. Output from min(myValue, 200)

myValue (theinputvalue) min(myValue, 200)

99 99

100 100
150 150
200 200
201 200

Table 3-3 shows the output using a max of 100. The table shows that the output is the
same as the input (myValue) when the value is greater than or equal to 100.

Table 3-3. Output from max(myValue, 100)

myValue (theinputvalue) max(myValue, 100)

99 100
100 100
150 150
200 200
201 201

74 | Chapter3: Using Mathematical Operators

Use min when you want to limit the upper bound. That may be counterintuitive, but
by returning the smaller of the input value and the minimum value, the output from
min will never be higher than the minimum value (200 in the example).

Similarly, use max to limit the lower bound. The output from max will never be lower
than the maximum value (100 in the example).

If you want to find the min or max value from more than two values, you can cascade
the values as follows:

// myMinvalue will be the smaller of the three analog readings:
int myMinValue = min(analogRead(0), min(analogRead(1), analogRead(2)));

In this example, the minimum value is found for analog ports 1 and 2, and then the
minimum of that and port 0. This can be extended for as many items as you need, but
take care to position the parentheses correctly. The following example gets the maxi-
mum of four values:

int myMaxValue = max(analogRead(0), max(analogRead(1), max(analogRead(2),
analogRead(3))));

See Also
Recipe 3.5

3.7 Raising a Number to a Power

Problem

You want to raise a number to a power.

Solution

pow(x, y) returns the value of x raised to the power of y:

myValue = pow(3,2);

This calculates 32, so myValue will equal 9.

Discussion

The pow function can operate on integer or floating-point values and it returns the result
as a floating-point value:

Serial.print(pow(3,2)); // this prints 9.00

int z = pow(3,2);

Serial.println(z); // this prints 9
The first output is 9.00 and the second is 9; they are not exactly the same because the
first print displays the output as a floating-point number and the second treats the
value as an integer before printing, and therefore displays without the decimal point.

3.7 Raising a Number toa Power | 75

If you use the pow function, you may want to read Recipe 2.3 to understand the differ-
ence between these and integer values.

Here is an example of raising a number to a fractional power:

float s = pow(2, 1.0 / 12); // the twelfth root of two

The twelfth root of two is the same as 2 to the power of 0.083333. The resultant value,
s, is 1.05946 (this is the ratio of the frequency of two adjacent notes on a piano).

3.8 Taking the Square Root

Problem

You want to calculate the square root of a number.

Solution

The sqrt(x) function returns the square root of x:
Serial.print(sqrt(9)); // this prints 3.00

Discussion

The sqrt function returns a floating-point number (see the pow function discussed in
Recipe 3.7).

3.9 Rounding Floating-Point Numbers Up and Down

Problem

You want the next smallest or largest integer value of a floating-point number (floor
or ceil).

Solution

floor(x) returns the largest integral value that is not greater than x. ceil(x) returns the
smallest integral value that is not less than x.

Discussion

These functions are used for rounding floating-point numbers; use floor (x) to get the
largest integer that is not greater than x. Use ceil to get the smallest integer that is
greater than x.

Here is some example output using floor:

Serial.println(floor(1)); // this prints 1.00
Serial.println(floor(1.1)); // this prints 1.00

76 | Chapter3: Using Mathematical Operators

Serial.println(floor(0)); // this
Serial.println(floor(.1)); // this
Serial.println(floor(-1)); // this
Serial.println(floor(-1.1)); // this

Here is some example output using ceil:

Serial.println(ceil(1)); // this
Serial.println(ceil(1.1)); // this
Serial.println(ceil(o)); // this
Serial.println(ceil(.1)); // this
Serial.println(ceil(-1)); // this
Serial.println(ceil(-1.1)); // this

prints
prints
prints
prints

prints
prints
prints
prints
prints
prints

You can round to the nearest integer as follows:

if (floatvalue > 0.0)

result = floor(floatValue + 0.5);
else

result = ceil(num - 0.5);

W

P PR ONR

.00
.00
-1.
-2.

00
00

.00
.00
.00
.00
.00
.00

You can truncate a floating-point number by casting (converting) to an
int, but this does not round correctly. Negative numbers such as —1.9
.~ N .

o3, should round down to -2, but when cast to an int they are rounded up

" to—1. The same problem exists with positive numbers: 1.9 should round
up to 2 but will round down to 1. Use floor and ceil to get the correct

results.

3.10 Using Trigonometric Functions

Problem

You want to get the sine, cosine, or tangent of an angle given in radians or degrees.

Solution

sin(x) returns the sine of angle x. cos(x) returns the cosine of angle x. tan(x) returns

the tangent of angle x.

Discussion

Angles are specified in radians and the result is a floating-point number (see Rec-
ipe 2.3). The following example illustrates the trig functions:

float deg = 30; // angle in degrees
float rad = deg * PI / 180; // convert to radians

Serial.println(rad);

Serial.println (cos(rad)); // print the cosine

// print the radians
Serial.println (sin(rad)); // print the sine

3.10 Using Trigonometric Functions | 77

This converts the angle into radians and prints the sine and cosine. Here is the output
with annotation added:
0.52 30 degrees is 0.5235988 radians, print only shows two decimal places

0.50 sine of 30 degrees is .5000000, displayed here to two decimal places
0.87 cosine is .8660254, which rounds up to 0.87

Although the sketch calculates these values using the full precision of floating-point
numbers, the Serial.print routine shows the values of floating-point numbers to two
decimal places.

The conversion from radians to degrees and back again is textbook trigonometry. PI is
the familiar constant for 7 (3.14159265...). PI and 180 are both constants, and Arduino
provides some precalculated constants you can use to perform degree/radian
conversions:

rad = deg * DEG_TO RAD; // a way to convert degrees to radians
deg = rad * RAD _TO DEG; // a way to convert radians to degrees

Using deg * DEG_TO_RAD looks more efficient than deg * PI / 180, but it’s not, since
the Arduino compiler is smart enough to recognize that PI / 1801is a constant (the value
will never change), so it substitutes the result of dividing PI by 180, which happens to
be the same value as the constant DEG_TO_RAD (0.017453292519...). Use whichever ap-
proach you prefer.

See Also

Arduino references for sin (http://www.arduino.cc/en/Reference/Sin), cos (http://ardui
no.cc/en/Reference/Cos), and tan (http://arduino.cc/en/Reference/Tan)

3.11 Generating Random Numbers

Problem

You want to get a random number, either ranging from zero up to a specified maximum
or constrained between a minimum and maximum value you provide.

Solution

Use the random function to return a random number. Calling random with a single pa-
rameter sets the upper bound; the values returned will range from zero to one less than
the upper bound:

random(max) ; // returns a random number between 0 and max -1
Calling random with two parameters sets the lower and upper bounds; the values re-
turned will range from the lower bound (inclusive) to one less than the upper bound:

random(min, max); // returns a random number between min and max -1

78 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Sin
http://arduino.cc/en/Reference/Cos
http://arduino.cc/en/Reference/Cos
http://arduino.cc/en/Reference/Tan

Discussion

Although there appears to be no obvious pattern to the numbers returned, the values
are not truly random. Exactly the same sequence will repeat each time the sketch starts.
In many applications, this does not matter. But if you need a different sequence each
time your sketch starts, use the function randomSeed(seed) with a different seed value
each time (if you use the same seed value, you’ll get the same sequence). This function
starts the random number generator at some arbitrary place based on the seed param-
eter you pass:

randomSeed(1234); // change the starting sequence of random numbers.

Here is an example that uses the different forms of random number generation available
on Arduino:

// Random
// demonstrates generating random numbers

int randNumber;
void setup()
Serial.begin(9600);

// Print random numbers with no seed value
Serial.println("Print 20 random numbers between 0 and 9");
for(int i=0; i < 20; i++)

randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");

Serial.println();
Serial.println("Print 20 random numbers between 2 and 9");
for(int i=0; i < 20; i++)
{
randNumber = random(2,10);
Serial.print(randNumber);
Serial.print(" ");
}

// Print random numbers with the same seed value each time

randomSeed(1234);

Serial.println();

Serial.println("Print 20 random numbers between 0 and 9 after constant seed ");
for(int i=0; i < 20; i++)

randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");

}

// Print random numbers with a different seed value each time
randomSeed (analogRead(0)); // read from an analog port with nothing connected

3.11 Generating Random Numbers | 79

Serial.println();
Serial.println("Print 20 random numbers between 0 and 9 after floating seed ");
for(int i=0; i < 20; i++)

randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");
}
Serial.println();
Serial.println();
}

void loop()
{
}

Here is the output from this code:

Print 20 random numbers between 0 and
7938024839052273790
Print 20 random numbers between 2 and
9377275829342543575
Print 20 random numbers between 0 and
8287180365903431239
Print 20 random numbers between 0 and
0974477449160231591

after constant seed

after floating seed

PO PO ONY

If you press the reset button on your Arduino to restart the sketch, the first three lines
of random numbers will be unchanged. Only the last line changes each time the sketch
starts, because it sets the seed to a different value by reading it from an unconnected
analog input port as a seed to the randomSeed function. If you are using analog port 0
for something else, change the argument to analogRead to an unused analog port.

See Also

Arduino references for random (http://www.arduino.cc/en/Reference/Random) and
randomSeed (http://arduino.cc/en/Reference/RandomSeed)

3.12 Setting and Reading Bits

Problem

You want to read or set a particular bit in a numeric variable.

Solution
Use the following functions:

bitSet(x, bitPosition)
Sets (writes a 1 to) the given bitPosition of variable x

80 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Random
http://arduino.cc/en/Reference/RandomSeed

bitClear(x, bitPosition)
Clears (writes a 0 to) the given bitPosition of variable x

bitRead(x, bitPosition)
Returns the value (as 0 or 1) of the bit at the given bitPosition of variable x

bitWrite(x, bitPosition, value)
Sets the given value (as 0 or 1) of the bit at the given bitPosition of variable x

bit(bitPosition)
Returns the value of the given bit position: bit(0) is 1, bit(1) is 2, bit(2) is 4, and
so on

In all these functions, bitPosition 0 is the least significant (rightmost) bit.

Here is a sketch that uses these functions to manipulate the bits of an 8-bit variable
called flags:

// bitFunctions
// demonstrates using the bit functions

byte flags = 0; // these examples set, clear or read bits in a variable called flags.

// bitSet example
void setFlag(int flagNumber)

bitSet(flags, flagNumber);
}

// bitClear example
void clearFlag(int flagNumber)

bitClear(flags, flagNumber);
}

// bitPosition example
int getFlag(int flagNumber)
{

return bitRead(flags, flagNumber);
}

void setup()
{

Serial.begin(9600);

void loop()
{

showFlags();

setFlag(2); // set some flags;
setFlag(5);

showFlags();

clearFlag(2);

3.12 Setting and Reading Bits | 81

showFlags();
delay(10000); // wait a very long time
// reports flags that are set
void showFlags()
for(int flag=0; flag < 8; flag++)
if (getFlag(flag) == true)
Serial.print("* bit set for flag ");
else
Serial.print("bit clear for flag ");
Serial.println(flag);

Serial.println();
}

This code will print the following:

o

bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag

Nouvihs, WN R

bit clear for flag o
bit clear for flag 1
* bit set for flag 2
bit clear for flag 3
bit clear for flag 4
* bit set for flag 5
bit clear for flag 6
bit clear for flag 7

bit clear for flag o
bit clear for flag 1
bit clear for flag 2
bit clear for flag 3
bit clear for flag 4
* bit set for flag 5
bit clear for flag 6
bit clear for flag 7

Discussion

Reading and setting bits is a common task, and many of the Arduino libraries use this
functionality. One of the more common uses of bit operations is to efficiently store and
retrieve binary values (on/off, true/false, 1/0, high/low, etc.).

82 | Chapter3: Using Mathematical Operators

Arduino defines the constants true and HIGH as 1 and false and LOW as O.

The state of eight switches can be packed into a single 8-bit value instead of requiring
eight bytes or integers. The example in this recipe’s Solution shows how eight values
can be individually set or cleared in a single byte.

The term flag is a programming term for values that store the state of some aspect of a
program. In this sketch, the flag bits are read using bitRead, and they are set or cleared
using bitSet or bitClear. These functions take two parameters: the first is the value to
read or write (flags in this example), and the second is the bit position indicating where
the read or write should take place. Bit position 0 is the least significant (rightmost) bit;
position 1 is the second position from the right, and so on. So:

bitRead(2, 1); // returns 1 : 2 is binary 10 and bit in position 1 is 1
bitRead(4, 1); // returns 0 : 4 is binary 100 and bit in position 1 is 0

There is also a function called bit that returns the value of each bit position:

bit(0) is equal to 1;
bit(1) is equal to 2;
bit(2) is equal to 4;

bit(7) is equal to 128

See Also
Arduino references for bit and byte functions:

lowByte
http://www.arduino.cc/en/Reference/LowByte
highByte
http://arduino.cc/en/Reference/HighByte
bitRead
http://www.arduino.cc/en/Reference/BitRead
bitWrite
http://arduino.cc/en/Reference/BitWrite
bitSet
http://arduino.cc/en/Reference/BitSet
bitClear
http://arduino.cc/en/Reference/BitClear
bit
http://arduino.cc/en/Reference/Bit

3.12 Setting and Reading Bits | 83

http://www.arduino.cc/en/Reference/LowByte
http://arduino.cc/en/Reference/HighByte
http://www.arduino.cc/en/Reference/BitRead
http://arduino.cc/en/Reference/BitWrite
http://arduino.cc/en/Reference/BitSet
http://arduino.cc/en/Reference/BitClear
http://arduino.cc/en/Reference/Bit

3.13 Shifting Bits

Problem

You need to perform bit operations that shift bits left or right in a byte, int, or long.

Solution

Use the << (bit-shift left) and >> (bit-shift right) operators to shift the bits of a value.

Discussion

This fragment sets variable x equal to 6. It shifts the bits left by one and prints the new
value (12). Then that value is shifted right two places (and in this example becomes
equal to 3):

int x = 6;

int result = x << 1; // 6 shifted left 1 is 12

Serial.println(result);

int result = x >> 2; // 12 shifted right 2 is 3;
Serial.println(result);

Here is how this works: 6 shifted left one place equals 12, because the decimal number
61is 0110 in binary. When the digits are shifted left, the value becomes 1100 (decimal
12). Shifting 1100 right two places becomes 0011 (decimal 3). You may notice that
shifting a number left by n places is the same as multiplying the value by 2 raised to the
power of n. Shifting a number right by n places is the same as dividing the value by 2
raised to the power of n. In other words, the following pairs of expressions are the same:

<< 11is the same as x * 2.
<< 21is the same as x * 4.
<< 3isthe same as x * 8.
>> 1is the same asx / 2.
>> 2isthe same asx / 4.
>> 3isthe sameasx / 8.

X X X X X X

The Arduino controller chip can shift bits more efficiently than it can multiply and
divide, and you may come across code that uses the bit shift to multiply and divide:

int ¢ = (a << 1) + (b >> 2); //add (a times 2) plus (b divided by 4)

The expression (a << 1) + (b >> 2); does notlook much like (a * 2) + (b / 4);, but
both expressions do the same thing. Indeed, the Arduino compiler is smart enough to
recognize that multiplying an integer by a constant that is a power of two is identical
to a shift and will produce the same machine code as the version using shift. The source
code using arithmetic operators is easier for humans to read, so it is preferred when the
intent is to multiply and divide.

84 | Chapter3: Using Mathematical Operators

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

3.14 Extracting High and Low Bytes in an int or long

Problem

You want to extract the high byte or low byte of an integer; for example, when sending
integer values as bytes on a serial or other communication line.

Solution

Use lowByte(i) to get the least significant byte from an integer. Use highByte(i) to get
the most significant byte from an integer.

The following sketch converts an integer value into low and high bytes:

//ByteOperators

int intValue = 258; // 258 in hexadecimal notation is 0x102

void setup()

Serial.begin(9600);

void loop()
int loWord,hiWord;
byte loByte, hiByte;

hiByte
loByte

highByte(intValue);
lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(intValue,HEX);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

delay(10000); // wait a very long time

3.14 Extracting High and Low Bytesinanintorlong | 85

Discussion
The example sketch prints intValue followed by the low byte and high byte:

258 // the integer value to be converted
102 // the value in hexadecimal notation
2 // the low byte
1 // the high byte

To extract the byte values from a long, the 32-bit long value first gets broken into two
16-bit words that can then be converted into bytes as shown in the earlier code. At the
time of this writing, the standard Arduino library did not have a function to perform
this operation on a long, but you can add the following lines to your sketch to provide
this:

#define highWord(w) ((w) >> 16)
#tdefine lowWord(w) ((w) & oxffff)

These are macro expressions: hiWord performs a 16-bit shift operation to produce a 16-
bit value, and lowWord masks the lower 16 bits using the bitwise And operator (see
Recipe 2.20).

\

W

The number of bits in an int varies on different platforms. On Arduino
it is 16 bits, but in other environments it is 32 bits. The term word as
s used here refers to a 16-bit value.

This code converts the 32-bit hex value 0x1020304 to its 16-bit constituent high and
low values:

loword = lowWord(longValue);

hiword = highWord(longValue);

Serial.println(loword,DEC);
Serial.println(hiword,DEC);

This prints the following values:
772 // 772 is 0x0304 in hexadecimal
258 // 258 is 0x0102 in hexadecimal

Note that 772 in decimal is 0x0304 in hexadecimal, which is the low-order word (16
bits) of the longValue 0x1020304.You may recognize 258 from the first part of this recipe
as the value produced by combining a high byte of 1 and a low byte of 2 (0x0102 in
hexadecimal).

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

86 | Chapter3: Using Mathematical Operators

3.15 Forming an int or long from High and Low Bytes

Problem

You want to create a 16-bit (int) or 32-bit (long) integer value from individual bytes;
for example, when receiving integers as individual bytes over a serial communication
link. This is the inverse operation of Recipe 3.14.

Solution

Use the word(h,1) function to convert two bytes into a single Arduino integer. Here is
the code from Recipe 3.14 expanded to convert the individual high and low bytes back
into an integer:

//ByteOperators

int intValue = 0x102; // 258

void setup()

Serial.begin(9600);

void loop()
int loWord,hiWord;
byte loByte, hiByte;

hiByte
loByte

highByte(intValue);
lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

loWord = word(hiByte, loByte); // convert the bytes back into a word
Serial.println(loWord,DEC);
delay(10000); // wait a very long time

}

Discussion

The word(high, low) expression assembles a high and low byte into a 16-bit value. The
code in this recipe’s Solution takes the low and high bytes formed as shown in Rec-
ipe 3.14, and assembles them back into a word. The output is the integer value, the
low byte, the high byte, and the bytes converted back to an integer value:

258
2

3.15 Forming an int or long from High and Low Bytes | 87

1
258

Arduino does not have a function to convert a 32-bit long value into two 16-bit words
(at the time of this writing), but you can add your own makeLong() capability by adding
the following line to the top of your sketch:

#define makeLong(hi, low) ((hi) << 16 & (low))

This defines a command that will shift the high value 16 bits to the left and add it to
the low value:

#tdefine makeLong(hi, low) (((long) hi) << 16 | (low))
#define highWord(w) ((w) >> 16)
#define lowWord(w) ((w) & oxffff)

// declare a value to test
long longValue = 0x1020304; // in decimal: 16909060
// in binary : 00000001 00000010 00000011 00000100

void setup()
{

Serial.begin(9600);
}

void loop()
{
int loWord,hiWord;

Serial.println(longValue,DEC); // this prints 16909060

loWord = lowWord(longValue); // convert long to two words

hiWord = highWord(longValue);

Serial.println(loWord,DEC); // print the value 772
Serial.println(hiWord,DEC); // print the value 258

longValue = makelong(hiWord, loWord); // convert the words back to a long
Serial.println(longValue,DEC); // this again prints 16909060

delay(10000); // wait a very long time

}

The output is:

16909060
772
258
16909060

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

88 | Chapter3: Using Mathematical Operators

CHAPTER 4
Serial Communications

4,0 Introduction

Serial communications provide an easy and flexible way for your Arduino board to
interact with your computer and other devices. This chapter explains how to send and
receive information using this capability.

Chapter 1 described how to connect the Arduino serial port to your computer to upload
sketches. The upload process sends data from your computer to Arduino and Arduino
sends status messages back to the computer to confirm the transfer is working. The
recipes here show how you can use this communication link to send and receive any
information between Arduino and your computer or another serial device.

W N

Serial communications are also a handy tool for debugging. You can
send debug messages from Arduino to the computer and display them
%15 on your computer screen or an external LCD display.

The Arduino IDE (described in Recipe 1.3) provides a Serial Monitor (shown in Fig-
ure 4-1) to display serial data sent from Arduino.

You can also send data from the Serial Monitor to Arduino by entering text in the text
box to the left of the Send button. Baud rate (the speed at which data is transmitted,
measured in bits per second) is selected using the drop-down box on the bottom right.
You can use the drop down labeled “No line ending” to automatically send a carriage
return or a combination of a carriage return and a line at the end of each message sent
when clicking the Send button, by changing “No line ending” to your desired option.

Your Arduino sketch can use the serial port to indirectly access (usually via a proxy
program written in a language like Processing) all the resources (memory, screen, key-
board, mouse, network connectivity, etc.) that your computer has. Your computer can
also use the serial link to interact with sensors or other devices connected to Arduino.

89

No line ending + | | 9600 baud v:

Figure 4-1. Arduino Serial Monitor screen

Implementing serial communications involves hardware and software. The hardware
provides the electrical signaling between Arduino and the device it is talking to. The
software uses the hardware to send bytes or bits that the connected hardware under-
stands. The Arduino serial libraries insulate you from most of the hardware complexity,
but it is helpful for you to understand the basics, especially if you need to troubleshoot
any difficulties with serial communications in your projects.

Serial Hardware

Serial hardware sends and receives data as electrical pulses that represent sequential
bits. The zeros and ones that carry the information that makes up a byte can be repre-
sented in various ways. The scheme used by Arduino is 0 volts to represent a bit value
of 0, and 5 volts (or 3.3 volts) to represent a bit value of 1.

Using 0 volts (for 0) and 5 volts (for 1) is very common. This is referred
to as the TTL level because that was how signals were represented in
s one of the first implementations of digital logic, called Transistor-
° Transistor Logic (TTL).

Boards including the Uno, Duemilanove, Diecimila, Nano, and Mega have a chip to
convert the hardware serial port on the Arduino chip to Universal Serial Bus (USB) for
connection to the hardware serial port. Other boards, such as the Mini, Pro, Pro Mini,
Boarduino, Sanguino, and Modern Device Bare Bones Board, do not have USB support
and require an adapter for connecting to your computer that converts TTL to USB. See
http://www.arduino.cc/en/Main/Hardware for more details on these boards.

90 | Chapter4: Serial Communications

http://www.arduino.cc/en/Main/Hardware

Some popular USB adapters include:

* Mini USB Adapter (http://arduino.cc/en/Main/MiniUSB)

e USB Serial Light Adapter (http://arduino.cc/en/Main/USBSerial)

* FTDIUSB TTL Adapter (http://www.ftdichip.com/Products/FT232R.htm)

* Modern Device USB BUB board (http://shop.moderndevice.com/productsfusb-bub)

* Seeedstudio UartSBee (http://www.seeedstudio.com/depot/uartsbee-v31-p-688
html)

Some serial devices use the RS-232 standard for serial connection. These usually have
a nine-pin connector, and an adapter is required to use them with the Arduino. RS-232
is an old and venerated communications protocol that uses voltage levels not compat-
ible with Arduino digital pins.

You can buy Arduino boards that are built for RS-232 signal levels, such as the Free-
duino Serial v2.0 (http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-ardui
no-diecimila-compatib20.html).

RS-232 adapters that connect RS-232 signals to Arduino 5V (or 3.3V) pins include the
following;:

* RS-232 to TTL 3V-5.5V adapter (hitp://www.nkcelectronics.com/rs232-to-ttl-con
verter-board-33v232335.html)

* P4 RS232 to TTL Serial Adapter Kits (http://shop.moderndevice.com/products/p4)

e RS232 Shifter SMD (http://www.sparkfun.com/commerce/product_info.php?prod
ucts_id=449)

A standard Arduino has a single hardware serial port, but serial communication is also
possible using software libraries to emulate additional ports (communication channels)
to provide connectivity to more than one device. Software serial requires a lot of help
from the Arduino controller to send and receive data, so it’s not as fast or efficient as
hardware serial.

The Arduino Mega has four hardware serial ports that can communicate with up to
four different serial devices. Only one of these has a USB adapter built in (you could
wire a USB-TTL adapter to any of the other serial ports). Table 4-1 shows the port
names and pins used for all of the Mega serial ports.

Table 4-1. Arduino Mega serial ports

Portname Transmitpin Receive pin

Serial 1 (also USB) 0 (also USB)
Seriall 18 19
Serial2 16 17
Serial3 14 15

4.0 Introduction | 91

http://arduino.cc/en/Main/MiniUSB
http://arduino.cc/en/Main/USBSerial
http://www.ftdichip.com/Products/FT232R.htm
http://shop.moderndevice.com/products/usb-bub
http://www.seeedstudio.com/depot/uartsbee-v31-p-688.html
http://www.seeedstudio.com/depot/uartsbee-v31-p-688.html
http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-arduino-diecimila-compatib20.html
http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-arduino-diecimila-compatib20.html
http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html
http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html
http://shop.moderndevice.com/products/p4
http://www.sparkfun.com/commerce/product_info.php?products_id=449
http://www.sparkfun.com/commerce/product_info.php?products_id=449

Software Serial

You will usually use the built-in Arduino Serial library to communicate with the hard-
ware serial ports. Serial libraries simplify the use of the serial ports by insulating you
from hardware complexities.

Sometimes you need more serial ports than the number of hardware serial ports avail-
able. If this is the case, you can use an additional library that uses software to emulate
serial hardware. Recipes 4.13 and 4.14 show how to use a software serial library to
communicate with multiple devices.

Serial Message Protocol

The hardware or software serial libraries handle sending and receiving information.
This information often consists of groups of variables that need to be sent together. For
the information to be interpreted correctly, the receiving side needs to recognize where
each message begins and ends. Meaningful serial communication, or any kind of
machine-to-machine communication, can only be achieved if the sending and receiving
sides fully agree how information is organized in the message. The formal organization
of information in a message and the range of appropriate responses to requests is called
a communications protocol.

Messages can contain one or more special characters that identify the start of the mes-
sage—this is called the header. One or more characters can also be used to identify the
end of a message—this is called the footer. The recipes in this chapter show examples
of messages in which the values that make up the body of a message can be sent in
either text or binary format.

Sending and receiving messages in text format involves sending commands and nu-
meric values as human-readable letters and words. Numbers are sent as the string of
digits that represent the value. For example, if the value is 1234, the characters 1, 2, 3,
and 4 are sent as individual characters.

Binary messages comprise the bytes that the computer uses to represent values. Binary
data is usually more efficient (requiring fewer bytes to be sent), but the data is not as
human-readable as text, which makes it more difficult to debug. For example, Arduino
represents 1234 as the bytes 4 and 210 (4 * 256 + 210 = 1234). If the device you are
connecting to sends or receives only binary data, that is what you will have to use, but
if you have the choice, text messages are easier to implement and debug.

There are many ways to approach software problems, and some of the recipes in this
chapter show two or three different ways to achieve a similar result. The differences
(e.g., sending text instead of raw binary data) may offer a different balance between
simplicity and efficiency. Where choices are offered, pick the solution that you find
easiest to understand and adapt—this will probably be the first solution covered. Al-
ternatives may be a little more efficient, or they may be more appropriate for a specific

92 | Chapter4: Serial Communications

protocol that you want to connect to, but the “right way” is the one you find easiest to
get working in your project.

The Processing Development Environment

Some of the examples in this chapter use the Processing language to send and receive
serial messages on a computer talking to Arduino.

Processing is a free open source tool that uses a similar development environment to
Arduino, but instead of running your sketches on a microcontroller, your Processing
sketches run on your computer. You can read more about Processing and download
everything you need at the Processing website.

Processing is based on the Java language, but the Processing code samples in this book
should be easy to translate into other environments that support serial communica-
tions. Processing comes with some example sketches illustrating communication
between Arduino and Processing. SimpleRead is a Processing example that includes
Arduino code. In Processing, select File-Examples—Libraries—Serial->SimpleRead to
see an example that reads data from the serial port and changes the color of a rectangle
when a switch connected to Arduino is pressed and released.

New in Arduino 1.0

Arduino 1.0 introduced a number of Serial enhancements and changes :

Serial.flush now waits for all outgoing data to be sent rather than discarding
received data. You can use the following statement to discard all data in the receive
buffer: while(Serial.read() »>= 0) ; // flush the receive buffer

Serial.write and Serial.print do not block. Earlier code would wait until all
characters were sent before returning. From 1.0, characters sent using
Serial.write are transmitted in the background (from an interrupt handler) al-
lowing your sketch code to immediately resume processing. This is usually a good
thing (it can make the sketch more responsive) but sometimes you want to wait
until all characters are sent. You can achieve this by calling Serial.flush() imme-
d